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A sequence of functions Sn converges pointwise to a limit function
S if for each individual x the sequence Sn(x) converges to S(x).

The “point” of “pointwise convergence” is that the rate at which
Sn(x)→ S(x) may be quite different at different values of x .

When we say that a series of functions

∞∑
k=1

fk = f1 + f2 + f3 + · · ·

converges (pointwise) we mean that its sequence of partial sums
converges (pointwise).

It is pretty common to see
∑∞

k=1 fk and
∑∞

k=1 fk(x) used
interchangeably. Technically, the latter should refer to the
functions evaluated at a particular point x , but nonetheless ...
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Examples:

I 3.3.25 Sn(x) = ln(x+2)−x2n∗sin(x)
1+x2n

I Geometric series 1 + x + x2 + x3 + · · · =
∑∞

k=0 x
k

I 1 + x + x2

2! + x3

3! + x4

4! + · · · =
∑∞

k=0
xk

k!

I cos(πx2 )− 1
3 cos(3πx2 ) + 1

5 cos(5πx2 )− · · · =∑∞
k=1

(−1)k−1

2k−1 cos( (2k−1)πx2 )

The second and third are examples of power series.
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Power series:
∞∑
n=0

anx
n

or more generally
∞∑
n=0

an(x − c)n,

but for simplicity we concentrate on
∑∞

n=0 anx
n.

It will turn out that a power series
∑∞

n=0 anx
n either converges

everywhere or for x in some interval centered at 0 or possibly only
at x = 0. When there is a finite interval, this interval turns out to
be the values of x for which we can use a comparison test with a
geometric series.
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Theorem Given a power series
∑∞

n=0 anx
n, suppose that

0 < lim sup
n→∞

n
√
|an| <∞.

Let

R =
1

lim supn→∞
n
√
|an|

.

Then the series converges absolutely for |x | < R and diverges for
|x | > R.

If lim supn→∞
n
√
|an| = 0 then the series converges absolutely for

all x . If lim supn→∞
n
√
|an| =∞ then the series converges only for

x = 0.
Note: If limn→∞

an
an+1

exists, then R = limn→∞
an

an+1
.
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Why is this true?

For
∞∑
n=0

anx
n

apply the root test.

lim sup
n→∞

n
√
|an ∗ xn| = lim sup

n→∞
n
√
|an| ∗ |x |

=
1

R
|x |

The series converges if the limit superior in the root test is less
than ...?

That is, 1
R |x | < 1 I.e. |x | < R
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Back to convergence when comparisons are not realistic...

Generalize the alternating series test?

The following is stated in reference to a series, but in reality it is
strictly speaking an algebra exercise with finite sums:
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Abel’s Lemma Given a series of the form

∞∑
k=1

akbk

where
b1 ≥ b2 ≥ b3 ≥ ... ≥ 0.

Let

Sn =
n∑

k=1

ak .

If there is a number M so that |Sn| ≤ M for all n (that is, the
sequence Sn is bounded) then

|
n∑

k=1

akbk | ≤ Mb1
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Why is this true?

This is merely a clever rewriting and rearrangement of the sum.
You could work it out from scratch if you had enough time to
contemplate it. Might take a while, but still... Basic fact is that
ak = Sk − Sk−1: (And it makes some sense to set S0 = 0.)

n∑
k=1

akbk = S1b1 + (S2 − S1)b2 + · · ·+ (Sn − Sn−1)bn

= (S1b1 + S2b2 + · · ·+ Snbn)− (S1b2 + S2b3 + · · ·+ Sn−1bn)

= S1(b1 − b2) + S2(b2 − b3) + · · ·+ Sn−1(bn−1 − bn) + Snbn

=
n−1∑
k=1

Sk(bk − bk+1) + Snbn
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|
n∑

k=1

akbk | ≤
n−1∑
k=1

|Sk(bk − bk+1)|+ |Snbn|

=
n−1∑
k=1

|Sk |(bk − bk+1) + |Sn|bn

≤
n−1∑
k=1

M(bk − bk+1) + Mbn

= M(b1 − b2 + b2 − b3 + · · ·+ bn−1 − bn + bn)

= Mb1
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Dirichlet’s Test Given a series of the form

∞∑
k=1

akbk

where
b1 ≥ b2 ≥ b3 ≥ ... ≥ 0

and in addition bk → 0. Let

Sn =
n∑

k=1

ak .

If there is a number M so that |Sn| ≤ M for all n (that is, the
sequence Sn is bounded) then the original series

∑∞
k=1 akbk

converges.
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You should think of this as a generalization of the alternating
series test.

Indeed, this is exactly the alternating series test if we let
ak = (−1)k+1, since then the partial sums Sn =

∑n
k=1 ak would be

either ... ??
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Why is this true?

With all series, the question of whether the series converges is
really the same as asking does the “tail” of the series “get
sufficiently small”.

The following would apply to any series, but for the specific type
we are talking about now ... Informally, we can think of

∞∑
k=1

akbk =
n∑

k=1

akbk +
∞∑

k=n+1

akbk

The series converges to a target value T if the sequence of partial
sums

∑n
k=1 akbk converges to T , which is really the same as

saying that the leftover tail
∑∞

k=n+1 akbk → 0.

The idea of a Cauchy sequence is merely a way to talk about this
more carefully using finite sums instead of infinite sums.
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∞∑
k=1

akbk =
n∑

k=1

akbk +
∞∑

k=n+1

akbk

What we really want to do is apply Abel’s lemma not to the entire
series, but to the tail. This tells us that for any larger number
m > n we have

|
m∑

k=n+1

akbk | ≤ bn+1M
∗

(note: the number M∗ may not be the same M as in the
statement of the theorem. If it is not clear why, you can see why in
reading the proof. But in fact, the number M∗ need be no bigger
than 2M.)
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|
m∑

k=n+1

akbk | ≤ bn+1M
∗

The right hand side above does not depend on m, so again thinking
a little informally, we can imagine letting m→∞ giving us

|
∞∑

k=n+1

akbk | ≤ bn+1M
∗.

That is, the “tail” is less than or equal to bn+1M
∗. Since we know

that bn → 0, this tells us that the “tail” goes to zero. A more
formal proof would make us clean this up a little, but that is the
idea.
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∗. Since we know

that bn → 0, this tells us that the “tail” goes to zero. A more
formal proof would make us clean this up a little, but that is the
idea.
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Some identities:

cos(y)− cos(3y) + cos(5y)− · · ·+ (−1)n+1 cos((2n − 1)y)

=
1− (−1)n cos(2ny)

2 cos(y)

sin(y) + sin(2y) + sin(3y) + sin(4y) + · · ·+ sin(ny)

=
sin(y)

2
(

1− cos(ny)

1− cos(y)
) +

sin(ny)

2

sin(α) + sin(α + β) + sin(α + 2β) + · · ·+ sin(α + nβ)

=
sin( (n+1)β

2 ) sin(α + nβ
2 )

sin(nβ2 )
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