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Abstract 
 
    When studying the spread of an infectious disease, it is important to consider the existence 
of infected individuals who do not exhibit symptoms. These "carriers" are still capable of 
spreading the disease, but are asymptomatic, meaning they do not visibly display any 
symptoms, and are thus difficult to identify as infected.  They will affect the spread of the 
infectious disease and must be taken into account as a third class of people who do not fall 
into the usual categories of those who are noticeably infected and those who are susceptible 
to the disease.  Note that this is different from an asymptomatic disease, one in which all 
infected individuals are asymptomatic, and display no perceptible symptoms. The purpose of 
this paper is to use differential equations to model the change that arises in a closed 
population within which an infectious disease is present. By comparing the spread of both a 
disease that produces only symptomatic infected persons and a disease that allows for a 
certain fraction of the infected to be asymptomatic, we observe the extended effects of this 
added class.   

Problem Statement 
  
     We study the spread of an infectious disease in a closed population. We must first 
understand the behavior of a disease in which all those infected at time t, I(t), show clear 
symptoms of the disease. We assume the remainder of the population is susceptible to said 
disease and is represented at time t by S(t). By modeling the spread of such a disease in 
Model I, we propose a second population in which asymptomatic individuals, or carriers, are 
present. By comparing these two models, we are able to observe the effects of transmission 
of the disease in a population with carriers on the population dynamics. 
    First, we model a universally symptomatic disease, which accounts for several parameters 
relevant to the spread of the disease, such as the rate of infection and the rate of recovery. We 
thus gain an understanding of the disease spread.  Using the equations established in Model I, 
we introduce a new variable representing carriers, and denote it by C(t).  
 
In developing our models, we assume the following: 
  
• The first model considers a population with two subgroups, and the second considers three 

subgroups 
• A population is defined as the total group of people; a subgroup consists of a group of 

people with a similar relation to the disease (i.e. infected, susceptible, carrier)  
• The disease is infectious but curable, meaning the infected can recover and do not die (i.e. 

no death population) 
• There is no acquired immunity for the disease, meaning those who have recovered from 

the disease return to the susceptible population 
• The diseases occur in a closed population and no change in population size due to births or 

deaths 
• In both models, the disease is spread by direct contacts that occur randomly within the 

population in which susceptible and infected (either symptomatic or asymptomatic) 
are uniformly distributed 
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Mathematical Models 
  

Model I: The Spread of a Disease with Universally Perceptible  Symptoms 
(Non-asymptomatic) 
  
    We consider a model in which all infected individuals exhibit outward manifestations and 
are contained in a closed environment. As previously stated, we assume that the disease is 
infectious and curable where immunity is not possible.  We introduce the independent 
variable t , which is the time in days.  The population is divided into two subgroups: those 
that are infected and symptomatic, I(t), and the remaining members of the population who are 
not infected but are susceptible, S(t). These two subgroups can then be said to represent the 
entire population and are related by 
  

S(t) + I(t) = 1,                                    (1) 
  

where S(t) and I(t) are both fractions of the total population. 
  
    We assume that the disease is spread by person-to-person (direct) contact from infected to 
susceptible individuals and that such contacts occur randomly within the population of 
uniformly distributed individuals. Therefore, the number of contacts is proportional to the 
product of S and I, and since S=1-I (Eq. 1),  we may write the initial value problem as 
follows: 

€ 

dI
dt

=αI(t)(1− I(t)) 	
  ,	
  	
  	
  	
  	
  	
  

€ 

I(0) = Io,                        (2)	
  

  
where α is the infectivity, and I0 represents the number of individuals initially infected on day 
1.  
 
Solving the initial value problem, (2), using the method of separation of variables we obtain 
the solution 

  

€ 

I =
Io

Io + (1− Io)e
−αt 	
  	
  .	
  	
                                    (3) 

  
Looking at a longer period of time let us consider the limit of the solution as t →

€ 

∞ .Then, 

 

€ 

lim
t→∞

Io
Io + (1− Io)e

−αt =
Io
Io

=1.                            (4) 

  
    Since the limit approaches 1 (as also shown in Figures 1-3), this means that over time the 
disease will have spread over the entire population and eventually everyone will become 
infected and remain so. That is, in this model recovery is not possible. 
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Analysis of Model I 

 
 

Figure 1: Graphical from of the solution modeled by equation (3), modeling a population of 500 in a closed 
environment with the contact rate α = .75 and I0 = 1. 
 
    In the above Figure 1, the infected and susceptible subgroups  are equal at about 10 days, 
after which the fraction of infected exceeds the fraction susceptible. This graph also shows 
that within 20 days the entire population is infected. 

   
Figure 2: Graphical representation of the solution represented by equation (3), modeling a population of 
500 in a closed environment with the contact rate α = 0.10 and I0 =1. 
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    In this figure I = S at about 40-45 days with the entire population becoming infected after 
about 80 days. Since the only parameter altered between Figures 1 and 2 is the contact rate, 
these graphs demonstrate that the contact rate has a large impact on the spread of a disease 
through a population. The higher the contact rate and infectivity, the more rapid the spread of 
the disease. 

 
 Figure 3: Graphical representation of the solution represented by equation (3), modeling a population of 
500 in a closed environment with the contact rate  = .30. This models an actual effect of influenza using the 
infection rate from a study from the Canadian Journal of Infectious Diseases in 2008.  
 
Figure 3 illustrates the application of this model using actual data from the spread of a 
disease. 
  
    Looking at Figures 1-3 and considering the impact of the parameter , we observe that as α, 
the contact rate, increases, the fraction of individuals infected increases at a faster rate, as 
would be expected logically.  
  
    However, there exists another parameter to consider. As more individuals are infected with 
the disease and I(t) grows, individuals are also leaving the infected category by being cured . 
We must then introduce a second proportionality factor, β, which accounts for the change in 
the number of those susceptible to the disease. The relationship between these factors and the 
population fractions is depicted in the following diagram. 
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Diagram of Model I 

 
Diagram 1: This flow chart depicts Model I, where S is the susceptible fraction, and I is the infected 
fraction of the population. α is the infectivity, or the rate at which susceptible individuals become infected, 
and β is the recovery rate, or the rate at which infected individuals are cured, and return to the susceptible 
fraction of the population. 
 
 
Therefore, consider the equation 
  

€ 

I'(t) = αI(t)(1− I(t)) − βI(t) ,	
  

€ 

I(0) = Io,                   (5)	
  
  
where α, β > 0 and t is the time measured in days. 
   
    In this case α still represents the contact rate, but β represents the removal rate of 
individuals moving from the infected to susceptible subgroup. There this situation is the same 
as modeled by equations (2)-(4) and Figures (1)-(3) except the parameter α  now becomes 
(α-β). 
  
Solving this initial value problem using separation of variables, we obtain the solution 
  

    

€ 

I(t) =
(α −β)Ioe

(α−β )t

(α −β −α)Io +αIoe
(α−β )t .                           (6) 
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Figure 4: This figure is the graphical representation of the solution represented by equation (6). This 
models a population of 500 with α=0.1, β=.4, and I0=1. 
 
    In this graph the rate of removal from the infected class is greater than the infective contact 
rate. As shown by Figure 4, the infected and susceptible subgroups become equal after 1-3 
days, which can be considered a fast rate, and eventually the susceptible proportion > 
infected proportion. Equilibrium appears to be reached within 15-20 days. 

           
Figure 5: This figure is the graphical representation of the solution represented by equation (6). This 
models a population of 500 with α=0.1, β=.05, and I0=1. 
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    In Figure 5 the infective contact rate is larger than the removal rate from infected to 
susceptible. As compared to the results seen in Figure 4, the time it takes for the two 
proportions to even out is considerably longer, about 100 days. It is possible that is they are 
considerably different they may never reach equilibrium, but we will not be considering this 
case. 
 
    When modeling a population of 500 with α=0.5, β=0.5, and I0=1, i.e. when the infective 
contact rate is equal to the removal rate from infected to susceptible, no change in the spread 
of the disease is observed. Therefore, for our purposes we assume that 

€ 

α ≠ β. 
 

Pseudo-code for Figures 1-5 
 
Define parameters a, b, I_0 
Define variable t 
Zeros vectors I, S, I_2, S_2 
Define  
I=Equation 3,  
S= 1-I,  
I_2= Equation 6,  
S_2= 1-I_2, 
Plot 
End.  
 
  
Model II: The Spread of a Disease with an Asymptomatic Class  
  
    Now let us consider a population in which there exist certain individuals who can transmit 
the disease but possess no outward manifestations. We call these individuals "carriers," or 
asymptomatic infected.  There now needs to be a modification of (Eq. 1) to account for these 
individuals. Therefore, 
  

S(t) + I(t) + C(t) = 1.                              (7) 
  
where C(t) represents the fraction of the population that is carriers. In order to minimize the 
fraction of infected cases, it is desired to remove these individuals from the population. 
 

Analysis of Model II 
 
Consider the following equations: 

 
 

€ 

S'(t) = −α I I(t)S(t) −αcC(t)S(t) + β(I(t) +C(t)),              (8)	
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€ 

I'(t) = γ(α I I(t)S(t) +αcC(t)S(t)) − βI(t) ,                         (9) 
 

€ 

C'(t) = (1− γ)(α I I(t)S(t) +αcC(t)S(t)) −βC(t) ,                 (10) 
 
where 

€ 

C(0) = Co , 

€ 

S(0) = So ,	
  

€ 

I(0) = Io ,	
  
and	
  

€ 

C(0) = C0 =1− So − Io ,                                      (11) 
 
 

where αI and αc represent the infective contact rates in the proportion of the populations that 
are infected and which are carriers, respectively,  represents the rate of infected individuals 
being returned to the susceptible proportion (as in our simplified model), and  represents the 
fraction of new infections that are symptomatic. The relationship between these new factors 
and the population fractions is depicted in the following diagram. 
 

Diagram of Model II 

 
Diagram 2: This diagram depicts Model II, where C is the fraction of carriers, or asymptomatic infected 
individuals, S is the fraction of susceptible individuals, and I is the fraction of symptomatic infected 
individuals in the population. αI is the infectivity, or the rate at which susceptible individuals become 
symptomatically infected, αC is the infectivity rate at which susceptible individuals become 
asymptomatically infected, or carriers, and β is the removal rate of both asymptomatic and symptomatic 
individuals from their respective subgroups back into the susceptible population. 
 
Also, it is necessary to consider 
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€ 

α I ≠αc ,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (12)	
  
 

since the degree of disease transmission from carriers may differ from the degree of 
transmission by the infected individual due to their lack of symptoms. 
 
    The removal from the infected and carrier proportions can be assumed to be the same with 
the rate β. By using Euler's method, we observe the following trends represented in Figures 
6-8. 
 

 
Figure 6: This shows the progression of Model II by using equations (8)-(10) in which the parameters have 
values: αI=.075, αc=.15, β=.007. and γ=.6.  The total population is closed and the period of time is 100 
days. This graph was created with MatLab. 
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                              7a       7b 

Figures 7a and 7b: : The progression of the spread of disease using equations (8)-(10) with αI, and αC are 
both equal to (a) .15 and (b) .075.  The β and γ values remain constant as before. These figures were created 
with MatLab. 
 
    As seen in Figures 6, with set β and γ values, we observe the non-linear relationship of 
Equations 8-10.  When choosing the infective contact rates (αI and αC) values, we took into 
account the increased chance of an asymptomatic person infecting a susceptible person.  This 
is true because contact between an asymptomatic person and a healthy person is more likely 
because the asymptomatic person does not show any sign of being sick.  A healthy person no 
longer takes care to modify their interactions with these people as they would an obviously 
symptomatic person, and they are more likely to become infected.  As seen in the Figure 6, 
the susceptible population decreases as time passes and both the number of symptomatic 
infected and asymptomatic infected people increase over time before all the categories of 
people level out to what we believe to be the beginning of a steady state at around day 100.  
 
    In Figures 7a and 7b, the contact rates are set to equal values to show a situation in which 
susceptible people did not take care not to interact with those exhibiting symptoms more than 
those who were asymptomatic.  When both αI and αC are set to .15, which is the increased contact 
rate that was previously used for contact with asymptomatic individuals, people are infected at a much 
more dramatic pace as seen in Figure 7a.  The curves reach the perceived steady state around 
day 50, which is half the time the normal contact rates require.   Although the fraction of 
infected persons increases at a much faster rate initially, the end results of people infected is 
about the same as when the contact rates are varied.  Figure 7b represents contact rates in 
which the population avoids both classes of the infected equally.  This graph shows a slower 
progression of the spread of the disease and results in a lower fraction of the population 
infected after 100 days.  The curves are also not perceived to reach steady state in this 
situation. 
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Application of Model II: Measles 
 
    Consulting outside studies, we know that the Measles occasionally produces asymptomatic 
individuals and that the fraction of the population infected is dependant on seasonality.  In the 
winter months, the measles has a higher contact rate of both asymptomatic and symptomatic 
infected persons with those susceptible mostly because of the day-to-day contact experienced 
by children and adolescents in school.  In the summer months, however, the contact rates are 
noticeably lower because the children are not subjected to contact with other children as 
often.  These effects are shown in the figures below. 
 

 
           8a                     8b 
Figures 8a and 8b: The effect of seasonality on the progression of the spread of the measles using 
equations (8)-(10) during (a) summer months with αI=.05 and αC =.09 and (b) during winter months with  
αI=.08 and αC =.3.  These figures were made with MatLab.  

 
    As seen in Figure 8a, the lower contact rates present during the summer months causes the 
a slower increase in those infected and a slower decrease in the fraction of the population 
susceptible. At the end of 100 days, steady state is not reached and the fraction of the 
population susceptible is about equal to the fraction of the population who are infected and 
asymptomatic.  In Figure 8b, however, the contact rates that exist during the winter, school 
months are documented in relation to the spread of the measles.   The drop in the fraction of 
people susceptible is much more dramatic than seen in 8a.  Also, the curves all seem to reach 
steady state around day 50.   The total fraction of the population infected was greater overall 
at the end of 100 days in the winter months than in the summer months.     

Pseudo-code for Figures 6-8 
 
Define variables T, t, dt 
Define parameters B, A_1=αI , A_2=αC, g 
Zeros vectors I, A, s 
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Define S(1) 
. 
. 
For t = 0 until t = n 
I(n) = I(n-1)+dt*Eqn. 9 
A(n) = A(n-1)+dt*Eqn. 10 
S(n) = 1-I(n)-A(n) 
 
End 
Plot.  

Further Implementation and Solutions 
 
    We now solve the model with a particular solution for equations (8)-(10). We set equations 
(8)-(10) equal to zero and first solved for S(t). Then we substituted for S(t) in the following 
equations and solved for I(t), S(t), and C(t) using separation of variables. For a more detailed 
description of the solution process, see Appendix A. The solutions are represented by the 
equations 
 

€ 

I(t) = −
γ(γα I − β)

γα I
,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (13)	
  

€ 

C(t) =
(1− γ )(γα I − β)

γα I
,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (14)	
  

and	
  

€ 

S(t) =
β
γα I .	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (15)

 

 
 
Our next step was defining a function 
 

€ 

W (t) = α I I(t) +αCC(t) ,                                     (16) 
 

which represents all the infected population. 
 
Taking a linear combination of (9) and (10), we  can then obtain 

 

€ 

W '(t) = [γα I + (1−γ)αC )S(t) − β]W (t) ,                     (17) 
 
the solution of which, using separation of variables, is expressed by 
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€ 

W (t) =W0 exp[λ S(u)du
0

t
∫ − βt],                              (18) 

with  

€ 

λ = α I + (1− γ )αC ,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (19) 
and  

€ 

W0 =W (0) = α I I0 +αCC0  ,                               (20) 
  
where  λ  represents the adjusted infectious contact rate. 
 
    Since we now have a solution representing the entire infected population we can compare 
this to S(t) representing the susceptible population. We can also compare this to the solution 
in our previous simple model, which accounts for the effect of carriers on the spread of the 
disease. 
 
    The equilibrium situation for the model occurs as . The equilibrium solution for the system 
is solved by setting the right hand sides of equations (8)-(10) equal to zero, and using (15). 
Assuming that Wo does not vanish, for this implies that the disease would die out and our 
model would not be valid, it follows that 

€ 

lim
S→∞

(8) − (10) =
β
λ ,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   (21)  

  

€ 

I∞ = γ(1− β
λ
) ,	
  	
  	
  	
  	
                                              (22) 

and 

 

€ 

C∞ = (1−γ)(1− β
λ
).	
  	
  	
  	
                                         (23) 

  
    In our further analysis we hope to demonstrate that the consequences of our model are 
highly dependent on the proportion of the parameters β and λ, and therefore the contact rates, 
and the proportion of each subgroup I(t), S(t) and C(t) can be considered in terms of these 
parameters, and that our solution are tending toward steady states. 
	
  
    If the limits (21-23) tend toward high valued steady states, it means that the removal rate, 
β, of individuals from the infected class back to the susceptible class is high and that it keeps 
the infected rate from getting undesirably high. It is also higher than the contact rate, λ, 
meaning the size of the infected class is low. If the limits tend toward a low-valued steady 
state it means that the adjusted contact rate is higher than the removal rate and therefore the 
probability of getting infected is higher and more frequent than the removal of infected 
individuals back to the susceptible class. This would mean a large number of infected 
individuals within the population.  

DISCUSSION 
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    Through our model we demonstrated the spread of an infectious disease within a closed 
population. We considered two cases, one in which all infected individuals were symptomatic 
and one in which there were “carriers” present, or individuals with no outwardly manifesting 
symptoms. In both cases the spread of the disease is dependent on several parameters, 
including the contact rate among individuals and the removal rate of individuals leaving the 
infected class and returning to the susceptible fraction of the population. In the case where 
carriers are present, however, there are different contact rates between the symptomatic 
individuals and the carriers and the susceptible class. These contact rates are not the same, 
and the rate is higher with carriers. This is logical because when there are no visible 
symptoms people fail to make a conscious effort to avoid these individuals and therefore the 
carriers will have a higher contact rate and a higher chance of infecting someone from the 
susceptible class. 
 
    We specifically modeled the spread of measles and considered seasonality as a variable. 
Some diseases have certain seasons in which the rate of infection is higher among a 
population. In the case of the measles there is a higher rate of infection in the winter months 
when children are in school and therefore have higher day to day contact with other children. 
Since this contact rate is higher the amount of individuals infected increases at a faster rate 
and after 100 days there are more infected people in winter than in the summer. 
 
    There are several limitations to our model. First of all, one of the assumptions made, as 
mentioned in the Problem Statement above, is that we are considering a closed population. 
This is rarely if ever the case in reality. Different populations interact with one another as 
well as the environment on a daily basis. Also, we assume disease is spread through direct 
contact only. Most diseases can be spread through various other means including the air or 
shared surfaces. However, this would introduce many extraneous variables that would not 
coincide with our model, so for our purposes we exclude these possibilities. Finally, we 
assume that there is no immunity or deaths caused by the disease. In reality this is rarely the 
case. People with weaker immune systems can die from even rather not virulent diseases, 
babies can be born, etc. which would change the size of the population. Also, in some 
diseases, such as chicken pox, where there is a immunity involved after recovery or a 
recovery time where an individual cannot become infected again. This would again introduce 
another parameter into our model that we do not consider, but which can be considered and 
our model could be manipulated for future research o accommodate such a parameter. 

CONCLUSION 
 
    Our model is a successful start in attempting to predict the course an infectious disease will 
take within a population. It shows the disease going to a steady state, meaning it can help 
predict the eventual outcome of a disease. This could help with possible preventative 
measures such as vaccinations, which would attempt to lower the infected class within a 
population at any given time. Our model shows that the spread of any disease is heavily 
dependent on contact rates among individuals, the rate of time it takes for an individual to 
recover, and whether or not individuals in the disease can be asymptomatic. This can be 
important general information on what to look out for to stay healthy. Knowing that 
asymptomatic individuals have a heavy impact on the spread of a disease and that they often 
quickly lead to a larger infected class can serve as a reminder to always practice good 
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hygiene skills with every person. Overall our model demonstrates many factors that play into 
the spread of a disease and being made aware of these factors can lead to solutions that can 
improve the general health of the population.  

Table 1: Parameters used in this Report 
  
Parameters Representation 
α proportionality (contact rate) factor 
β removal rate from infected class to susceptible class 
γ fraction of new infections 
αI infective contact rate in infected class 
αc infective contact rate in carriers 

Appendix A: Step-by-Step Solutions for Equations 8-10 
	
  
Solving	
  equations	
  8-­‐10	
  for	
  S(t),	
  C(t),	
  and	
  I(t),	
  we	
  did	
  the	
  following.	
  

Set	
  	
  

S’(t)	
  =	
  0.	
  

Then	
  	
  

0	
  =	
  −αII(t)S(t)	
  −	
  αcC(t)S(t)	
  +	
  β(I(t)	
  +	
  C(t)).	
  

Rearranging,	
  we	
  obtain	
  	
  

αII(t)S(t)	
  −	
  βI(t)	
  =	
  −	
  αcC(t)S(t)	
  +	
  βC(t).	
  

Solving	
  for	
  I(t),	
  

€ 

I(t) =
−αCC(t)S(t) + βC(t)

α I S(t) − β
	
  	
  ,	
  

and	
  rearranging,	
  

€ 

I(t) =
C(t)[−αCS(t) + β]

α I S(t) − β .	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (A.1)
	
  

Next,	
  set	
  	
  

I’(t)	
  =	
  0.	
  

Then	
  	
  

I(t)[	
  β	
  −	
  γαIS(t)	
  =	
  γαcC(t)S(t).	
  

Rearranging,	
  we	
  obtain	
  

0	
  =	
  S(t)	
  *	
  γ[αII(t)	
  +	
  αcC(t)]	
  −	
  βI(t).	
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Solving	
  for	
  I(t),	
  

€ 

I(t) =
γαcC(t)S(t)
β − γα I S(t)

	
  .	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (A.2)	
  

Now	
  we	
  set	
  equations	
  (A.1)	
  and	
  (A.2)	
  equal	
  to	
  each	
  other,	
  obtaining	
  

€ 

C(t)[−αCS(t) + β]
α I S(t) − β

=
γαCC(t)S(t)
β − γα I S(t)

	
  .	
  	
  

Simplifying	
  and	
  solving	
  for	
  S(t)	
  

€ 

S(t) =
β
γα I

	
  .	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (A.3)	
  (15)	
  

We	
  now	
  set	
  C’(t)	
  equal	
  to	
  0	
  to	
  add	
  another	
  equation	
  to	
  our	
  system	
  of	
  equations.	
  

Thus,	
  

C’(t)	
  =	
  (1	
  −	
  γ)[αII(t)S(t)	
  +	
  αcC(t)S(t)]	
  −	
  βC(t)	
  =	
  0.	
  

Rearranging,	
  we	
  obtain	
  

0	
  =	
  S(t)[1	
  −	
  γ][αII(t)	
  +	
  αcC(t)]	
  −	
  βC(t).	
  

Solving	
  for	
  S(t),	
  

€ 

S(t) =
βC(t)

(1− γ )(α I I(t) +αCC(t))
	
  .	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (A.4)	
  

Setting	
  	
  

S’(t)	
  =	
  0	
  

again	
  and	
  this	
  time	
  solving	
  for	
  S(t),	
  we	
  obtain	
  

€ 

S(t) =
β[I(t) +C(t)]
α I I(t) +αCC(t) .	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (A.5)	
  

We	
  now	
  set	
  	
  

I’(t)	
  =	
  0	
  

so	
  that	
  

0	
  =	
  γ[αII(t)S(t)	
  +	
  αCC(t)S(t)]	
  −	
  βI(t).	
  

Rearranging,	
  we	
  obtain	
  

0	
  =	
  S(t)*γ[	
  αII(t)	
  +	
  αCC(t)]	
  −	
  βI(t).	
  

Solving	
  for	
  S(t),	
  

€ 

S(t) =
βI(t)

γ[α I I(t) +αCC(t)] .	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (A.6)
	
  



	
   19	
  

We	
  now	
  set	
  equations	
  (A.4),	
  (A.5),	
  and	
  (A.6)	
  equal	
  to	
  each	
  other,	
  	
  

€ 

βC(t)
(1− γ )(α I I(t) +αCC(t))

=
β[I(t) +C(t)]
α I I(t) +αCC(t)

=
βI(t)

γ[α I I(t) +αCC(t)]
	
  

	
  and	
  simplify	
  to	
  obtain	
  

€ 

C(t)
(1−γ)

=
I(t) +C(t)

1
=
I(t)
γ
.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (A.7)

	
  

From	
  equation	
  (7)	
  we	
  know	
  that	
  
I(t)	
  +	
  C(t)	
  +	
  S(t)	
  =	
  1.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (7)	
  

	
  
Substituting	
  equation	
  (A.7)	
  in	
  terms	
  of	
  C(t)	
  (the	
  left	
  third)	
  for	
  I(t)	
  +	
  C(t),	
  and	
  
equation	
  (A.3)	
  for	
  S(t),	
  we	
  obtain	
  

€ 

C(t)
(1−γ)

+
β
γα I

=1

.	
  
Rearranging,	
  and	
  solving	
  for	
  C(t),	
  

€ 

C(t) =
(1− γ )(γα I − β)

γα I
.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (A.8)	
  (14)	
  

Substituting	
  this	
  solution	
  for	
  C(t)	
  (A.8)	
  into	
  equation	
  (A.7),	
  we	
  obtain	
  

€ 

(1− γ )(γα I − β)
γα I

(1− γ )
=
I(t)
γ

.	
  

Simplifying,	
  and	
  solving	
  for	
  I(t),	
  

€ 

I(t) = −
γ(γα I − β)

γα I
.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (A.9)	
  (13)	
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