DIRECTIONS:

- No papers, phones, calculators, or gadgets are permitted to be out during the quiz.
- Show all work, clearly and in order You will lose points if any of these instructions are not followed.

Questions	Points	Score
1	1	
2	2	
2	2	
Total	5	

Problem 1: (1 points) Let $A, B \in M_{n}(F)$ where F is a field. Let $A=\left(a_{i j}\right)$ and $B=\left(B_{i j}\right)$. Define Matrix multiplication.

$$
A \cdot B=C=\left(c_{i j}\right),
$$

where

$$
c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j} .
$$

Problem 2: (2 points) Define a group.
A group is a nonempty set, G, and an operation \circ, such that $\forall a, b, c \in G$

1. $a \circ b \in G$
2. $(a \circ b) \circ c=a \circ(b \circ c)$
3. There exists $e \in G$ such that $a \circ e=e \circ a=a, \forall a \in G$
4. $\forall a \in G$ there exists $a^{-1} \in G$ such that $a \circ a^{-1}=a^{-1} \circ a=e$

Problem 3: (2 points) Label the following true or false
(a) (0.5 points) T Let $\sigma \in S_{n}$, then σ is a bijection from $\{1,2, \ldots, n\}$ to itself.
(b) (0.5 points) $\quad \mathrm{T} S_{n}$ is a group.
(c) (0.5 points) F Not all linear transformations can be represented as matrices.
(d) (0.5 points) _ T $M_{n}(F)$ is commutative if and only if the integer n is $0<n<2$.

