Math 430 Review Chapter 0
Put Your Name In Here

For this assignment, you should copy this document as closely as possible. Put your name in the top right corner. These are some concepts from Chapter 0 that you should already know.

1. **Definition (The Well Ordering Principle)** - Every nonempty set of positive integers contains a smallest member.

2. **Theorem (The Division Algorithm)** - Let a and b be integers with $b > 0$. Then there exist unique integers q and r with the property that $a = bq + r$, where $0 \leq r < b$.

3. **Definition** - The Greatest Common Divisor of two nonzero integers a and b is the largest of all common divisors of a and b. We denote this integer by $\gcd(a, b)$. When $\gcd(a, b) = 1$, we say a and b are relatively prime.

4. **Theorem** For any nonzero integers a and b, there exist integers s and t such that $\gcd(a, b) = as + bt$. Moreover, $\gcd(a, b)$ is the smallest positive integer of the form $as + bt$.

5. **Corollary** If a and b are relatively prime, then there exist integers s and t such that $as + bt = 1$.

6. **Theorem (Euclid’s Lemma)** If p is a prime that divides ab, then p divides a or p divides b (or both).

 Proof: Suppose that p is a prime that divides ab, but without loss of generality (WLOG) does not divide a. Then we must show that p divides b. Since p does not divide a, then a and p are relatively prime. So there exist integers s and t such that $1 = as + pt$. Multiply through by b to get $b = abs + pbt$. Since p divides ab and p divides a, p divides the right hand side of the equation. Hence p divides the left as well. So p divides b. □

7. **Theorem (Fundamental Theorem of Arithmetic)** Every integer greater than 1 is a prime or a product of primes. This product is unique, except for the order in which the factors appear. That is, if $n = p_1p_2\ldots p_r$ and $n = q_1q_2\ldots q_s$, where the p_i’s and q_i’s are primes, then $r = s$ and, after renumbering the q_i’s, we have $p_i = q_i$ for all i.

8. **Definition** The least common multiple of two nonzero integers a and b is the smallest positive integer that is a multiple of both a and b. We denote this integer by $\text{lcm}(a, b)$.

9. **Theorem (The First Principle of Mathematical Induction)** Let S be a set of integers containing a. Suppose S has the property that whenever some integer $n \geq a$ belongs to S, then the integer $n + 1$ belongs to S. Then S contains every integer greater than or equal to a.

10. **Theorem (DeMoivre’s Theorem)** For any positive integer n and every real number θ, $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$, where i is the complex number $\sqrt{-1}$.

 Proof: Base Step: The statement is clearly true for $n = 1$.

 Inductive Step: Assume true for $n = 1$. She the statement is true for $n + 1$. In other words, assume $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$, prove $(\cos \theta + i \sin \theta)^{(n+1)} = \cos(n+1)\theta + i \sin(n+1)\theta$.

 We see that

 $$(\cos \theta + i \sin \theta)^n = (\cos \theta + i \sin \theta)^{(n+1)} (\cos \theta + i \sin \theta)$$
 $$(\cos \theta + i \sin \theta)(\cos \theta + i \sin \theta)$$
 $$(\cos n\theta + i \sin n\theta)(\cos \theta + i \sin \theta)$$
 $$= \cos n\theta \cos \theta + i \sin n\theta \cos \theta + \cos \theta \sin n\theta - \sin n\theta \sin \theta.$$

 Now, using trig identities for $\cos(\alpha + \beta)$ and $\sin(\alpha + \beta)$, we see that this last term is $\cos(n + 1)\theta + i \sin(n + 1)\theta$. So, by induction, the statement is true for all positive integers. □

11. **Theorem (The Second (Strong) Principle of Mathematical Induction)** Let S be a set of integers containing a. Suppose S has the property that n belongs to S whenever every integer less than n and greater than or equal to a belongs to S. Then S contains every integer greater than or equal to a.

12. **Definition** An *equivalence relation* on a set S is a set R of ordered pairs of elements of S such that

 (a) $(a, a) \in R$ for all $a \in S$. (reflexive property)
 (b) $(a, b) \in R$ implies $(b, a) \in R$ (symmetric property)
 (c) $(a, b) \in R$ and $(b, c) \in R$ imply $(a, c) \in R$ (transitive property)

13. **Definition** A *partition* of a set S is a collection of nonempty disjoint subsets of S whose union is S.

14. **Theorem** The equivalence classes of an equivalence relation on a set S constitute a partition of S. Conversely, for any partition P of S, there is an equivalence relation on S whose equivalence classes are the elements of P.

If these concepts do NOT look familiar. Be sure to study them carefully! Your homework is the following from Chapter 0: 2, 3, 4, 7, 8, 9, 11, 14, 20, 21, 22, 30, 34, 53, 54.