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lim
x→a

f (x) = T

means that for any numbers M and L with M > T and L < T
then we can force f (x) to be between L and M by requiring that x
is sufficiently close to (but not equal to) a.

Note: “but not equal to a” recognizes that we just do not care
what happens at point a itself.

For many of the examples you saw in calculus limx→a f (x) was
equal to f (a). But you also saw more interesting examples such as

limx→0
sin(x)

x or limx→0
1−cos(x)

x2
where the formula in question is

not even defined at x = a.

As applied to defining the derivative, the limits in question are all
of the more “interesting” variety.
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The derivative of function f at point a exists and has the value
f ′(a) if for any numbers M and L with M > f ′(a) and L < f ′(a)

we can force f (x)−f (a)
x−a to be between L and M by requiring that x

is sufficiently close to but not equal to a.

That is, f ′(a) = limx→a
f (x)−f (a)

x−a

“Differentiable” = “has a derivative.”
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Or...(Cauchy):

Let E (x , a) = f ′(a)− f (x)−f (a)
x−a

The derivative of function f at point a exists and has the value
f ′(a) if for any number ε > 0 it is possible to find a corresponding
δ > 0 so that if 0 < |x − a| < δ then this forces

|E (x , a)| < ε.

Modern Analysis MATH 510, Notes 4



Or...(Cauchy):

Let E (x , a) = f ′(a)− f (x)−f (a)
x−a

The derivative of function f at point a exists and has the value
f ′(a) if for any number ε > 0 it is possible to find a corresponding
δ > 0 so that if 0 < |x − a| < δ then this forces

|E (x , a)| < ε.

Modern Analysis MATH 510, Notes 4



Or...(Cauchy):

Let E (x , a) = f ′(a)− f (x)−f (a)
x−a

The derivative of function f at point a exists and has the value
f ′(a) if for any number ε > 0 it is possible to find a corresponding
δ > 0 so that if 0 < |x − a| < δ then this forces

|E (x , a)| < ε.

Modern Analysis MATH 510, Notes 4



One of many theorems about derivatives:

Theorem
Suppose that two functions f and g have derivatives at point a
and that F = f + g . Then F also has a derivative at a and
F ′(a) = f ′(a) + g ′(a).

What we need:Let

E (x , a) =
F (x)− F (a)

x − a
− (f ′(a) + g ′(a))

Given any positive number ε, we must explain how to find a
number δ so that |E (x , a)| < ε when 0 < |x − a| < δ.

Modern Analysis MATH 510, Notes 4



One of many theorems about derivatives:

Theorem
Suppose that two functions f and g have derivatives at point a
and that F = f + g . Then F also has a derivative at a and
F ′(a) = f ′(a) + g ′(a).

What we need:Let

E (x , a) =
F (x)− F (a)

x − a
− (f ′(a) + g ′(a))

Given any positive number ε, we must explain how to find a
number δ so that |E (x , a)| < ε when 0 < |x − a| < δ.

Modern Analysis MATH 510, Notes 4



One of many theorems about derivatives:

Theorem
Suppose that two functions f and g have derivatives at point a
and that F = f + g . Then F also has a derivative at a and
F ′(a) = f ′(a) + g ′(a).

What we need:

Let

E (x , a) =
F (x)− F (a)

x − a
− (f ′(a) + g ′(a))

Given any positive number ε, we must explain how to find a
number δ so that |E (x , a)| < ε when 0 < |x − a| < δ.

Modern Analysis MATH 510, Notes 4



One of many theorems about derivatives:

Theorem
Suppose that two functions f and g have derivatives at point a
and that F = f + g . Then F also has a derivative at a and
F ′(a) = f ′(a) + g ′(a).

What we need:Let

E (x , a) =
F (x)− F (a)

x − a
− (f ′(a) + g ′(a))

Given any positive number ε, we must explain how to find a
number δ so that |E (x , a)| < ε when 0 < |x − a| < δ.

Modern Analysis MATH 510, Notes 4



|E (x , a)| = |F (x)− F (a)

x − a
− (f ′(a) + g ′(a))|

= | f (x) + g(x)− f (a)− g(a)

x − a
− (f ′(a) + g ′(a))|

= | f (x)− f (a)

x − a
− f ′(a) +

g(x)− g(a)

x − a
− g ′(a)|

≤ | f (x)− f (a)

x − a
− f ′(a)|+ |g(x)− g(a)

x − a
− g ′(a)|

Both f and g meet the requirements of Cauchy’s definition.
Whatever the value of our given ε, we can let ε1 = ε

2 . Apply
Cauchy’s definition to f and g separately using the number ε1 to
find a δf that works for f and a possibly different δg that works for
g .Then let δ = min(δf , δg ). If 0 < |x − a| < δ then the above
shows that

E (x , a) < ε1 + ε1 = ε

Modern Analysis MATH 510, Notes 4



|E (x , a)| = |F (x)− F (a)

x − a
− (f ′(a) + g ′(a))|

= | f (x) + g(x)− f (a)− g(a)

x − a
− (f ′(a) + g ′(a))|

= | f (x)− f (a)

x − a
− f ′(a) +

g(x)− g(a)

x − a
− g ′(a)|

≤ | f (x)− f (a)

x − a
− f ′(a)|+ |g(x)− g(a)

x − a
− g ′(a)|

Both f and g meet the requirements of Cauchy’s definition.
Whatever the value of our given ε, we can let ε1 = ε

2 . Apply
Cauchy’s definition to f and g separately using the number ε1 to
find a δf that works for f and a possibly different δg that works for
g .Then let δ = min(δf , δg ). If 0 < |x − a| < δ then the above
shows that

E (x , a) < ε1 + ε1 = ε

Modern Analysis MATH 510, Notes 4



|E (x , a)| = |F (x)− F (a)

x − a
− (f ′(a) + g ′(a))|

= | f (x) + g(x)− f (a)− g(a)

x − a
− (f ′(a) + g ′(a))|

= | f (x)− f (a)

x − a
− f ′(a) +

g(x)− g(a)

x − a
− g ′(a)|

≤ | f (x)− f (a)

x − a
− f ′(a)|+ |g(x)− g(a)

x − a
− g ′(a)|

Both f and g meet the requirements of Cauchy’s definition.
Whatever the value of our given ε, we can let ε1 = ε

2 . Apply
Cauchy’s definition to f and g separately using the number ε1 to
find a δf that works for f and a possibly different δg that works for
g .Then let δ = min(δf , δg ). If 0 < |x − a| < δ then the above
shows that

E (x , a) < ε1 + ε1 = ε

Modern Analysis MATH 510, Notes 4



|E (x , a)| = |F (x)− F (a)

x − a
− (f ′(a) + g ′(a))|

= | f (x) + g(x)− f (a)− g(a)

x − a
− (f ′(a) + g ′(a))|

= | f (x)− f (a)

x − a
− f ′(a) +

g(x)− g(a)

x − a
− g ′(a)|

≤ | f (x)− f (a)

x − a
− f ′(a)|+ |g(x)− g(a)

x − a
− g ′(a)|

Both f and g meet the requirements of Cauchy’s definition.
Whatever the value of our given ε, we can let ε1 = ε

2 . Apply
Cauchy’s definition to f and g separately using the number ε1 to
find a δf that works for f and a possibly different δg that works for
g .Then let δ = min(δf , δg ). If 0 < |x − a| < δ then the above
shows that

E (x , a) < ε1 + ε1 = ε

Modern Analysis MATH 510, Notes 4



|E (x , a)| = |F (x)− F (a)

x − a
− (f ′(a) + g ′(a))|

= | f (x) + g(x)− f (a)− g(a)

x − a
− (f ′(a) + g ′(a))|

= | f (x)− f (a)

x − a
− f ′(a) +

g(x)− g(a)

x − a
− g ′(a)|

≤ | f (x)− f (a)

x − a
− f ′(a)|+ |g(x)− g(a)

x − a
− g ′(a)|

Both f and g meet the requirements of Cauchy’s definition.

Whatever the value of our given ε, we can let ε1 = ε
2 . Apply

Cauchy’s definition to f and g separately using the number ε1 to
find a δf that works for f and a possibly different δg that works for
g .Then let δ = min(δf , δg ). If 0 < |x − a| < δ then the above
shows that

E (x , a) < ε1 + ε1 = ε

Modern Analysis MATH 510, Notes 4



|E (x , a)| = |F (x)− F (a)

x − a
− (f ′(a) + g ′(a))|

= | f (x) + g(x)− f (a)− g(a)

x − a
− (f ′(a) + g ′(a))|

= | f (x)− f (a)

x − a
− f ′(a) +

g(x)− g(a)

x − a
− g ′(a)|

≤ | f (x)− f (a)

x − a
− f ′(a)|+ |g(x)− g(a)

x − a
− g ′(a)|

Both f and g meet the requirements of Cauchy’s definition.
Whatever the value of our given ε, we can let ε1 = ε

2 .

Apply
Cauchy’s definition to f and g separately using the number ε1 to
find a δf that works for f and a possibly different δg that works for
g .Then let δ = min(δf , δg ). If 0 < |x − a| < δ then the above
shows that

E (x , a) < ε1 + ε1 = ε

Modern Analysis MATH 510, Notes 4



|E (x , a)| = |F (x)− F (a)

x − a
− (f ′(a) + g ′(a))|

= | f (x) + g(x)− f (a)− g(a)

x − a
− (f ′(a) + g ′(a))|

= | f (x)− f (a)

x − a
− f ′(a) +

g(x)− g(a)

x − a
− g ′(a)|

≤ | f (x)− f (a)

x − a
− f ′(a)|+ |g(x)− g(a)

x − a
− g ′(a)|

Both f and g meet the requirements of Cauchy’s definition.
Whatever the value of our given ε, we can let ε1 = ε

2 . Apply
Cauchy’s definition to f and g separately using the number ε1 to
find a δf that works for f and a possibly different δg that works for
g .

Then let δ = min(δf , δg ). If 0 < |x − a| < δ then the above
shows that

E (x , a) < ε1 + ε1 = ε

Modern Analysis MATH 510, Notes 4



|E (x , a)| = |F (x)− F (a)

x − a
− (f ′(a) + g ′(a))|

= | f (x) + g(x)− f (a)− g(a)

x − a
− (f ′(a) + g ′(a))|

= | f (x)− f (a)

x − a
− f ′(a) +

g(x)− g(a)

x − a
− g ′(a)|

≤ | f (x)− f (a)

x − a
− f ′(a)|+ |g(x)− g(a)

x − a
− g ′(a)|

Both f and g meet the requirements of Cauchy’s definition.
Whatever the value of our given ε, we can let ε1 = ε

2 . Apply
Cauchy’s definition to f and g separately using the number ε1 to
find a δf that works for f and a possibly different δg that works for
g .Then let δ = min(δf , δg ).

If 0 < |x − a| < δ then the above
shows that

E (x , a) < ε1 + ε1 = ε

Modern Analysis MATH 510, Notes 4



|E (x , a)| = |F (x)− F (a)

x − a
− (f ′(a) + g ′(a))|

= | f (x) + g(x)− f (a)− g(a)

x − a
− (f ′(a) + g ′(a))|

= | f (x)− f (a)

x − a
− f ′(a) +

g(x)− g(a)

x − a
− g ′(a)|

≤ | f (x)− f (a)

x − a
− f ′(a)|+ |g(x)− g(a)

x − a
− g ′(a)|

Both f and g meet the requirements of Cauchy’s definition.
Whatever the value of our given ε, we can let ε1 = ε

2 . Apply
Cauchy’s definition to f and g separately using the number ε1 to
find a δf that works for f and a possibly different δg that works for
g .Then let δ = min(δf , δg ). If 0 < |x − a| < δ then the above
shows that

E (x , a) < ε1 + ε1 = ε

Modern Analysis MATH 510, Notes 4



For a function defined by a series

F (x) = f1(x) + f2(x) + f3(x) · · · =
∞∑
k=1

fk(x)

where would the proof above break down?

That is, if f1, f2, · · · all have derivatives at point a and we let

E (x , a) =

∑∞
k=1 fk(x)−

∑∞
k=1 fk(a)

x − a
−
∞∑
k=1

f ′k(a)

=
∞∑
k=1

(
fk(x)− fk(a)

x − a
− f ′k(a))

What could go wrong?
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Whether or not a functions is continuous deserves considerable
discussion in later sections.

More about that to come, but for now, I think it is safe to assume
that everyone has at least a good intuitive idea of what it means
for a function to be continuous: We will need to spend some time
time with the Mean Value Theorem (!) in upcoming sections and
chapters. Cauchy’s proof of the Mean Value Theorem made an
assumption that the derivative is continuous.

But consider the following function:

f (x) =

{
x2 sin( 1

x2
) : x 6= 0

0 : x = 0
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The graph of f is squeezed between x2 and −x2
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It is not difficult to show that the derivative of f exists everywhere,
including at x = 0, and that

f ′(x) =

{
2x sin( 1

x2
)− 2

cos( 1
x2

)

x ; : x 6= 0
0 : x = 0

One way to think about the derivative at x = 0 is the fact that f is
squeezed between the two differentiable functions ±x2. But the
derivative is not continuous at x = 0.

So ... Cauchy’s proof? Not so much...
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Another interesting function:

g(x) =

{
e−

1
x2 : x 6= 0

0 : x = 0
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g ′(x) exists at all values of x , including x = 0

.

In fact, the same is true for g ′, g ′′, g ′′′, etc.

Here are the formulas for g ′ and g ′′:

g ′(x) =

{
e−

1
x2 · 2

x3
: x 6= 0

0 : x = 0

g ′′(x) =

{
e−

1
x2 (− 6

x4
+ 4

x6
) : x 6= 0

0 : x = 0

And in addition g(0) = g ′(0) = g ′′(0) = · · · = g (n)(0) = · · · = 0.
Give some thought as to why this is significant, especially as
relating to Taylor’s theorem.
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And in addition g(0) = g ′(0) = g ′′(0) = · · · = g (n)(0) = · · · = 0.
Give some thought as to why this is significant, especially as
relating to Taylor’s theorem.
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