DIRECTIONS:

- No papers, phones, calculators, or gadgets are permitted to be out during the quiz.
- Show all work, clearly and in order You will lose points if any of these instructions are not followed.

Questions	Points	Score
1	1	
2	2	
3	2	
Total	5	

Problem 1: (1 point) State the ϵ-property.
For all $\epsilon>0$, there exists $m \in \mathbb{N}$ such that $\frac{1}{m}<\epsilon$.
Problem 2: (2 points) For any poset (A, \leq) and subset $B \subseteq A$, prove that B has at most one least upper bound, $\operatorname{lub}(B)$

Proof: Suppose L and L^{\prime} are both least upper bounds of B. Then by the definition of least upper bound $L \leq L^{\prime}$ and $L^{\prime} \leq L$. Hence $L=L^{\prime}$.
Q.E.D.

Problem 3: (2 points) Label the following true or false
(a) (0.5 points) $\quad \mathrm{F}$ A relation, \sim, on a set A that yields a poset (A, \sim) is a special kind of equivalence relation. That is it is reflexive, symmetric, and transitive.
(b) (0.5 points) $\quad \mathrm{F} \mathbb{Q}$ has the greatest lower bound property.
(c) (0.5 points) $\quad \mathrm{T} \mathbb{R}$ is a complete ordered field.
(d) (0.5 points) _F_ If an ordered field, F, has the greatest lower bound property, then any non-empty subset $B \subseteq F$ has a greatest lower bound.

