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1 Abstract

Universal StudiosTM has agreed to produce Draftee Summer in association
with TARNADO Productions, LLC. Following is a proposal for the design
and implementation of the trailer for Draftee Summer.

In light of the budget allotted for the production of the trailer, the use of
computer-generated imagery (CGI) will not be possible. The stunts will be
performed by stunt actors instead. The “Specifications” section of this pro-
posal includes detailed analysis of the fourteen stunts that will be performed
in the trailer. Each has been evaluated for safety and plausibility. The set
producers have evaluated the materials that will be needed for these stunts
and confirmed their accessibility.

The “Design and Methods” section of this proposal includes a timeline
of the trailer, which includes the duration of each stunt. The total time
allotted for stunts is 5:00 minutes, and the total duration of the trailer is
7:00 minutes. The trailer is such that between stunts there will be contextual
dialogue and panoramic views, which will give the audience an idea of what
Draftee Summer is about and cause them to want to see it in the summer of
2012.

In “Evaluations” we summarize and compile the individual evaluation
rubric after each stunt analysis. This will be further confirmation of the
safety and plausibility of the stunts we plan to use in the trailer.

This trailer will appear in theaters showing action movies, as the target
audience for Draftee Summer are fans of other action movies. Thus, it is
integral for our stunts to appear dramatic and realistic. We plan to optimize
the dramatic effect by using talented stunt actors, advanced machinery, and
various film techniques, such as multiple camera angles and slow motion.
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The stunts in the trailer will be highly technical and difficult yet safe for the
trained stunt actors to perform.

The goal of this proposal is to demonstrate the feasibility of the stunts
needed for the trailer of Draftee Summer to be performed by stunt actors.

2 Design

The budget allotted for Draftee Summer does not allow for CGI. In lieu of
CGI, the production team for TARNADO Productions has choreographed
and analyzed a sequence of fourteen stunts that will net a duration of five
minutes.

All but one of these stunts involve stunt actors; therefore, the primary
concern in evaluating these stunts is the actors’ safety. We have designed
these stunts with the actors in mind while maintaining a focus on the dra-
matic effect these stunts will provide, as this trailer is the first look audiences
will have at Draftee Summer and we want to convince them of its dramatic
and action-packed integrity.

2.1 Plot Overview

Nora Sagiv is your average American teenager. She washes the dishes after
dinner every day, her favorite class in school is Biology, and she likes to
spend time at the mall with her friends. As someone who has led a relatively
sheltered life in middle American suburbia, Nora has cultivated a strong
aversion to war.

Why, then, is the Israeli army so set on drafting her? Because she is
eighteen, an Israeli citizen, and schooled in three languages. Nora is in danger
of being drafted into the Israeli Defense Forces, as Israel is the only country
in the world that conscripts women. However, due to her pacifist tendencies
and in spite of the high rank with which the Israeli state attempt to lure her
in, Nora has no desire to enter the military. The only way to escape a life of
war-mongering is to run away.

The movie follows Nora’s frantic, high-flying journey through the twisting
streets of Tel Aviv. As she struggles to evade the supercilious men on her tail,
she jumps out of buildings, dives into water, and covers miles of unpredictable
urban terrain. Ultimately, Nora, with her athleticism and strong will, prevails
over the clumsy-footed bureaucrats of the Israeli Defense Forces.
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2.2 Timeline of Trailer

Stunt End time
Bus bombing 0:05
Ambulances, emotional camera angles 0:25
Frictional incline 0:50
Brachistochrone slide 1:10
Panoramic view of Tel Aviv, Israel 1:30
Spliced shots of IDF (Israeli army) 1:50
Parachuting soldiers 2:15
Officers meet to discuss Nora and her importance 2:40
Conference between officers and Nora 2:50
Car on a banked curve 3:10
Car flying off a bridge 3:35
Car lands in water 3:40
Floating car escape 4:15
Swimming against a current 4:55
Nora breaks down in urban Tel Aviv 5:00
Nora overcomes her breakdown, runs away from the camera 5:05
Helical run 5:25
Humorous banter between officers and Nora 5:30
Swinging on a rope 5:50
Jumping into an open window 6:05
Skateboarding down an incline 6:25
Bungee jump 6:50
Draftee Summer : Summer 2012 7:00

Table 2.2. The table above gives a timeline for the trailer of Draftee Sum-
mer. The “End time” denotes the point at which each event ends. The total
time spent on action stunts is 5:00 and the time spent on contextual material
is 2:00, totaling to 7:00.

3 Methods

The trailer consists of both action stunts and contextual dialogue. The dia-
logue serves to give the audience an idea of what Draftee Summer is about
and to make them interested and invested in Nora and her conflict with the
Israeli Defense Forces.
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The stunts take up a majority of the time allotted to this trailer because
the target audience for the movie is assumed to enjoy action movies. The
challenge for the production team is incorporating as many stunts as possi-
ble given a seven-minute time limit, of which two minutes are reserved for
dialogue and other contextual scenes, and the need to use live-action stunts.

Here we will explain our methodology for evaluating the stunts. We
evaluate the stunt for feasibility and safety. Each stunt includes a rubric
that evaluates it on the basis of its safety and feasibility. “Notes” details any
constraints or special requirements for the performance and set-up of each
stunt, e.g., the use of crystallized sugar instead of glass.

Mathematical justification as well as schematic diagrams for each of the
stunts is included in “Specifications.” The analyses also include data about
the materials to validate the safety of the stunts.

3.1 Bus Bombing

The movie begins with a bus bombing, a common form of terrorist attack
in Israel since the second intifada in 20001. For the purpose of this movie,
and our intent to start this trailer in medias res, we will assume the bus has
been projected vertically upwards. The following calculations apply to the 5
m fall, which will be completely orchestrated by attaching a decrepit bus to
a junk-yard magnet.

We use the idea that when the bus is at its peak in the air its total energy
is in the form of potential energy and just before it hits the ground its total
energy is in the form of kinetic energy2, which allows us to use the equation
U = KE, where U denotes potential energy and KE denotes kinetic energy.
This means that mgh = 1

2
mv2. Further mathematical justification can be

found in section 4.1 of “Specifications.”
In terms of the trailer, this stunt is very important contextually, so for

dramatic emphasis, we will film it in slow motion using multiple camera
angles, so likely the entire stunt will be closer to 5 seconds.

1Bard, Mitchell, “The Intifada,” Jewish Virtual Library, American-Israeli Cooperative
Enterprise, 2010, Web, 1 Mar. 2010, http://www.jewishvirtuallibrary.org/index.html.

2“Kinetic and Potential Energy,” The Physics of Amusement Parks, Ed. Tammy Mer-
ritt, Brendan Colloran, and May Lee, Tammy Merritt, May Lee, and Brendan Colloran,
web, 15 Feb. 2010, http://library.thinkquest.org/2745/data/openpark.htm.
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Evaluation
Feasibility: Strong
Safety: Poses little risk; however, for safety people should keep their distance
from the crane and hanging bus
Notes: We would need to gain access to a crane and a decrepit bus
Duration: 0:05

3.2 Frictional Incline

In this stunt, we want our heroine to run up a narrow incline, such as a ramp,
a conveyor belt, or wooden plank. To make the scene especially dramatic,
the incline’s angle should be maximized. To ensure that our actress won’t
slide down the ramp, which could lead to serious injury, we need to choose
a material for the incline that offers enough static friction. We can assume
that the actress is wearing shoes with rubber soles.

We determine that if the angle between the incline and the ground is θ
and the friction between the heroine’s shoes and the incline is µ, that the
angle at which we can set the ramp is correlated with the friction between
the two surfaces by θ = arctanµ.

Using data about the friction coefficient for variety of materials, we can
determine the maximum angle at which she can travel up the ramp, which
is θ = 49.27◦ (see “Specifications” for further detail).
Evaluation
Feasibility: Strong
Safety: Poses little risk
Notes: The stunt double’s shoes should be rubber-soled
Duration: 0:25

3.3 Brachistochrone Slide

In one part of our chase scene, the heroine slides from an elevated height to
a lower height. We would like for her to accomplish this in the shortest time.
It is assumed she starts at rest at the elevated height, stays in contact with
the path, and is only acted on by a constant force of gravity (no friction).
It turns out that the curve that we have constructed for this purpose is an
inverted cycloid.
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Evaluation
Feasibility: Strong
Safety: Poses little risk
Notes: The stunt actor’s landing will be cushioned to prevent injury
Duration: 0:20

3.4 Parachuting Soldiers

We consider the problem of Israeli Defense Forces soldiers parachuting (from
free fall). In the case of free fall, there will be two forces that need to be
considered: gravity and the resistive drag force. A good model for the drag
force is: Fdrag = 1

2
DρAv2,3 where D is the so-called “drag coefficient,” ρ is

the density of air, A is the cross-sectional area of the person, and v is the
speed.

We find that for a parachute of dimension 20 m2, the terminal velocity
would be around 10 m/s, which would provide a safe landing.
Evaluation
Feasibility: Strong
Safety: Poses little risk to experienced parachuters
Notes: The stunt actor’s landing will be cushioned to prevent injury
Duration: 0:25

3.5 Car on a Banked Curve

In this stunt, Nora’s burly pursuers are driving their car on a banked curve,
depicted in the movie as a highway off ramp that is at an angle θ with the
horizontal. We will take the radius of the turn and speed of the car as given
as we try to maximize θ so that the stunt looks as dangerous as possible.

We use the relationship between tangential and centripetal force to find
the car’s acceleration: ma = mv2

r
.4 and find that the angle can be as great

as 68.2◦; however, to guarantee safety we will use a 45◦ angle.
Evaluation
Feasibility: Strong
Safety: Poses little risk

3“Drag Equation,” Wikipedia, 8 February 2010, Wikimedia Foundation, Inc. 10 Febru-
ary 2010, http://en.wikipedia.org/wiki/Drag equation.

4“Centripetal Force,” Wikipedia, 20 January 2010, Wikimedia Foundation, Inc. 3
February 2010, http://en.wikipedia.org/wiki/Centripetal force.
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Notes: The car is traveling at a constant 80.0 mph, which we set as the
velocity at which static friction plays no role5

Duration: 0:20

3.6 Car Flying Off a Bridge

Here, our stunt actress drives with a car from a bridge into a body of water.
We will construct a ramp (of angle θ with the horizontal) to increase the
distance x which the car traveling at a velocity v covers before hitting the
water. The height of the bridge is h and the height of the ramp is hr. Our
objective is to find out, given values for the aforementioned variables, how
long the stunt will take.

We use projectile motion physics equations to evaluate this stunt:

t = −v sin θ −
√

(v sin θ)2 − 4(4.9)(h+ hr)

−9.8
.6

We find in “Specifications” that the car will be in the air for 3.38 seconds,
and given dramatic film techniques, this stunt will take ten seconds. For the
sake of safety, we will not have a stunt actor driving the car during the stunt
and will execute it remotely to prevent fatal injuries.

Evaluation

Feasibility: Strong

Safety: Poses no risk to human, as it is unmanned

Notes: We would need a cheap car

Duration: 0:25

3.7 Car Lands in Water

In this stunt we want to know how much force the car needs to be able to
withstand when it hits the water surface. We model this stunt on a Mazda3,

5Louie, Gary, Olga Strachna, Dorothy Soo, and Diana Kuruvilla. “Speed of a Car:
The Blues Brothers,” The Physics Factbook. Glenn Elert, 2005, Web, 2 Mar. 2010,
http://hypertextbook.com/facts/2005/BluesBrothers.shtml.

6Nave, R, “Trajectories,” The Physics Factbook, Glenn Elert, Web, 2 Feb. 2010,
http://hyperphysics.phy-astr.gsu.edu/hbase/traj.html#tra6.
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which is the most driven car in Israel7. We find that the tensile strength of
steel is greater than the force the car hits the water, making this stunt safe.

From the projectile motion equations in 3.6, we can model the path of
the car by:

x(t) = (v cos θ)t

y(t) = (h+ hr) + (v cos θ)t− 4.9t2

We use these path equations to determine the car’s acceleration, from which
we can calculate its force. We then compare this force with the compressive
force of steel and show that the car can withstand this crash. Please see
“Specifications” for further detail.

Evaluation

Feasibility: Strong

Safety: Poses no risk to human, as it is unmanned

Notes: We would need a cheap car

Duration: 0:05

3.8 Floating Car Escape

In this part of the stunt sequence, we want our heroine to escape from the
car unharmed. There are two ways for a person to escape out of a sinking
car. Either, they can escape while the car is still above water and the water
pressure against the sides is not big enough to make it impossible for them
to open the door, or they can wait till the car is mostly flooded with water,
so the pressure is equalized and they can open a door or window underwater.
Since the second method can lead to panic and serious injury, we deem it
safer for our action heroine to escape the car while it is yet afloat. To enable
such an escape, we will make the car waterproof, to keep it from sinking.
Also, when the actress escapes, she should open a window, not a door to
leave the car.

Evaluation

Feasibility: Strong

Safety: Poses little risk

7Haselkorn, Shachar, “The Most Widely Sold Car in Israel - Mazda
3, Again,” Haaretz.com, Haaretz Newspaper, 2007, web, 20 Feb. 2010,
http://www.haaretz.com/hasen/spages/817019.html.



11

Notes: The car needs to be well-sealed, no water may enter, the stunt actress
needs to escape through the window
Duration: 0:35

3.9 Swimming Against a Current

In this final part of the stunt sequence, we want the actress to swim ashore.
The objective here is to create a suspenseful atmosphere by only providing a
narrow stretch of shore accessible from the water. We want our stunt double
to just barely reach the end of the accessible area. Since it is most intuitive
for the actress to swim directly towards the shore, we want to know, given
the velocity vs at which she can swim, the velocity vr at which the river is
flowing, and her distance d from the shore, how long the stretch l of accessible
area needs to be so she can get ashore.

We can then evaluate the time it will take her to swim ashore and then
calculate her displacement along the shore using the general physics equation
d = ||v||t,8 where ||v|| is the speed. We find in “Specifications” that she will
be displaced 10 m.
Evaluation
Feasibility: Strong
Safety: Poses little risk
Notes: The shore should be longer than 10 m in case our swimmer cannot
maintain her speed. Also, we will have to find a location with a relatively
slow current. In case we cannot exactly match these current figures, the
process for calculating the distance can be amended to accommodate the
real conditions we will encounter upon production
Duration: 0:40

3.10 Helical Run

In this scene, Nora is being chased through a parking lot. Here we try to
find the distance Nora can travel in the 20-second time lot we have allotted
for this stunt. We will approximate her path through the parking garage to
be a helical path, which can be parameterized as:

−→c (t) = (r cos(ωt), r sin(ωt), t),

8“Equations of Motion,” Wikipedia, 4 March 2010, Wikimedia Foundation, Inc. 4
March 201, http://en.wikipedia.org/wiki/Equations of motion.
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where ω is angular velocity and r is the radius from the center axis to the path
of motion. We find that she can travel 158.8 ft in the allotted 20 seconds.
Evaluation
Feasibility: Strong
Safety: Poses little risk
Notes: The stunt actor’s speed must be held constant at the rate of a 7:00
minute mile for the stunt to be completed as written above
Duration: 0:20

3.11 Swinging on a Rope

The primary safety concern for the rope swing stunt is the tensile strength
of the rope used. The set-up is such that the friction between the rope and
axel is negligible because the rope would be attached to a large metal washer
that would have a steel axel running through the hole, and both the inner
hole surface of the metal washer and the steel axel would be greased. This
way, the friction between the surfaces is small and would have a negligible
effect on the tension of the rope during the stunt.

We use the centripetal force equation to show that the rope can handle
the tension of the stunt: Fcentripetal = T −mg cos θ = mv2

R
.9 The rope data in

“Specifications” shows that the rope can certainly tolerate the tension caused
by the weight of the stunt actor.
Evaluation
Feasibility: Strong
Safety: Poses little risk
Notes: Friction between the rope and the axel must be minimized
Duration: 0:20

3.12 Jumping into an Open Window

Here, we will analyze a stunt in which our heroine jumps from a building
through an open window. In order to optimize the impressiveness of the
stunt, we wish to maximize the distance that she can travel. We will find
that the horizontal displacement d depends on the stunt double’s initial take-
off angle θ with the horizontal.

9“Centripetal Force,” Wikipedia, 20 January 2010, Wikimedia Foundation, Inc. 3
February 2010, http://en.wikipedia.org/wiki/Centripetal force.
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We evaluate this stunt on the equation that has been derived for long
jumpers,

d =
v2 sin 2θ

2g

(
1 +

√
1 +

2gh

v2 sin2 θ

)
, 10

and find that the optimal angle for take off is 22◦.
Evaluation
Feasibility: Strong
Safety: Poses little risk
Notes: As in the case of the long jump, which employs sand, the stunt
double’s landing should be cushioned
Duration: 0:15

3.13 Skateboarding Down an Incline

The primary concern for the downhill skateboarding stunt is air friction,
which would reduce the speed of the stunt actor moving down the hill. We
need to optimize the speed of the skateboarding actor such that it is safe
to perform the stunt while maintaining dramatic effect. We find that the
skateboarder’s terminal velocity is

vterminal =

√
2mg cos θ

CρA
, 11

which, given a maximum velocity that we determine for the purposes of
safety, allows us to solve for the maximum angle at which this stunt can be
performed safely.
Evaluation
Feasibility: Strong
Safety: Poses little risk
Notes: We would place cushioned material at the end of the incline for extra
safety
Duration: 0:20

10Linthorne, Nick. Optimum Take-Off Angle in the Long Jump.
http://people.brunel.ac.uk/spstnpl/BiomechanicsAthletics/LJOptimumAngle.htm#Introduction
ed. Vol. 2010. Uxbridge, Middlesex, UK: Brunel University, 2008.

11“Terminal Velocity,” Wikipedia, 25 January 2010, Wikimedia Foundation, Inc. 7
February 2010, http://en.wikipedia.org/wiki/Terminal velocity.
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3.14 Bungee Jump

The problem of bungee cord jumping is very complex, but we will attempt to
use a simple model to describe the situation. We model the bungee cord as
a spring and assume that there is no energy dissipation. Then the problem
becomes one of simple harmonic motion. The oscillation resulting from our

inital set-up is given as x(t) = A cos(ωt+ π), where ω =
√

k
m

. We find that

a reasonable speed for the action hero to release at a lower level would be 10
m/s.
Evaluation
Feasibility: Strong
Safety: Poses little risk
Notes: The time for the stunt will vary slightly from the calculations, as
real-world effects will apply. For this reason we utilize extra safety measures
Duration: 0:25

4 Specifications

We present analyses of several stunts to be included in the trailer. Each stunt
is intended to be used as a splice, ranging in duration from ten to thirty
seconds. Each stunt is contextually tied to the rest because throughout the
trailer the heroine will be running to escape from corrupt and dangerous
army officers. It can therefore be assumed that each of the following stunts
occurs while the heroine is running away from these belligerent men.

The following specifications are presented in order according to the time-
line in Section 2.2. For dramatic effect, stunts may utilize slow motion,
multiple camera angles, and splicing. These film-editing techniques elongate
the time each stunt takes relative to real time, therefore, we must take into
account these techniques when designating the time each stunt will take.
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4.1 Bus Bombing

Figure 4.1. A schematic diagram of the bus falling from a height h. The F
denotes the force due to gravity, M is the mass of the bus.

A few conditions we will create to simplify the stunt as well as to maintain
safety, predictability, and reproducibility are that we will take a decrepit bus
and strip it and remove the engine. This way, the center of mass in the
horizontal component will be in the center, and the bus will land as close to
flat on its wheels as possible rather than on an edge.

We will attach the bus to a junk-yard magnet. A typical bus has a mass
of 4,726 kg,12 which would indicate that the force of gravity on such a bus
would be Fg = Mg = 46, 314.8N .

There are electromagnets that can exceed gravity’s force on the bus, which
would be sufficient to hold it up before the drop13. The electromagnetic
force of a junkyard magnet is F = B2A

2µ0
, where B is the magnetic field (for

a typical iron core is 1.6 T), A is the cross-sectional area of the core, which
we will take to be 0.05 m2,14 and µ0 is the permeability of free space, equal
to 4π × 10−7 T ·m

A
. Therefore, the force exerted by the junkyard crane is

F = 50, 955N .
This electromagnetic force is much greater than the force of gravity on

the bus, so the junkyard crane is feasible for use in this stunt.

12Rosenker, Mark V, “Safety Recommendation,” letter to Honorable Samuel W.
Bodman, 8 May 2006, MS, National Transportation Safety Board, Washington, D.C.
http://www.ntsb.gov/recs/letters/2006/H06 15.pdf

13“Electromagnet,” Wikipedia, 26 February 2010, Wikimedia Foundation, Inc. 4 March
2010, http://en.wikipedia.org/wiki/Electromagnet.

14“Air Gapped Magnetic Cores,” Welcome to the Department of Electronic Engineering,
Web, 28 Feb. 2010,

http://info.ee.surrey.ac.uk/Workshop/advice/coils/gap/index.html#wht.
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Now, we have to calculate the time the drop will take starting from a
height of 5 m. Because the height is relatively small, air resistance is negli-
gible, so we take the potential energy at the top to be equal to the kinetic
energy at the bottom of the drop15 and solving for velocity we get vf =

√
2gh.

We use a well-known physics equation relating velocity, acceleration, and
time16: vf = v0 + at. Plugging in the vf from the energy equation, and
noting that the initial velocity is 0 m/s, we can solve for t. Noting that the
acceleration on the bus is only that due to gravity, we can substitute g for a.
Finally, substituting in our values in this equation, we can find the numerical
time value, t = 1.01 s. The amount of time the bus will spend in the air is
therefore, 1.01 seconds.

4.2 Frictional Incline

We determine that if the angle between the incline and the ground is θ and
the friction between the heroine’s shoes and the incline is µ, that the angle
at which we can set the ramp is correlated with the friction between the two
surfaces by θ = arctan(µ).

Table 4.2. Friction coefficients for common surfaces as well as their incline
angles17

Second Material Friction coefficient Angle (degrees)
Rubber 1.16 (kinetic) 49.27
Concrete (dry) 1.0 (static) 45.00
Asphalt (dry) 0.5-0.8 (kinetic) 26.57-38.66
“Solids” 1.0-4.0 (static) 45.00-75.96

For those material combinations for which we could only determine the ki-
netic friction, we can say that the kinetic friction coefficient is a conservative
estimate for the static friction coefficient. From the table, we see that the
combination of rubber on rubber is rather promising, as it provides us with

15“Kinetic and Potential Energy,” The Physics of Amusement Parks, Ed. Tammy Mer-
ritt, Brendan Colloran, and May Lee, Tammy Merritt, May Lee, and Brendan Colloran,
web, 15 Feb. 2010, http://library.thinkquest.org/2745/data/openpark.htm.

16Nave, R, “Trajectories,” The Physics Factbook, Glenn Elert, Web, 2 Feb. 2010,
http://hyperphysics.phy-astr.gsu.edu/hbase/traj.html#tra6.

17Beardmore, Roy, “Coefficients of Friction,” Roy Beardmore, 2 February 2010,
http://www.roymech.co.uk/Useful Tables/Tribology/co of frict.htm.
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the conservative estimate of an angle of 49.27◦. Rubber on “solids” also
seems very promising, though we would have to find out which solids give us
the highest friction.

Figure 4.2. The normal force (N) is perpendicular to the surface, friction
(F ), θ is the incline

For an object in equilibrium on an incline, we have

mg sin θ = Ffriction.

Since N = mg cos θ and Ffriction ≤ µsN , to find the max angle allowed we

set mg sin θ = µmg cos θ. Solving this, we get
sin θ

cos θ
= µ, or tan θ = µ and

θ = tan−1 µ. This angle is the angle at which we will incline the plane for
this stunt.

4.3 Brachistochrone Slide

Figure 4.3. A schematic diagram of the parameterization of a cycloid
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From Figure 4.3 we find that the parametric equations for a cycloid are:

x(t) = a(t− sin t)

y(t) = a(1− cos t),

where a is the radius of the circle that generates the cycloid. The parameter
interval will be taken to be 0 ≤ t ≤ π.

One of the first aspects to consider is the total distance along which the
action hero slides (that is, the arc length of the curve). We compute this as
follows:

L =

∫ π

0

√(
dx

dt

)2

+

(
dy

dt

)2

dt

=

∫ π

0

√
a2(1− cos t)2 + a2 sin2 t dt

The length turns out to be 4a. This would be important to consider in
constructing the curve, since we would like to know how much material is
needed.

We should also take into account her final velocity as she exits the curve.
This may be computed with conservation of energy: 1

2
mv2 = mgh, which

gives v =
√

2gh. Assuming a vertical displacement of 10 m, which is roughly
equivalent to two stories of a building, the exiting velocity would be about
14 m/s, which is pretty safe.

4.4 Parachuting Soldiers

The natural thing to consider is the terminal velocity of the soldiers, which
occurs when the drag force and gravitational force balance: mg = 1

2
DρAv2.

This gives us vterminal =
√

2mg
DρA

. Most sources quote the terminal velocity of

an average person as 60 m/s. Of course, this is probably not a safe speed for
landing.

With a parachute, the terminal velocity is greatly diminished. Upon
opening the parachute, the drag force increases dramatically to yield a net
upward force on the person, and a new terminal velocity is eventually reached.
With a parachute of area 20 m2, for example, the terminal velocity would be
around 10 m/s, which is safe for landing.
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Figure 4.4. The person of mass m experiences the gravitational force of mg
downward and a resistive drag force of Fdrag upward.

4.5 Car on a Banked Curve

Let us set the velocity of the car at 80.0 mph (35 m/s), which has been
determined to be the maximum average velocity of the esteemed Jake and
Elwood Blues’ car during a Chicago-based chase scene in the 1980 movie
The Blues Brothers18. Additionally, we will choose 50.0 m (164 ft) to be the
radius of our turn-in fact; this is an arbitrary number, as we will need to
construct the roadway, anyway, to place it at our desired angle θ.

A car moving along a circular path with a constant speed has a chang-
ing velocity, because the car itself is constantly changing direction. So, the
car’s acceleration will point toward the center of the circle, such that a = v2

r
.

Recall Newton’s Second Law, which relates force to acceleration with the
relationship

∑
F = ma. That is, the mass of an object multiplied by its ac-

celeration in a certain direction will give the force in that direction19. Com-
bining the above equation, the equation for centripetal force can be written
as ma = mv2

r
.

Under real-life conditions, the car will experience some static friction with
the road surface that will oppose its forward motion. There is an ideal speed
(videal) for which the force of static friction does not impact the car’s mo-
tion, because the car has exactly the velocity that fulfills the aforementioned
equation for centripetal force.

18Louie, Gary, Olga Strachna, Dorothy Soo, and Diana Kuruvilla. “Speed of a Car:
The Blues Brothers,” The Physics Factbook. Glenn Elert, 2005, Web, 2 Mar. 2010,
http://hypertextbook.com/facts/2005/BluesBrothers.shtml.

19Marsden, Jerrold E., and Anthony Tromba, Vector Calculus. New York: W.H. Free-
man, 2003, Print.
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If the car’s velocity varies from videal, the force of static friction will act
to pull the car either up or down the curve20. However, we will assume that
our stunt car will move at videal with regards to the θ at which we construct
the roadway. Because we are varying the angle, we can take an arbitrary
velocity (in this case, 80.0 mph) and set it as our ideal velocity.

Then, note that there is a normal force N pointing perpendicular to the
surface of the road, the downward force of gravity (equaled to the weight of
the car, 3400 lbs), and the net force is pointed inward. We can start to use
our circular motion equations to relate θ to v. Note that we have not rotated
our axes; y and x point vertically and horizontally, respectively.

Figure 4.5. The car moves along a road at angle θ with the horizontal.
It experiences a normal force (N), pointing up from the top of the car and
orthogonal to the road, as well as a gravitational force of magnitude mg. Its
net force (Fnet) points inward.

The car has no vertical velocity, so it also has no vertical acceleration. Thus,
we can solve for N in terms of our other constants and θ:

∑
Fy = may =⇒

N cos θ −mg = 0 =⇒ N = mg
cos θ

.
Now, let us deal with the x-component of the force:

∑
Fx = max =⇒

−N sin θ = −mv2

r
. We can plug in the equation for N that we found above:

mg tan θ = mv2

r
. Solve for θ to find that θ = arctan(v

2

gr
), and then plug in

the values of our constants (note that, too, the acceleration due to gravity
g = 9.8 m/s2) to find a maximum θ of 68.2◦. This is a severe angle, but we
can choose a more reasonable one of 45◦ to achieve a comparably dramatic
effect.

20Stanbrough, JL, ”A Banked Turn With Friction,” BCSC Intro, Physics at BHS, 6
Feb. 2006, Web, 04 Mar. 2010,

http://www.batesville.k12.in.us/physics/phynet/mechanics/Circular%20Motion/
banked with friction.htm.
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4.6 Car Flying Off a Bridge

Using projectile motion, we can determine that the time the car spends in
the air is modeled by

t = −v sin θ −
√

(v sin θ)2 − 4(4.9)(h+ hr)

−9.8
, 21

and the car’s horizontal displacement is x = (v cos θ)t.22

We know that the most widely sold car in Israel is the Mazda3 series,
which has an estimated high-speed of about 170 km/h . For safety reasons
we might want to limit the speed at which the car is driving to 145 km/h.
Assuming that the bridge is about 8 m high, if there is no ramp, the car is
in the air for 1.28 seconds and covers a distance of 51.47 meters. If we let
the height of the ramp be 1.5 meters and its angle 20◦ (the ramp would be
5.6 meters long), then the car would be in the air for 3.38 seconds and would
hit the water 128.09 meters from the base of the bridge.

Figure 4.6. A diagram of the projectile motion of the car, where v is the
velocity of the car, θ and hr the angle and height of the ramp, h the height
of the bridge, and x the horizontal distance the car covers before it hits the
water.

We can describe the horizontal and vertical displacement as functions of time
(x(t) and y(t), respectively) of the car launched at an angle θ at a height

21Nave, R, “Trajectories,” The Physics Factbook, Glenn Elert, Web, 2 Feb. 2010,
http://hyperphysics.phy-astr.gsu.edu/hbase/traj.html#tra6.

22Nave, R, “Trajectories,” The Physics Factbook, Glenn Elert, Web, 2 Feb. 2010,
http://hyperphysics.phy-astr.gsu.edu/hbase/traj.html#tra6.
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(h+ hr) traveling at an initial velocity of v as the following:

x(t) = 0 + (v cos θ)t− 1

2
· 0 · t2

y(t) = (h+ hr) + (v sin θ)t− 4.9t2.

When the car lands in the water, its vertical height y(t) will be equal to zero,
so 0 = (h + hr) + (v sin θ)t − 4.9t2, which we can solve using the quadratic
formula to get the time.

4.7 Car Lands in Water

From the above stunt, we know that the displacement of the car in the x and
y direction can be described by

x(t) = 0 + (v cos θ)t− 1

2
· 0 · t2

y(t) = (h+ hr) + (v sin θ)t− 4.9t2.

Figure 4.7. A diagram of the car as it hits the water. The letter m denotes
the mass and F is the force with which the car hits the water.

The path of the car can be described by:

−→c (t) = (v cos θ)t
−→
i + [(h+ hr) + ((v sin θ)t− 4.9t2)]

−→
j .

We can therefore describe the velocity of the car as the derivative of its path
vector:

−→c ′(t) = (v cos θ)
−→
i + ((v sin θ)− 9.8t)

−→
j .

And by the same logic, we can find the acceleration by differentiating the
velocity vector:

−→c ′′(t) = −9.8
−→
j .
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Since we know that the force F on an object equals its mass m times its
acceleration, the downward force with which the car acts on the water, given
that the Mazda3 weighs about an average of 1247.5 kg, is F = 12, 225.5N .

The compressive stress 23 that stainless steel can tolerate is approximately
1.70×108 Pa,24 and the steel used in cars is typically more reinforced, there-
fore this value would be higher. In any case, determining the force from the
pressure by multiplying by surface area of the front of the car, which is 2.56
m2,25 we get

P =
F

A
=⇒ F = 4.35× 108N.

This value is far greater than the force the car exerts on the water, which
means this stunt is safe and reasonable, though for practical purposes, we
would not have a stunt actor perform this stunt from inside the car.

4.8 Floating Car Escape

Figure 4.8. Floating car, where m is the mass of the car, mg the downward
gravitational force acting on the car, and ρV g the upward buoyancy acting
on the car from the water.

The overall force acting on the car is equal to the force of gravity acting on
the car minus the force of buoyancy26, or F = mg−ρV g. The car will float if

23“Compressive Stress,” Wikipedia, 26 January 2010, Wikimedia Foundation, Inc. 3
February, 2010, http://en.wikipedia.org/wiki/Compressive stress.

24Stresses, P, “Stresses in Cylinders and Spheres,” University of Ply-
mouth School of Engineering, http://www.tech.plym.ac.uk/sme/MECH115-
web/Cylinders%20%20Spheres(8).PDF.

25“2009 Mazda MAZDA3 Specs: 4 Door Sedan Auto S Touring Dimensions,” New
Cars, Car Reviews, Car Shows, Car Photos - The Car Connection, Mazda, 2009, Web, 03
Mar. 2010. http://www.thecarconnection.com/specifications/mazda mazda3 2009 4dr-
sdn-auto-s-touring dimensions.

26“Buoyancy Basics,” NOVA Online, PBS, Nov. 2000, Web, 28 Feb. 2010,
http://www.pbs.org/wgbh/nova/lasalle/buoybasics.html.
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the force of buoyancy is greater or equal to the force of gravity: ρV g ≥ mg.
The density ρ of water27 at 25◦C (a good estimate for the temperature of
river water in Tel Aviv in the summer) is 997.0479 kg/m3. Furthremore,
V , the water displaced by the car would probably be less than or equal to
half the car’s volume. Given the measurements of the Mazda3 Sedan28, that
would be V = 1

2
(4.511× 1.755× 1.465) = 5.7991m3.

This means that the weight of the car and the stunt actress combined
cannot exceed 5781.94 kg, which, given that the Mazda3 has a curb weight
of 1180-1315 kg and our actress weighs somewhere around 60 kg, is perfectly
reasonable.

4.9 Swimming Against a Current

It seems reasonable to assume that our stunt double can swim at a constant
velocity of 1.8 meters per second (current record for 50 meters freestyle is a
little over two meters per second29) and that the river flows at a constant
velocity parallel to the shoreline at 0.6 meters per second30. The distance
to the shore can be 30 meters (so the stunt would take a maximum of 17
seconds; also, from the first part of the stunt we know that the car covers
a distance of about 130 meters, so the river needs to be about 160 meters
wide). In other words, vs = 1.8 m/s, vr = 0.6 m/s, d = 30 m.

27“Density,” Wikipedia, 21 February 2010, Wikimedia Foundation, Inc. 22 February
2010, http://en.wikipedia.org/wiki/Density#Density of water.

28“Mazda 3,” Wikipedia, 17 February 2010, Wikimedia Foundation, Inc. 22 February
2010, http://en.wikipedia.org/wiki/Mazda3.

29“World record progression 50 meters freestyle,” 21 February 2010, Wikimedia Foun-
dation, Inc. 22 February 2010,

http://en.wikipedia.org/wiki/World record progression 50 metres freestyle#Women.
30“Saint Croix National Scenic Riverway - River Levels (U.S. National Park Service),”

U.S. National Park Service - Experience Your America, National Park Service, 14 Sept.
2009, Web, 21 Feb. 2010, http://www.nps.gov/sacn/planyourvisit/riverlevels.htm.
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Figure 4.9. A diagram of the stunt actress swimming ashore, where m
is the mass of the swimmer, vr the velocity of the river, vs the velocity of
the swimmer, d the distance to the shore, and l is the length of accessible
shoreline.

The horizontal component of velocity can be represented as −→vs = (vs, 0).
Similarly, the vertical component can be represented as −→vr = (0, vr).

Then, relating distance travelled to velocity and time with d = ||vs||t,
where ||vs|| is the speed of the swimmer, we can solve for the time it will
take the swimmer to reach the shore: 30 = 1.8t =⇒ t = 1.6s.

The time it takes the swimmer to reach the shore is the same amount
of time the current has to act on the swimmer and change her displacement
along the shore. Using the same logic and equation as we did to find the time
it takes her to swim to shore, we can find the distance the current displaces
her by: d = ||vr||t =⇒ d = (0.6)(16.7) = 10 m. Therefore, she will hit the
shore 10 m from her original position, so the shore must be 10 m long.
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4.10 Helical Run

Figure 4.10 At time t = 0, Nora starts off at the first X with some initial
speed, which we will take to be 7.00 min/mile, or 3.83 m/s. Her speed stays
constant as she runs up the helix for 20 seconds.

To find the distance she travels, we need to parameterize her path and then
calculate the arc length from 0 ≤ t ≤ 20. A helix can be thought of as a
curve being traced out on the surface of a cylinder. A helical path can be
parameterized as:

−→c (t) = (r cos(ωt), r sin(ωt), t),

where angular velocity ω is related to linear velocity v by ω = v
r
.

In this case, let’s take the radius of the cylinder (that is, the distance
between the center of the parking garage and running Nora) to be 36 feet,
which is a standard minimum radius for the outside wall of a circular ramp31.
Let us also set her speed at a constant 7.00 min/mile pace, which is the
equivalent of 12.6 ft/s. Thus, the parameterization becomes:

−→c (t) =

(
36 cos

(
12.6

36
t

)
, 36 sin

(
12.6

36
t

)
, t

)
,

31“9.35.120 Parking Structure Design Standards,” Quality Code Publishing - Pub-
lishers of Municipal and County Codes, Dana Point Municipal Code, 23 Nov.
1993, Web, 04 Mar, 2010, http://www.qcode.us/codes/danapoint/view.php?topic=9-9 35-
9 35 120&frames=on.



27

Then, taking the derivative of the path yields the velocity function, on the
same interval:

−→
c′ (t) =

(
−12.6 sin

(
12.6

36
t

)
, 12.6 cos

(
12.6

36
t

)
, t

)
.

Now, plugging this into the formula for arc length and using the appropriate
t values (0 to 20), we find that

L =

∫ tf

ti

||−→c ′(t)||dt = 158.8 ft.

This means that we can film Nora being chased up 158.8 ft of the parking
garage in 20 s of footage. Since the surface she runs on will be even, it is rea-
sonable to expect that the stunt actor maintain a constant pace. Moreover,
because the stunt poses little risk to the actor, it is highly feasible.

4.11 Swinging on a Rope

Figure 4.11. The rope swing is a uniform circular motion problem, with an
inward radial force T and a constant downward gravitational force mg. The
rectangle represents the position of the actor.

The rope swing is a circular motion problem, with an inward radial force of
tension T and a constant downward gravitational force of mg.
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Breaking the gravitational force into components, the gravitational com-
ponent in the opposite direction of tension is mg cos θ. Therefore, the cen-
tripetal force is the total inward radial force, which includes tension and the
radial component of gravitational force is:

Fcentripetal = T −mg cos θ =
mv2

R
.

To solve for tension, a second equation is needed to allow us to solve for
velocity. Energy is conserved, and therefore:

0 +mgR =
1

2
mv2 +mg(R−R cos θ),

where the potential energy is set to be 0 at the bottom of the circle, and so
v =
√

2gr cos θ.
Substituting this value of v, we can solve for tension to get T = 3mg cos θ.

We are considering the range 0 ≤ θ ≤ π
2
. Note that T ≤ 3mg, and we achieve

the maximium tension when θ = 0, which is at the bottom of the circle.
In order for this stunt to be completed safely, this max tension must be

less than the sum of the tensile strength of the rope and the circumferential
strength of the steel bar.

The average tensile strength of a typical rock climbing rope is 6500 lb and
the safe working load is 450 lb32, which in itself is greater than three times
the weight of the stunt actor. The average modulus of elasticity for steel is
29,000 ksi33. Therefore, the ratio of stress to elasticity is the percent of the
length of the steel rod that will stretch downward under too much stress;
however, the large modulus of elasticity indicates that the steel rod requires
a great deal of downward force to reach deformation. The sum of tensile
strength and circumferential strength is much greater than three times the
weight of the stunt actor, therefore, this stunt is safe and feasible.

4.12 Jumping into an Open Window

Past research has been conducted on the nature of the long jump, which
very closely mirrors the stunt at hand. In performing the long jump, the

32“Gymline Rope,” rockclimbing.com, 1 February 2010.,
http://www.rockclimbing.com/gear/Essential Equipment/Ropes and Webbing/

Gym Ropes/Gymline rope 351.html.
33Keyes, Thomas, “Axial Stress, Strain, Deformation and Elasticity,” 3 February 2010,

http://www.useless-knowledge.com/1234/nov/article399.html.
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jumper gathers horizontal velocity by taking a running start, takes off from
the ground at angle with respect to the ground, and minimizes her rotational
velocity over the course of her flight.

Although θ = 45◦ optimizes the displacement of an object in projectile
motion, a smaller angle is more ideal for a long jumper. This is because
her primary concern is to maximize d, not to obtain vertical height; the
jumper would actually have to slow her approach to gather the vertical thrust
necessary for a 45◦ departure, thereby decreasing her vx and, subsequently,
the d that she can achieve. The following is a schematic representation of
the long jump:

Figure 4.12. The maximum d the jumper can achieve relates to a variety
of factors, including her take-off angle and her center of mass’s vertical dis-
placement. The rectangle represents the location of the actor and v is her
initial velocity.

The jumper’s horizontal displacement has been found to relate to θ by

d =
v2 sin 2θ

2g

(
1 +

√
1 +

2gh

v2 sin2 θ

)
.34

Combining this speed-angle formula with that for the displacement of an
object in projectile flight, we find that the optimal θ is well under 45◦, and
in fact is about 22◦ (recall that this is approximately the take-off angle that
long jumpers strive to achieve).

34Linthorne, Nick. Optimum Take-Off Angle in the Long Jump.
http://people.brunel.ac.uk/ spstnpl/BiomechanicsAthletics/
LJOptimumAngle.htm#Introduction ed. Vol. 2010. Uxbridge, Middlesex, UK: Brunel

University, 2008.
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4.13 Skateboading Down an Incline

Figure 4.13. A force diagram showing the components of each force acting
on the stunt actor. N is the normal force pointing perpendicular to the plane
of motion, Mg is the gravitational force pointing downward, and F is the
frictional force (both surface and air friction) pointing opposite the direction
of motion.

For large objects moving at relatively high velocity, the frictional drag is
proportional to the square of the velocity, Fdrag = −1

2
CρAv2, where C is

the drag coefficient, ρ is the air density, A is the cross-sectional area of the
object, and v is the velocity.

The air density can be calculated based on the ideal gas law, PV = nRT ,
where P is pressure, V is volume, n is the number of moles of gas, R is the
gas constant, and T is temperature (in Kelvin). The air does not adhere
perfectly to the ideal gas law, but it provides an approximation that is close
enough to reality for this calculation.

Because it is implausible to know the number of moles of gas in this sce-
nario, we understand the moles/volume quantity to be related to air density
in such a way that ρ = P

RT
. The environmental conditions can be determined

such that the temperature outside can be 70 degrees Fahrenheit and 14.6916
psi (typical of sea level conditions, such as Chicago), which would give us an
air density of 0.074887 lbs/ft3.

The stunt actor should be about 5’6” and 120 lbs, which would give her
a cross sectional area of about 924 in3 = 6.42 ft3. This calculation is based
on the assumption that the average width of the stunt actor is 14”.

A typical value for the drag coefficient of a human moving at a relatively
high velocity (which would be between a stationary man and a ski-jumper,
two situations for which the drag coefficients are known) is 1.0-1.3. The drag
coefficient is dimensionless by definition.
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The stunt actor will reach her terminal velocity when the drag force equals
the gravitational force component in the direction of motion. In this case,

this gives v =
√

2mg cos θ
CρA

. Let us assume that for safety reasons we do not

want her velocity to exceed 30 mph. The maximum angle at which we could
incline the plane of her motion would be given by 1

2
CρAv2 = mg cos θ, or

θ = arccos(CρAv
2

2mg
). Substituting in the values for each of these constants, and

assuming her weight is 120 lbs, θ = 89.94◦. The fact that the angle can be
so nearly perpendicular to the ground indicates that this stunt is perfectly
safe if performed at a more reasonable, 40 degree angle.

4.14 Bungee Jump

The problem of bungee cord jumping is very complex, but we will attempt to
use a simple model to describe the situation. We model the bungee cord as
a spring, and assume that there is no energy dissipation. Then the problem
becomes simple harmonic motion. (Note that if we wanted to consider damp-
ing, the differential equation would become d2x

dt2
+ b

m
dx
dt

+ k
m
x = g, where we

have modeled the damping force to be proportional to v. The solution is os-
cillatory in nature, but enveloped by exponentially decaying functions. That
is, the amplitude of the oscillation is time-varying and decays exponentially.)

Suppose that the person of mass m is attached to a spring with spring
constant k. In the equilibrium position, the person is stretched a distance
mg
k

from the top. Let this position be the origin; then the oscillation will be
about this point. Assume that initially the person is a distance A above the
equilibrium position, so the spring is compressed by A. That is, the position
at t = 0 is x = −A (where the positive direction is downward). Then the

oscillation is given by x(t) = A cos(ωt+ π), where ω =
√

k
m

. For example, it

would take π
√

m
k

to go a distance 2A downward (a displacement of A from
the equilibrium position), which is half a cycle.

This can provide a rough estimate of the time it would take for our hero
to reach a lower level of a building, for example, by stepping off (v0 = 0) the
ledge of a higher level. It should be noted that a relatively stiff spring (large
k) would be chosen for this purpose, because in fact if a spring streches too
far from its equilibrium position it behaves in a non-Hookian manner.

Since velocity is the derivative of position, v(t) = −Aω sin(ωt + π). To
ensure safety, the velocity should not be too high at the desired position of
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release. A reasonable speed might be 10 m/s, as in the case of the parachuting
problem above.

Figure 4.14. The object of mass m is attached to a spring of spring constant
k. The two forces acting on the object are that of gravitymg and the restoring
spring force kx.

5 Evaluation of Proposal

The budget for the trailer of Draftee Summer does not allow for the use of
computer-generated imagery (CGI). This limitation forced the production
team of TARNADO Productions, LLC. to choreograph stunts that could be
safely performed by stunt actors. This proposal has demonstrated that the
choreographed stunts are both feasible and safe for use in the trailer.

There are, however, limitations to some of the mathematical justifications.
We make many conditional assumptions, especially in regards to friction
(air, static, and kinetic). When these stunts are performed real-world effects
will occur, which will slightly alter the calculations. Overall, however, the
calculations provide good approximations for the conditions necessary to
perform these stunts.

In the future, we could extend these calculations to computer models,
where we could include real-world effects, which would provide even better
approximations for these stunts.

Another limitation to this proposal is the fact that these stunts are very
expensive to execute. Many of them require access to disposable cars and
heavy machinery. Though our budget could not accommodate the use of
CGI, we assume it could accommodate the expensive supplies we require for
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the performance of these stunts. We acknowledge that we made many as-
sumptions; however, the purpose of this proposal was to justify the use of
stunt actors in making a legitimate action movie trailer. If TARNADO Pro-
ductions, LLC., accepts the expenditures for this trailer, then this proposal
is sufficient to show that the stunts are feasible and safe.

6 Conclusion

After careful calculations, we have mapped out a 7:00 minute trailer for
the dramaction movie Draftee Summer that incorporates fourteen live-action
stunts. Normally, many of these stunts would be embellished by computer
animation; however, we have done our mathematics to ensure that we pro-
duce stunning action sequences while eschewing the mammoth costs of CGI.
Shooting for the movie has already begun, and its release date has been set
for Summer 2012. The trailer will be released in Summer 2011.

In addition to serving as a roadmap for the trailer, our proposal demon-
strates the feasibility of live-action stunts. We have shown that stunt actors
can perform perfectly harrowing feats with the buoying force of mathematics
ensuring their safety. As such, we hope that it will inspire future produc-
tion teams to look at mathematics as a viable source of cinematical thrill
and establish TARNADO Productions, LLC. as a formidable force in the
filmmaking industry
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