DIRECTIONS:

- No papers, phones, calculators, or gadgets are permitted to be out during the quiz.
- Show all work, clearly and in order You will lose points if any of these instructions are not followed.

Questions	Points	Score
1	1	
2	2	
2	2	
Total	5	

Problem 1: (1 points) Let $A, B \in M_n(F)$ where F is a field. Let $A = (a_{ij})$ and $B = (B_{ij})$. Define Matrix multiplication.

where

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

 $A \cdot B = C = (c_{ii}),$

Problem 2: (2 points) Define a group.

A group is a nonempty set, G, and an operation \circ , such that $\forall a, b, c \in G$

- 1. $a \circ b \in G$
- 2. $(a \circ b) \circ c = a \circ (b \circ c)$
- 3. There exists $e \in G$ such that $a \circ e = e \circ a = a$, $\forall a \in G$
- 4. $\forall a \in G$ there exists $a^{-1} \in G$ such that $a \circ a^{-1} = a^{-1} \circ a = e$

Problem 3: (2 points) Label the following true or false

(a) (0.5 points) <u>T</u> Let $\sigma \in S_n$, then σ is a bijection from $\{1, 2, ..., n\}$ to itself.

- (b) (0.5 points) $\underline{T} S_n$ is a group.
- (c) (0.5 points) <u>F</u> Not all linear transformations can be represented as matrices.
- (d) (0.5 points) <u>T</u> $M_n(F)$ is commutative if and only if the integer n is 0 < n < 2.