## DIRECTIONS:

- No papers, phones, calculators, or gadgets are permitted to be out during the quiz.
- Show all work, clearly and in order You will lose points if any of these instructions are not followed.

| Questions | Points | Score |
| :---: | :---: | :---: |
| 1 | 1 |  |
| 2 | 2 |  |
| 2 | 2 |  |
| Total | 5 |  |

Problem 1: (1 points) State the Exchange Lemma.
Let $V$ be a vector space over a field $F$ and suppose $U=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{m}\right\}$ is a spanning set. If $V=$ $\left\{\mathbf{v}_{1}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{n}\right\}$ is a linearly independent set, then $n \leq m$.

Problem 2: (2 points) Let $V$ be a vector space over a field, $F$ and let $\mathbf{v} \in V$ be a nonzero vector. Show that $\{\mathbf{v}\}$ is a linearly independent set. You may assume $\beta \mathbf{0}=\mathbf{0}$ for all $\beta \in F$.

Proof: Suppose that $\{\mathbf{v}\}$ was a linearly dependent set. Then there exists some $\alpha \in F$ with $\alpha \neq 0$ such that $\alpha \mathbf{v}=\mathbf{0}$. But $F$ is a field so the multiplicative inverse $\alpha^{-1} \in F$ exists. Hence $\mathbf{v}=\alpha^{-1} \mathbf{v}=\mathbf{0}$ which is a contradiction.
Q.E.D.

Problem 3: (2 points) Label the following true or false
(a) (0.5 points) $\quad \mathrm{T} V=\mathbb{R}$ over $F=\mathbb{R}$ is a vector space.
(b) (0.5 points) _ F_ If a set of vectors is linearly dependent, then one of them must be the zero vector.
(c) (0.5 points) T All bases are spanning sets.
(d) (0.5 points) $\quad \mathrm{F}$ All spanning sets are bases.

