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An infinite series:
∞∑
k=1

ak = a1 + a2 + · · ·

A partial sum:
n∑

k=1

ak = a1 + a2 + · · ·+ an

a1, a2, · · · - summands
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Saying that the series converges to T ,

∞∑
k=1

ak = T

means that the sequence of partial sums converges to T . (Given
ε > 0 there exists N so that ... etc.)
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What do we know?

I
∑∞

k=1
1
k diverges.

I
∑∞

k=0 r
k converges to 1

1−r if |r | < 1.

I
∑∞

k=1
(−1)k+1

k converges.
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Things we think we know:

If the summands are functions, sometimes it is OK to take the
derivative or integral term by term, and sometimes not.

If the summands are continuous functions, sometimes the limit is
continuous and sometimes not.

Sometimes mixing up the terms of a series changes the
target/limit, and sometimes not.
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When does a series converge?

Theorem If
∑∞

k=1 ak converges, then an → 0

But of course that only tells us when a series might converge.

Or, more often, that might tell us when a series does not converge.
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Preview: We do not want to bypass the most straightforward sort
of test about convergent or divergent series. The author does not
mention until section 4.2, but let’s put it out there now:

Theorem Given two infinite series
∑∞

k=1 ak and
∑∞

k=1 bk , suppose
that for all values of k we have

0 ≤ ak ≤ bk .

If the series
∑∞

k=1 bk converges, then
∑∞

k=1 ak does also. If the
series

∑∞
k=1 ak diverges, then

∑∞
k=1 bk does also.

Proof left to reader?

Can you see why theorem is still true if instead we know
0 ≤ ak ≤ C · bk for some positive constant C? What if we only
know that 0 ≤ ak ≤ bk “eventually?” That is, after some finite
number of terms at the beginning of the series.
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Definition An infinite sequence {S1,S2, ...} is Cauchy if given
ε > 0 we can find a number N so that for any numbers n and m
with n > m ≥ N we have

|Sn − Sm| < ε

A series is Cauchy when its sequence of partial sums is Cauchy.
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Theorem A sequence or series converges iff it is Cauchy.

To prove this, we need to think about the following ideas:
Given a bounded sequence {Sn} let:
U1 = l .u.b{S1,S2, S3, · · · }
U2 = l .u.b{S2,S3, S4, · · · }
U3 = l .u.b{S3,S4, S5, · · · }, etc.

In a similar way define a sequence {Ln} using g.l.b. instead of l.u.b.
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Facts:

I The {Un} and {Ln} sequence are also bounded.

I The {Un} sequence is decreasing and the {Ln} sequence is
increasing.

I Un ≥ Ln for all n.

As a bounded decreasing sequence, {Un} has a limit (it decreases
to its greatest lower bound). This number is called the limit
superior for the sequence {Sn} and designated lim supn Sn.

Similarly there is a limit inferior lim infn Sn defined using {Ln}
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(Note: the idea of limsup and liminf may be extended to
unbounded sequences if we allow limsup and liminf to take on the
values +∞ or −∞.)
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Theorem A sequence or series converges iff it is Cauchy.

The proof is not so bad.

Converges ⇒ Cauchy is easy. The other
direction: Cauchy ⇒ converges is more difficult.

One problem is that we do not know up front what should be the
value for the target/limit. But we can get this value either using
the nested interval principle applied to the intervals [Ln,Un], or
more directly by showing that for a Cauchy sequence the limsup is
the same as the liminf, and that this number is also the limit.
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Definition Series
∑∞

k=1 ak converges absolutely if
∑∞

k=1 |ak |
converges.

Is it obvious that if a series converges absolutely, then it converges
in the usual sense?

If a series converges in the usual sense, does it converge absolutely?

If a series
∑∞

k=1 ak converges to T , can we tell what
∑∞

k=1 |ak |
converges to?
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Theorem If a series converges absolutely then the series converges
in the usual sense. That is, if

∞∑
k=1

|ak |

converges, then
∞∑
k=1

ak

converges.
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If a series converges but does not converge absolutely, then we say
that the series converges conditionally.

An example of a series that converges conditionally?
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Theorem If a1 ≥ a2 ≥ a3 ≥ · · · ≥ 0, then the alternating series

a1 − a2 + a3 − a4 + a5 − · · ·
converges iff the sequence an → 0
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Just as little more perspective on absolute convergence:

For any real number a, define

a+ =

{
a : a ≥ 0
0 : a < 0

and

a− =

{
−a : a < 0
0 : a ≥ 0

Simple, one or the other of a+ and a− is zero, but note that:

a = a+ − a−

and
|a| = a+ + a−
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It may be useful to think of an infinite series in the following way:

∞∑
k=1

ak =
∞∑
k=1

a+k −
∞∑
k=1

a−k

and
∞∑
k=1

|ak | =
∞∑
k=1

a+k +
∞∑
k=1

a−k

Similarly, the partial sums:

n∑
k=1

ak =
n∑

k=1

a+k −
n∑

k=1

a−k

and
n∑

k=1

|ak | =
n∑

k=1

a+k +
n∑

k=1

a−k
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A series
∑∞

k=1 ak converges absolutely IFF both
∑∞

k=1 a
+
k and∑∞

k=1 a
−
k converge, in which case

∞∑
k=1

ak =
∞∑
k=1

a+k −
∞∑
k=1

a−k .

If a series converges conditionally, it must be the case that
separately both

∑∞
k=1 a

+
k and

∑∞
k=1 a

−
k diverge, but somehow

their interaction allows them to converge when the partial sums are
subtracted.
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Conditional convergence is a difficult thing to study in detail. The
alternating series test is relatively easy to understand.

But going
beyond that requires some pretty sophisticated ideas.

So we will first concentrate on the absolute convergence, where a
great deal can be done with so-called “comparison tests” and
related tests that indirectly depend on comparisons.

In much of what follows, the theorems will assume that we have
non-negative summands. That is, series

∑∞
k=1 ak for which all

ak ≥ 0.

But of course these theorems would apply to other not necessarily
non-negative (is that a triple negative?!?) series if we are testing
for absolute convergence by applying the theorems to

∑∞
k=1 |ak |.
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Recall: Theorem Given two series
∑∞

k=1 ak and
∑∞

k=1 bk with
0 ≤ an ≤ bn (at least for all but a finite number of n). If

∑∞
k=1 bk

converges then
∑∞

k=1 ak also converges. If
∑∞

k=1 ak diverges then∑∞
k=1 bk also diverges.

Of course, the theorem could be re-written for series that are not
necessarily non-negative using |an| ≤ |bn| and substituting
“converges absolutely” for “converges.”(And with “diverges”
replaced by “does not converge absolutely.”)
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Theorem Given two series
∑∞

k=1 ak and
∑∞

k=1 bk with an ≥ 0,
bn > 0, and also

limn→∞
an
bn

= L

where 0 < L <∞. Then
∑∞

k=1 bk and
∑∞

k=1 ak either both
converge or both diverge.

Why is this true?

The following idea could easily be turned into a formal
proof: an

bn
≈ L “eventually,” that is, for large values of n. Meaning

that for all but a finite number of n we can say that

1

2
L <

an
bn

< 2L

which is the same as

L

2
bn < an < 2L ∗ bn
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Ratio Test For series
∑∞

k=1 ak with all ak > 0. If

lim
n→∞

an+1

an

exists and we set L equal to this limit, then L < 1 implies that the
series converges absolutely and L > 1 implies that the series
diverges.
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Why is this true?

Let qn = an+1

an
, and thus we know qn → L.

Suppose first that L < 1. Apply the definition of convergence with
ε = (1− L)/2. Then we can say that there is a value of N so that
for n ≥ N we have:

|qn − L| < (1− L)/2

and a little algebra shows that for these values of n

qn < (1 + L)/2.

From this point on, keep in mind that N is a constant.

(1 + L)/2 < 1 because...?
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Let r = (1 + L)/2.

We now know that for all sufficient large values
of n we have an+1

an
< r or equivalently an

an−1
< r and hence

an < an−1 ∗ r . So:

an < an−1 ∗ r < an−2 ∗ r2 < · · · < aN ∗ rn−N =
aN
rN

rn.

aN
rN

is a positive constant, call it “K .” All of this implies that

an < Krn

as long as n ≥ N. Is it clear what to do from here? (Comparison
test, comparing with ...?)

Something similar would be done for L > 1, but with inequalities
reversed to show divergence.
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Theorem (Root Test) Given series
∑∞

k=1 ak with ak ≥ 0. If

L = lim sup
n→∞

n
√
|an|

then L < 1 implies that the series converges absolutely and L > 1
implies that the series diverges.

The proof is in fact a bit simpler than for the ratio test!
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Theorem Suppose that f is a positive decreasing function and
that

∑∞
k=1 ak is a series for which ak = f (k). Then the series

converges iff ∫ ∞
1

f (x)dx <∞.
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Integral test, why is it true?

n∑
k=1

ak ≤ a1 +

∫ n

1
f (x)dx

∫ n

1
f (x)dx ≤

n−1∑
k=1

ak
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For what values of p does this series converge??

∞∑
k=1

1

kp

The integral test may be used to determine this. Alternatively,
something called the Cauchy Condensation Test may be used. The
Cauchy Condensation Test accomplishes more or less the same
thing, but it is nice to be able to avoid talking about integrals.
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Theorem (Cauchy Condensation Test) Suppose that

a1 + a2 + a3 + · · ·

is a series whose summands are (eventually) positive and
decreasing. This series converges if and only if the series

a1 + 2a2 + 4a4 + 8a8 + · · ·+ 2ka2k + · · ·

converges.
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Couple notes:

The Ratio Test and Root Test will only work with series that could
theoretically be compared with geometric series.

The Integral Test is a bit more subtle and may be sometimes useful
for series for which the Ratio and Root Tests fail. Notably, the
so-called “p-series.”
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