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Abstract There is a large overlap in the work of the Automatic Differen-
tiation community and those whose use Power Series Methods. Automatic
Differentiation is predominately applied to problems involving differentia-
tion, and Power series began as a tool in the ODE setting. Three examples
are presented to highlight this overlap, and several interesting results are
presented.

Introduction

In 1964, Erwin Fehlberg (best known for the Runge-Kutta-Fehlberg method)
wrote:

Like interpolation methods and unlike Runge-Kutta methods, the power series

method permits computation of the truncation error along with the actual integra-
tion. This is fundamental to an automatic step size control [and leads to a method

that is] far more accurate than the Runge-Kutta-Nystrom method.

...

[Though] differential equations of the [appropriate form] . . . are generally not en-
countered in practice . . . a given system can in many cases be transformed into a

system of [appropriate form] through the introduction of suitable auxiliary functions,
thus allowing solution by power series expansions. [3]

Fehlberg, it appears, did not continue work on the approach that he believed
to be superior to the methods of the day. In this manuscript (prepared as
a NASA technical report) Fehlberg was able to efficiently and accurately
compute approximations for two important problems: the restricted three-
body problem, and the motion of an electron in a field of a magnetic dipole.
Introducing auxiliary functions, he recast these problems as a system of first
order equations expressed solely as polynomials in existing variables – what
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we now call polynomial form. Although this work was noticed by some in the
NASA community [10], Fehlberg’s observations remain largely unexploited.

The computation of derivatives lies at the heart of many Automatic Dif-
ferentiation (AD) routines. AD techniques allow one to generate information
about the intrinsic of interest solely in context of other intrinsics. When ap-
plied to functions, AD permits efficient evaluation of the derivatives of a given
function up to arbitrarily high order, making it ideally suited for higher order
Taylor based methods of solution to ODEs. The recursive computation that
Fehlberg used is a natural outcome of recursively differentiating polynomial
expressions of power series. The trick, then, is to reduce a given problem to
one of polynomial form. How does one do so? One answer comes from the so
called translator programs from AD.

A higher order Taylor method code is problem specific, requiring the prob-
lem to be reduced to one of known recursive relationships. First accomplished
by hand, this difficulty was overcome with the advent of automatic translator
programs. These programs can parse a given system of ODEs into a form that
allows libraries of general recursions to be applied. A nice example of an AD
flavored ODE tool is ATOMFT, written by Chang and Corliss in 1994. It auto-
matically parses the original ODE expression using functional dependencies,
and then efficiently computes a numeric solution via a recursive recovery
of Taylor coefficients to arbitrarily high order. The method has also been
applied to differential-algebraic equations (DAEs), with great success. The
machinery of generating the polynomial form is distinct from the recursive
coefficient recovery, and ATOMF is a wonderful blend of the techniques of AD
applied to the ring of power series.

In 1992 Parker and Sochacki discovered that Picard Iteration, when ap-
plied to non-autonomous polynomial ODEs with initial value at t = 0, will
generate the Maclaurin polynomial plus a polynomial all of whose terms have
degree greater than the Maclaurin polynomial. They then looked at how one
could use Picard Iteration to classify IV ODEs and what was special about
the polynomials generated by Picard Iteration. This led Parker and Sochacki
to determine which functions can be posed as a solution (to one component of
a system) of non-autonomous polynomial ODEs with initial value at t = 0,
and called this class of functions projectively polynomial [8]. Although the
computation of successive terms of the Maclaurin polynomial was expensive,
the framework allowed theoretic machinery to be applied to ordinary, partial
and integral differential equations [5, 9, 6]. In [2] Carothers et al realized that
the Picard iteration in the projectively polynomial system was equivalent
to a power series method, allowing an efficient recursive computation of the
coefficients of the series. For the remainder of this paper, we will refer to
this method as the Power Series Method (PSM). PSM includes power series,
Picard Iteration and polynomial projection.

Carothers et al realized that projectively polynomial functions had many
special symbolic and numerical computational properties that were amenable
to obtaining qualitative and quantitative results for the polynomial IVODES
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and the solution space. Gofen [4] and others also discovered some of these
phenomena by looking at Cauchy products and polynomial properties in-
stead of Picard Iteration. Many researchers were able to show large classes of
functions were projectively polynomial, that one could uncouple polynomial
ODEs and one could do interval analysis with these methods. Carothers et
al generated an a-priori error bound for non-autonomous polynomial ODEs
with initial value at t = 0. The PSM collaboration at JMU has also shown;
the equivalence between power series and non-autonomous polynomial ODEs
with initial value at t = 0 and Picard Iteration, many of the topological prop-
erties of the solutions to these problems, and the structure of the space of
polynomial functions. These are summarized in Sochacki [11].

The AD and PSM methods produce equivalent results in the numerical
solution of IVODEs. Polynomial form is essential for the simple recursive
recovery of series coefficients used by the two groups. Their different history
colors the types of problems explored, however. Differentiation forms the
backbone of AD, and so problems which involve repeated differentiation are
obvious candidates for AD research, with ODE, sensitivity, and root-finding
as obvious examples. ODEs lie at the core of the PSM, and so the focus
is to re-interpret problems as IVODEs. We present three examples below
highlighting this concept. We believe that most problems can be converted
to polynomial form, as demonstrated in the following examples.

Applying PSM

Example 1: PSM and AD applied to an IVODE

Consider the IVODE

y′ = Ky�, y(x0 = 0) = y0, (1.1)

for some complex valued �. This problem highlights the properties of PSM
and AD because it has the closed form solution

y(x) =

((
Kx−K�x+ y0

1−�)(�−1)−1
)−1

, (1.2)

and because it can be posed in several equivalent polynomial forms. Although
not a problem that most would consider immediately amenable to standard
power series methods, a simple recursive relationship generates the Taylor
coefficients for y� given by

an =
1

ny0

n−1∑
j=0

(n�− j (�+ 1)) yn−jaj , (1.3)
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where a(x) =
∑∞
j=0 aj(x − x0)j where an and yn represent the ntℎ degree

Taylor coefficient of y� and y, and a series solution of (1.1) is computed.
Consider the following change of variables: x1 = y, x2 = y�, and x3 =

y−1. Fehlberg called these auxiliary variables. Differentiation of these auxil-
iary variables provides the system,

x′1 = −x2 x1(0) = y0,

x′2 = −�x22 x3 x2(0) = y�0 , (1.4)

x′3 = x2 x
2
3 x3(0) = y−10 .

The solution x1 to this system is equal to y, the solution to the original
system. Note that this augmented system (1.4) is polynomial, and as such can
be easily solved by the PSM with its guaranteed error bound. Computation
of the PSM solution requires only addition and multiplication.

However, a better change of variables is obtained by letting w = y�−1.
Then (1.1) can be written as the following system of differential equations

y′ = Kyw, y(0) = y0

w′ = (�− 1)Kw2, w(0) = y�−10 , (1.5)

because the right hand side is quadratic in the variables as opposed to cubic
in (1.4), and subsequently requires fewer series multiplications.

Fig. 1.1 Solving differential equations (1.1), (1.4), and (1.5) using a fixed step Runge-
Kutta on [0,2] with ℎ = .05 and y0 = 1,K = 1, � = e/2 + i/�.
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Fig. 1.1 contrasts, on a log10 scale, the absolute error when approximate
solutions to

y′ = y
e
2+

i
� y(0) = 1

are computed by the standard Runge-Kutta order 4 method (RK4) for (1.1),
(1.4), and (1.5), and automatic differentiation (using 1.3) and PSM (using
1.5) to 4th order. In this example, note that the PSM system (1.5) recovers
the AD recursion (1.3).

Fig. 1.1 demonstrates that the fixed step solution with automatic differ-
entiation and the power series solution of (1.5) give the same solution. Of
course, we have fixed these methods at 4tℎ order in order to fairly compare
with RK4; however, it is straightforward to keep more terms and solve this
problem to machine accuracy, as Fehlberg points out. It also demonstrates
that by rewriting the equations in polynomial form and solving with a fixed
step RK4, the solution to the system of two equations (1.5) is more accurate
than the straightforward implementation (1.1). Interestingly, not all systems
are equal - the system of two equations (1.5) is more accurate than the system
of three equations (1.4), because the right hand side of (1.5) is quadratic in
the variables on the right hand side.

Example 2: Root-finding

Newton’s Method is a prime example of the efficacy of AD. Consider

f(x) = e−
√
x sin(x ln(1 + x2)), (1.6)

and computing the iteration xi+1 = xi − f(xi)/f
′(xi), as in the example

presented by Neidinger [7] to show the power of AD. The machinery of AD
makes the calculation of f(xi) and f ′(xi) simple, and Neidinger used object
oriented programming and overloaded function calls to evaluate both the
function and their derivative at a given value.

We take a different approach. We pose the determination of roots as a non-
autonomous polynomial initial value ODE at 0. If one wants to determine the
roots of a sufficiently nice function f : ℝn → ℝn one can define g : ℝn → ℝ by
g(x) = 1

2 ⟨f(x), f(x)⟩ where ⟨⋅, ⋅⟩ is the standard inner product. Since g(x) = 0
if and only if f(x) = 0 and is non-negative, we will determine the conditions
that make d

dtg(x) < 0. This condition is necessary if one wants to determine
x(t) so that x→ z, a zero of f (or g). We have

d

dt
g(x) = ⟨ ddtf(x), f(x)⟩ (1.7)

= ⟨Df(x)x′(t), f(x)⟩ (1.8)

= ⟨x′(t), Df(x)T f(x)⟩, (1.9)



6 Authors Suppressed Due to Excessive Length

where Df(x) is the Jacobian of f and Df(x)T is the transpose of Df(x).
If, guided by (1.8), we let

x′(t) = −(Df(x))−1f(x), (1.10)

then certainly d
dtg(x) < 0. If we now approximate the solution to this ODE

using forward Euler with ℎ = 1 we have

xk+1 = xk − (Df(xk))−1f(xk), (1.11)

which is Newton’s method. In (1.10), we let x2 = (Df(x))−1, and obtain

x′(t) =− x2f(x) (1.12)

x′2(t) =x32f(x)f ′′(x). (1.13)

Adding initial conditions x(0) and x2(0) gives us a non-autonomous initial
value ODE. If f is a polynomial, we can apply PSM directly. If f is not poly-
nomial, we make further variable substitutions to make the ODE polynomial.

Now consider (1.9). If we choose

x′(t) = −(Df(x))T f(x) (1.14)

then certainly d
dtg(x) < 0. Once again, approximating x′(t) with forward

Euler we have
xk+1 = xk − ℎ(Df(xk))T f(xk), (1.15)

which is the method of Steepest Descent.
We note that both (1.10) and (1.14) can be approximated using PSM or

AD methods to arbitrary order (ℎk), beating standard implementations of
these methods. These ODEs could also be initially regularized in order for
PSM or AD to converge faster to the root of f . In the case of the Newton
form, we would then solve

x′(t) = −�(t)(f ′(x))−1f(x),

where �(t) could be adaptive. Of course, this approach applies easily to higher
dimensions and the method of Steepest Descent in a straightforward manner.
We now have many options for developing numerical methods to approximate
the zeroes of a function f .

Neidinger chose the initial condition 5.0 and produced the approxima-
tion 4.8871. We used the IVODE (1.10) and did a polynomial projection
on f to obtain a non-autonomous polynomial IVODE. Using 5.0 as our
initial condition at t = 0, a time step of 0.0625 and 32nd degree Maclau-
rin polynomials in this IVODE, we obtained the first 30 digits of the root.
This approximation is z = 4.88705596745554192341704846671 with f(z) =
−9.2619275661297397445816398352238 ∗ 10−30. In comparison f(4.8871) is
-0.00002478163.
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Example 3: The Maclaurin polynomial for an inverse
function

In 2000, Apostol [1] developed a method for obtaining the power series of
the inverse of a polynomial by exploiting the Inverse Function Theorem. To
turn this problem into a non-autonomous polynomial ODE with initial value
at t = 0 we differentiate f(f−1(t)) = t to obtain f ′(z)z′ = 1, where we let
z = f−1(t). We now let y = [f ′(z)]−1 and x = y2 to obtain

z′ =
1

f ′(z)
= [f ′(z)]−1 = y (1.16)

y′ =− y2f ′′(z)z′ = −xf ′′(z)z′. (1.17)

x′ =2yy′ (1.18)

Suppose f is a polynomial. We now outline how to get the power series
for its inverse. Let f(t) =

∑n+2
i=0 ait

i = a0 + a1t + ... + an+2t
n+2. Using the

above polynomial ODE we now have

y′ =− y2f ′′(z)z′ = −xf ′′(z)z′ = −xpnz′ = −xypn (1.19)

x′ =2yy′ (1.20)

p′n =f ′′′(z)z′ = pn−1y (1.21)

p′n−1 =f (iv)(z)z′ = pn−2y (1.22)

...

p′1 =f (n+2)(z)z′ = (n+ 2)!an+2y, (1.23)

where pn = f ′′(z). We have ignored the z′ equation since z′ = y. Now we use
Cauchy products and find

y =

K∑
i=0

yit
i ; y′ =

K−1∑
i=0

yi+1t
i (1.24)

x =

K∑
i=0

xit
i (1.25)

pn−k =
K∑
i=0

p(n−k),it
i ; k = 0, ..., n− 1. (1.26)

Substituting these in gives us a simple algorithm for generating the power
series for the derivative of the inverse of a polynomial. One integration gives
the power series for the inverse.

These 3 examples are meant to show the similarities and differences of
PSM and AD and how PSM can be applied to many problems of applied and
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computational mathematics by posing them as non-autonomous polynomial
IVODEs. These examples have also raised questions of interest. For example;
(1) Is it more efficient to pose the problem as a non-autonomous polynomial
IVODE or solve it in the existing form using AD? (2) Does the structure and
topology of non-autonomous polynomial IVODEs lead to answers in applied
and computational mathematics? (3) What are the symbolic and numerical
differences and similarities between PSM and AD? (4) How can the PSM,
AD and polynomial communities come together to answer these questions?

PSM Theory and AD

Picard Iteration and polynomial projection for IVODEs has led to an inter-
esting space of functions and some interesting results for polynomial ODEs.
We present the basic definitions and important theorems arising from Picard
Iteration and polynomial projections. The proofs can be found in the papers.
Gofen and others have obtained some of these results through the properties
of polynomials and power series.

We begin with the question of which ODEs may be transformed into an
autonomous polynomial system as in Example 1; that is, a system of the
form:

x′(t) = h(x(t)), x(a) = b, (1.27)

noting that a non-autonomous system y′(t) = h(y(t), t)) may be recast by
augmenting the system with an additional variable whose derivative is 1.

To this end the class of projectively polynomial functions consists of all real
analytic functions which may be expressed as a component of the solution to
(1.27) with ℎ a polynomial. The following properties of this class of functions
are summarized in [2] and elsewhere. It may be shown that any polynomial
system, through the introduction of additional variables, may be recast as a
polynomial system of degree at most two.

The projectively polynomial functions include the so-called elementary
functions. The class of projectively polynomial functions is closed under ad-
dition, multiplication, and function composition. A local inverse of a projec-
tively polynomial function f is also projectively polynomial (when f ′(a) ∕= 0),
as is 1

f . The following theorem illustrates the wide range of ODEs that may
be recast as polynomial systems.

Theorem 1. Suppose that f is projectively polynomial. If y is a solution to

y′(t) = f(y(t)); y(a) = b (1.28)

then y is also the component of a solution to a polynomial system at point a.
That is, y is also projectively polynomial.
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As an interesting consequence, it is possible for a very wide range of sys-
tems of ODEs to provide an algorithm by which the system may be “de-
coupled” by applying standard Gröbner basis techniques.

Theorem 2. A function is the solution to a polynomial system of differential
equations if and only if for some n there is a polynomial Q in n+ 1 variables
so that Q(u, u′, ⋅ ⋅ ⋅ , u(n)) = 0.

That is, for any component xi of the polynomial system x′ = h(x) the
component xi may be isolated in a single equation involving xi and its deriva-
tives. This implies, for example, that the motion of one of the two masses in
a double pendulum may be described completely without reference to the
second mass.

Of very special practical and theoretical interest is the existence of explicit
a-priori error bounds for PSM solutions to ODEs of this type which depends
only on immediate observable quantities of the polynomial system.

We consider again a polynomial system (at a = 0) of the form x′(t) =
h(x(t)), x(0) = b. In the following K = (m−1)cm−1, where m is the degree
of h (the largest degree of any single term on the right hand side of the
system), M is the larger of unity and the maximum row sum of the absolute
values of the constant coefficients of the system, c the larger of unity and
the magnitude of b (the largest of the absolute value of the elements of the
initial condition), and

∑n
k=0 xkt

k is the ntℎ degree Taylor approximation of
x(t). As an example we have the following error estimate with m ≥ 2 ([12] ):

Theorem 3. ∥∥∥∥∥x(t)−
n∑
k=0

xkt
k

∥∥∥∥∥ ≤ ∥b∥ ∣Kt∣n+1

1− ∣Mt∣
for m ≥ 2 (1.29)

for any n ∈ ℕ, with ∣t∣ < 1
K .

It can be shown that no universally finer error bound exists for all polynomial
systems than one that is stated in a tighter but slightly more involved version
of this theorem.

Conclusion

Clearly, there is a large overlap in the work of the AD community and the
PSM group. However, while AD is predominately applied to problems in-
volving differentiation, PSM began as a tool in the ODE setting. There are
numerous benefits to sharing the tool-sets of recursive computation of Taylor
coefficients between these two communities. Some of these are: (1) There are
methods that easily compute arbitrarily high order Taylor coefficients, (2)
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The tools can solve highly nonlinear IV ODEs, and automatically solve stiff
problems, (3) There are numerical and symbolic computational tools that lead
to semi-analytic methods and (4) Evaluation of functions can be interpolation
free to machine capability (error and calculation).
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