MATH 237: Vector Calculus

PRACTICE EXAM II

Answer each of the following problems. When in doubt, err on the side of more explanation rather than less-the goal of your answer is to convince the reader of your knowledge. All work must be your own.

Caveat: This is a practice exam. It is intended to give a sense of the format and type of question that will be on the real exam. It may be slightly longer than the true exam; problems may seem more or less difficult than those on the true exam. Moreover, this exam is not vetted as carefully as the true exam. Expect typos.
(1) (a) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$. What is the definition of

$$
\lim _{\mathrm{x} \rightarrow \mathrm{x}_{0}} f(\mathrm{x})=L ?
$$

(b) Let $f(x, y, z)$ be a function of three variables. What is the definition of $\frac{\partial f}{\partial z}$?
(c) Describe the level surfaces of the function $g(x, y, z)=x^{2}+y^{2}-z$?
(d) Suppose that $f(x, y)$ is defined on an open set containing (a, b). What is the definition of continuity for a function $f(x, y)$ at (a, b) ?

$$
\lim _{(x, y) \rightarrow(a, b)} f(x, y)=f(a, b)
$$

(2) (a) Prove or disprove:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{(x-y)^{2}}{x^{2}+y^{2}}=L
$$

for some $L \in \mathbb{R}$.
(b) Compute $\frac{\partial T}{\partial w}$ if

$$
T(x, y, z, w)=x y z w \cos (z w)+3 w^{2}-2 z \ln x
$$

(c) Give an equation for the plane tangent to the graph of $f(x, y)=x^{2}-y^{2}$ at $(13,5,144)$.
(d) Give an equation for the plane tangent to the level surface of

$$
g(x, y, z)=x^{2} y z-y e^{x}+3 \sin z=4
$$

at $\left(0,-7, \frac{\pi}{2}\right)$.
(3) Find the absolute maximum and minimum of $f(x, y)=2 x^{2}-4 x+y^{2}-4 y+3$ on the closed region bounded by the lines $x=0, y=3$, and $y=x$.
(4) Find the extreme values of $x z+2 y$ on the surface of the sphere of radius 6 centered at the origin.
(5) (a) Use the definition of the directional derivative and properties of the dot product, to show that $\nabla f\left(\mathbf{x}_{\mathbf{0}}\right)$ points in the direction of fastest increase of f at x_{0}.
(b) Find the rate of change of $f(x, y, z)=e^{x} y z$ at $(1, \ln 3,4)$ in the direction of greatest increase.
(c) Compute $D_{\mathbf{u}} f(1, \ln 3,4)$ in the direction of $2 \mathbf{i}+2 \sqrt{3} \mathbf{j}+\mathbf{k}$. (The function f is the same as in (b) above.)
(a) Use the plane tangent to the graph of $z=\sin (x)+\sin (y)$ at the point $\left(\frac{\pi}{3}, \frac{\pi}{6}\right)$ to find an approximate value for $\sin \frac{5 \pi}{6}+\sin \frac{\pi}{12}$
(b) Show that the gradient of f is perpendicular to the level surface of f for any differentiable function f.
(c) Find and use the generalized second derivative test to classify the stationary points of $f(x, y)=x^{2}+y^{2}-x^{2} y^{2}$.

