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Abstract. In 1984, Cohen and Lenstra made a number of conjectures re-

garding the class groups of quadratic fields. In particular, they predicted the
proportion of real quadratic fields with class number divisible by an odd prime.

We numerically investigate the difference between reality and these predictions.

Using 4 million data points, we perform a curve fitting of the difference with a
monomial term and demonstrate that there is reason to believe the term can

be effectively approximated within the scope of our data set for several odd

primes less than 30. We use cross-validation to show that including our mono-
mial term as a secondary term to the original conjecture reduces the overall

error.

1. Introduction

Though class groups of number fields have been studied by the number theory
community since the latter half of the 19th century, it was not until the rise of
modern computing that it was possible to compute a large set of examples. In
the early 1980’s it was noted that certain finite abelian groups occur much less
frequently than others as class groups. In their classic 1984 paper, Cohen and
Lenstra [3] gave the theoretical basis for a heuristic to explain these experimental
observations on the frequency with which groups occur as the class group of a
number field. Cohen and Lenstra then used their heuristic to generate a set of
12 conjectures about various attributes (such as size or group structure) of class
groups of imaginary and real quadratic fields.

With advances in both technology and the efficiency of algorithms for computing
class groups, various authors produced larger and larger data sets of class groups,
often framing their numerical results as support for the conjectures of Cohen and
Lenstra. For example, each of [6, 7, 8, 11] gave new or improved algorithms for
computing class groups of quadratic fields, followed by a data comparison to con-
jectures from [3]. Both Jacobson in 1998 [6] and te Riele and Williams in 2003 [11]
construct real quadratic fields and give numerical tables to support various con-
jectures for small primes. In [6], the author computes the density of fields of odd
discriminant less than 109 and with a class number having a given prime divisor.
On the other hand, the authors of [11] consider the actual density of fields with
prime discriminant less than 2 · 1011 and a given odd class number. In each case,
the actual densities approach those of the conjecture.

However, it also appears that the convergence of the data to the conjectured
densities is quite slow in many cases. (See, for example, Figure 1.) This implies
that we may be able to refine the original conjectures via secondary terms.
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There have been recent attempts to define such secondary terms analytically.
For example, Hough [5] conjectured a negative secondary term for the mean size of
the k-part of the class group of an imaginary quadratic field. Taniguchi and Thorne
[10], and Bhargava, Shankar, and Tsimerman [1] each proved the secondary term
for the number of cubic number fields conjectured by Roberts in 2001 [9]. The two
papers used very different methods: Taniguchi and Thorne used the Shintani zeta
function, while Bhargava, Shankar, and Tsimerman gave a geometric argument.
The result on cubic number fields can be reformulated to instead give a secondary
term for the size of the three-part of the class group of a real quadratic field.

Unfortunately, for many of the original Cohen-Lenstra conjectures the methods
in [1], [5], and [10] do not apply. In the present work, we focus on predicting
secondary terms for one of the Cohen-Lenstra conjectures for real quadratic fields
using strictly numerical methods.

2. Real quadratic fields and the Cohen-Lenstra heuristics

Let d be a positive square-free integer so that Q(
√
d) is a real quadratic field

with fundamental discriminant D. We collect in this section some classical results
on real quadratic fields and their class groups that will be useful in the sequel.

Lemma 1. Let d be a square-free integer. Then the discriminant D of the quadratic
field Q(

√
d) is also a fundamental discriminant and is given by

D =

{
d if d ≡ 1 mod 4,

4d if d ≡ 2, 3 mod 4.

Remark 2. A corollary to Lemma 1 is that quadratic fields with the same fundamen-
tal discriminant are isomorphic, and so counting fields by fundamental discriminant
ensures that we have only counted unique fields.

The next lemma counts such fields, and is a standard result in analytic number
theory.

Lemma 3. Let Q(X) be the number of non-isomorphic real quadratic fields with
fundamental discriminant less than or equal to the positive integer X. Then

Q(X) =
3

π2
X +O(X1/2).

The class group of a number field K is a finite abelian group constructed as the
quotient of the fractional ideals of K modulo the principal fractional ideals of K,
and the class number is its size. If the ring of integers of K has unique factorization,
the class group will be trivial and the class number will be 1. The class group (and
thus the class number) can be interpreted as a measure of the extent to which
unique factorization fails in the ring of integers of K.

Many of the conjectures in [3] are stated as the probability of a class group
having a given attribute. Conjecture C7 concerns the probability of an odd prime
dividing the class number.

Conjecture C7 ([3]). Let d be a positive squarefree integer, let p be an odd prime,

and let h be the size of the odd part of the class group of Q(
√
d). Then the probability

that p divides h is

1−
∏
k≥2

(1− p−k).
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In what follows, we denote this probability by ξp.
For our investigation it is more useful to consider this conjecture as an asymptotic

density statement in terms of a discriminant bound X. We restate Conjecture C7
in this context below.

Conjecture C7*. Let d be a positive squarefree integer so that Q(
√
d) is a real

quadratic field with fundamental discriminant D. Let p be an odd prime, and let h
be the size of the odd part of the class group of Q(

√
d). Then

lim
X→∞

#{Q(
√
d) | p|h and D < X}

Q(X)
= 1−

∏
k≥2

(1− p−k) = ξp.

In the next section we will use data to empirically investigate the discrepancy
between this conjectured value and the actual density of such real quadratic fields.

3. Methods

In order to calculate the actual statistics for Conjecture C7*, we first generated
the class numbers of a large set of real quadratic fields. Computations were done in
Sage [[4]]. Utilizing the class_number method for the quadratic_field class, we

computed the class numbers of all real quadratic fields K = Q(
√
d) for square-free

integers 0 < d < 4 · 106 (about 2.4 · 106 fields). Each of these fields is unique (see
Remark 2), and we used these class numbers, ordered by the field discriminant, to
complete the following computations of statistics related to Conjecture C7*. Fields
with fundamental discriminant D > 4 · 106 were not used in our calculations.

Even using this class and function in Sage, computing the list of class numbers
was the most computationally expensive process. Although we lacked the tech-
nology to do so, the computation of class numbers is parallelizable so a future
investigation could generate a larger data set more quickly. Jacobson [6] also inves-
tigated Conjecture C7 for real quadratic fields, but presented data only for fields
of odd discriminant less than 109. Odd discriminants account for (asymptotically)
one third of all fundamental discriminants. Thus, while our discriminant bound is
lower than theirs, using all fundamental discriminants below that bound gives us a
denser set of data points from which to work.

Conjecture C7* is stated in terms of the density of fields with class number
divisible by an odd prime. The calculation of the actual density of such fields is
also parallelizable although such a consideration is not necessary since a pattern
can be discerned from calculating the statistics at fixed intervals instead of at every
valid fundamental discriminant. In what follows, we compute any statistics for
discriminant bounds X at intervals of 10,000 and for all odd primes less than 100.

Our script counted the number of fields of discriminant D < X with class number
divisible by the chosen prime p and then divided by the number of fields with dis-
criminant D < X. This actual density is denoted σp(X) in the following equations.
That is, as X →∞

#{Q(
√
d) | p|h and D < X} = σp(X)

3X

π2
.

Apply Lemma 3 to Conjecture C7* and rearrange the terms. Then for X suf-
ficiently large, the number of distinct quadratic fields with discriminant D < X
which have class number divisible by the odd prime p is approximately the product
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of Q(X) and ξp. More concisely we have that as X → ∞, Cohen and Lenstra’s
conjecture predicts that

#{Q(
√
d) | p|h and D < X} ∼ ξp

3X

π2
.

Plots of the actual and predicted number of fields satisfying Conjecture C7 at
each discriminant bound X show that there is a discrepancy between these values.
In particular, as the discriminant bound X grows, the predicted value overestimates
the actual value fairly dramatically, as seen in Figure 1.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Discriminant Bounds 1e6

0

1

2

3

4

5

6

7

F(
X
)

1e4 Comparison of C-L Prediction with Data for p=5

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Discriminant Bounds 1e6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

F(
X
)

1e4 Comparison of C-L Prediction with Data for p=7

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Discriminant Bounds 1e6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

F(
X
)

1e4 Comparison of C-L Prediction with Data for p=11

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Discriminant Bounds 1e6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

F(
X
)

1e3 Comparison of C-L Prediction with Data for p=29

Figure 1. Plots of the actual number of fields (solid line) and
predicted number of fields (diamonds) for p = 5, 11, 17, and 29.

Consider the difference between the predicted and actual field counts,

(3.1)
3X

π2
[ξp − σp(X)].

Fitting a curve to this difference will yield a function which could be used as a
secondary term to modify the original Conjecture C7. The plot of this difference
is concave down and increasing for each p (as seen in Figure 2), so we will model
the error as a monomial of form CXs with 0 < s < 1. (A logarithm model for the
error was attempted but failed to produce a sufficient fit to the data.)

Then, as X →∞, we predict

(3.2)
3X

π2
[ξp − σp(X)] = CpX

sp
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and thus

#{Q(
√
d) | p|h and D < X} = σp(X)

3X

π2
= ξp

3X

π2
− CpX

sp .

It is the function CpX
sp that we will analyze for the remainder of the paper.

Applying the logarithm to (3.2), we have

(3.3) log

(
3X

π2
[ξp − σp(X)]

)
= log(CpX

sp) = log(Cp) + sp log(X).

We apply to the log of the data points a standard linear fit by least squares to find
the coefficient and the exponent for the secondary term for each prime p and each
discriminant bound X (again, in intervals of 10,000). The fitted curve was then
compared to the actual difference (the left hand side of (3.2)). Additionally, we
looked for patterns in the coefficients and exponents for each prime as we increased
the discriminant bound.

Finally, we calculated the error between our fit and the actual difference using
cross-validation. For this, we divided our data (every 10,000th statistic) into 5 bins
for a total of 80 data points per bin. Then we computed the fit model excluding
one bin. After the fit model was determined, we calculated the fit error for the
excluded bin. After repeating this process five times, once for each bin, we then
averaged the five errors into one fit error for the prime p. This was done for each
odd prime up to 29, and is called “CV Error” in what follows.

Because the number of fields satisfying the conjecture for a given prime divi-
sor are dramatically different between primes, we scaled the error from the cross-
validation so that we could compare these errors between primes. We chose to scale
by the Cohen-Lenstra prediction ξp, which is equivalent to scaling by the predicted
number of fields.

4. Results

Although the differences and curves of best fit (equations (3.1) and (3.2), re-
spectively) were computed for all odd p less than 100, the number of fields in our
sample with large odd prime factors in their class number is too small to confidently
identify any patterns in the exponents or coefficients of those curves. Therefore we
present results only for odd primes less than 30 because they exemplify the pat-
terns we found while also including values of p for which there were not enough
data points to suggest convergence of sp or Cp as X increased.

In all plots, the discriminants on the x-axis are the discriminant bounds X. For
example, a point above X=100,000 represents the value using all real quadratic
fields with fundamental discriminant less than 100,000. Some markers are omitted
in the plots to prevent marker overlap.

Figure 2 below gives plots of the difference (3.1) (labeled on the y-axis as G(X))
with their curves of best fit determined by equation (3.2) for four primes. (For the
plots of G(X) and the curves of best fit for other primes, please see Appendix A.)

We computed the coefficients Cp and exponents sp as the discriminant bound
X increased for each p with the goal of determining whether these coefficients and
exponents showed convergent behavior within or across primes. As X increased,
many of the primes’ coefficients and exponents demonstrated seemingly stable be-
havior while others varied too much to support any conjectures without more data
(see Figures 3 and 4). Overall, despite the values not stabilizing within the reach of
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Figure 2. Plots of equation (3.2) with fitted curve from equation
(3.3) for p = 5, 11, 17, and 29

our data for some primes, there does seem to be some predictability to the mono-
mial term given by equation (3.3). We view this as evidence that the assumption
of a monomial secondary term is valid. Further discussion of these values is in the
next section.

Table 1 contains the parameters for the error function when we use every 10,000th
statistic over our full data set. We also include the root-mean-square error of the
fit for each prime as a measure of how much variability should be expected when
more data points are calculated.

We found small proportions of error when applying the cross-validation calcula-
tion to our models for each prime. That is, we computed Cp and sp using a subset
of our data, then computed the error between our predicted fit and the remaining
data. In Table 2, the cross-validation error (CV Error) is the average of the ab-
solute errors given by the five trials in the cross-validation method (measured in
number of fields) and the Scaled CV Error gives that error scaled by ξp in order to
produce values that can be compared between primes. Both errors are truncated
to an integer value.

Notice that while the absolute error is very different between primes, the scaled
error is comparable between all primes.

Table 2 shows that the fit curve for p = 5 is a worse fit for the data than the
fit curve for p = 29. This may seem counter-intuitive looking at the comparison of
the fit curves and plots given above in Figure 2. In Figure 5, we plot the fit curves
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Figure 3. Plots of exponents sp for varying discriminant bound
and p = 5, 7, 11, 29

Prime Exponent (sp) Coefficient (Cp) RMSE

p = 3 0.822 0.107 50.425

p = 5 0.712 0.109 31.896

p = 7 0.709 0.067 22.967

p = 11 0.696 0.047 22.500

p = 13 0.701 0.035 9.494

p = 17 0.731 0.017 7.906

p = 19 0.730 0.015 18.370

p = 23 0.740 0.011 14.982

p = 29 0.775 0.005 15.599

Table 1. Parameters and root-mean-square error for the error
function up to discriminant bound X = 4 · 106.

for p = 5, 7, 11, and 29 on the same axes to avoid the effect of scale on the visual
representation of error.

5. Discussion

Some interesting patterns emerge in the coefficients and exponents. First, as the
discriminant bound X increases the exponents sp seem to converge for each odd
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Figure 4. Plots of coefficients Cp for varying discriminant bound
and p = 5, 7, 11, 29

Prime CV Error Scaled CV Error

p = 3 23,408 146,473

p = 5 7914 159,625

p = 7 3869 163,020

p = 11 1623 178,704

p = 13 1129 176,258

p = 17 661 180,072
p = 19 495 169,324

p = 23 356 180,490

p = 29 185 150,771

Table 2. Quality of fit

prime p. Moreover, the exponents sp approach similar limit values (between 0.7
and 0.8) for all p less than 30. On the other hand, the coefficients Cp seem to vary
depending on the value of p, but do appear to approach a limit for constant p and
increasing discriminant bound X.

The p = 3 case defies both of these general trends. For this prime, there is
an approximately linear change of the exponent and coefficient values for increas-
ing X greater than 1.5 million (for plots, see Appendix A). However, it might be
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Figure 5. Comparison of the data points and fit curves for p =
5, 7, 11, 29

reasonable to suspect that since there are so many more fields, especially with
smaller discriminant, for which p = 3 divides its class number, the exponents and
coefficients may not fit the overall pattern as well as those for larger primes.

Analysis of our two measures of error in the secondary term suggest that the
coefficients and exponents we obtained were a reasonable fit for the data and there-
fore we believe that a single monomial secondary term gives rise to significant
improvement in Conjecture C7 of Cohen and Lenstra [3].

A proper investigation of odd primes greater than 30 would require generation of
far more data than could be efficiently constructed using the computing hardware
available to us at the time of data generation.

Though these results are experimental and represent a small portion of the pos-
sible data, they do lend support to the existence of a secondary term for Conjecture
C7 of [3]. Under our assumption of a monomial model for the error, a modification
of the conjecture might be of the form

#{Q(
√
d) | p|h and D < X} ∼ ξp

3X

π2
− CpX

sp

where Cp depends on p, and sp may be coherent for odd primes and may have
value(s) between 0.7 and 0.8. At the time of this writing, we are not aware of any
analytic approach to finding a secondary term for Conjecture C7 even for particular
primes. We would be interested to see such a method and compare to our numerical
results.
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Appendix A. Cohen-Lenstra Error Fitting for other p < 30
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Appendix B. Exponent and Coefficient Plots for other p < 30
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