MATH 510, FTC

Modern Analysis
James Madison University

Some basic facts about integrals:

1. If $f_{1}(t)$ and $f_{2}(t)$ are integrable functions, then

$$
\int_{a}^{b} f_{1}(t)+f_{2}(t) d t=\int_{a}^{b} f_{1}(t) d t+\int_{a}^{b} f_{2}(t) d t
$$

2. If f is integrable and a, b, c are three points, then

$$
\int_{a}^{b} f(t) d t=\int_{a}^{c} f(t) d t+\int_{c}^{b} f(t) d t
$$

3. If f is integrable then so is $|f|$ and

$$
\left|\int_{a}^{b} f(t) d t\right| \leq \int_{a}^{b}|f(t)| d t
$$

Theorem If g is a continuous function and G is definied by

$$
\left.\left.G(x)=\int_{a}^{x} g\right) t\right) d t
$$

the G is differentiable and

$$
G^{\prime}(x)=g(x)
$$

proof We need to consider

$$
\lim _{\Delta x \rightarrow 0} \frac{G(x+\Delta x)-G(x)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{\int_{a}^{x+\Delta x} g(t) d t-\int_{a}^{x} g(t) d t}{\Delta x}
$$

and show that this limit is $g(x)$. Applying "basic fact" number 2 above with $c=x$ and $b=x+\Delta x$ we have

$$
\lim _{\Delta x \rightarrow 0} \frac{G(x+\Delta x)-G(x)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{\int_{x}^{x+\Delta x} g(t) d t}{\Delta x}
$$

So then, we need to show that given any $\epsilon>0$ we can find a corresponding $\delta>0$ so that $\left|g(x)-\frac{\int_{x}^{x+\Delta x} g(t) d t}{\Delta x}\right|<\epsilon$ when $|\Delta x|<\delta$. But we know that since g is continuous, given $\epsilon>0$ we can find a corresponding $\delta>0$ so that $|g(t)-g(x)|<\epsilon$ when $|x-t|<\delta$. Thus:

$$
\begin{aligned}
\left|g(x)-\frac{\int_{x}^{x+\Delta x} g(t) d t}{\Delta x}\right| & =\left|g(x)-\frac{\int_{x}^{x+\Delta x} g(t)-g(x)+g(x) d t}{\Delta x}\right| \\
& =\left|g(x)-\frac{\int_{x}^{x+\Delta x} g(t)-g(x) d t+g(x) \int_{x}^{x+\Delta x} d t}{\Delta x}\right| \\
& =\left|g(x)-\frac{\int_{x}^{x+\Delta x} g(t)-g(x) d t+g(x) \cdot \Delta x}{\Delta x}\right| \\
& =\left|\frac{\int_{x}^{x+\Delta x} g(t)-g(x) d t}{\Delta x}\right| \\
& \leq \frac{\int_{x}^{x+\Delta x}|g(t)-g(x)| d t}{\Delta x}<\frac{\int_{x}^{x+\Delta x} \epsilon d t}{\Delta x}=\epsilon
\end{aligned}
$$

Since g is continuous, given $\epsilon>0$ we can find a corresponding $\delta>0$ so that $|g(t)-g(x)|<\epsilon$ when $|x-t|<\delta$.

