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A regrouping of an infinite series such as

∞∑

k=1

ak = a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9 + a10 + · · ·

would result from some arbitrary insertion of parentheses, for
example:

(a1 + a2) + (a3 + a4 + a5 + a6) + (a7 + a8) + a9 + (a10 + a11) + · · ·

essentially creating a new related series
∑∞

k=1 bk where in this
case:

b1 = (a1 + a2)

b2 = (a3 + a4 + a5 + a6)

b3 = (a7 + a8)

etc.
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Theorem If a series converges, every regrouping of that series
converges to the same target value.

A proof would necessarily go back to the ε− N definition, but
more than anything else it would be a question of a getting an
appropriate notation to describe the choice of N.

A related question: If a series diverges, does every regrouping of
that series diverge?
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Theorem If
∑∞

k=1 ak and
∑∞

k=1 bk both converge, then so does∑∞
k=1(ak + bk), and

∞∑

k=1

(ak + bk) =
∞∑

k=1

ak +
∞∑

k=1

bk .

Is the converse of this theorem true? (What is the converse of this
theorem?)

Another result, for the record:
Theorem If

∑∞
k=1 ak converges and c is any number, then∑∞

k=1 c · ak also converges and

∞∑

k=1

c · ak = c
∞∑

k=1

ak .
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A rearrangement of an infinite series is a bit more confusing,
resulting from taking all of the same terms from the original series
in forming a new series, but in a different order. For example, for
the series:

a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9 + · · ·

The series

a1 + a3 + a2 + a5 + a7 + a4 + a9 + a11 + a6 + · · ·

would be a rearrangement.

There is not necessarily a pattern. For
∑∞

k=1 bk to be a
rearrangment of

∑∞
k=1 ak , all we need is a one-to-one and onto

function γ : N→ N so that bn = aγ(n).
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Theorem If a series converges absolutely, every rearrangement of
that series converges absolutely to the same target value.
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Why is this true?

For series with all positive terms, it is not difficult to make sense of
the theorem.For a series

∑∞
k=1 ak with all positive terms, the

partial sums are always increasing and getting progressively closer
to the target value. So, for example, if 1000 terms from the
original series are required to get within a certain error tolerance of
the target value, we could be sure that the rearranged series is well
within that same error tolerance if we take a sufficient number of
the “rearranged” terms so that at least the 1000 terms from the
original series are included, albeit in a different order.

All we would really need to do is find the largest of
γ(1), γ(2), · · · , γ(1000) and be sure that we include at least that
many terms in the partial sum.
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One can deal with not necessarily positive series using the Cauchy
series ideas, but perhaps it is simpler to remember that we can
break a series into positive and negative parts:

∞∑

k=1

ak =
∞∑

k=1

a+k −
∞∑

k=1

a−k

And recall that
∑∞

k=1 ak converges absolutely iff the two positive
series on the right side converge.
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Theorem If a series converges conditionally, then for any real
number T there is some rearrangement of that series that
converges to T .

At first glance, that seems pretty odd. For example, for the
alternating harmonic series

∞∑

k=1

(−1)k+1

k

we are pretty sure that the target value is ln(2).

This theorem say that it is possible to find a rearrangement of∑∞
k=1

(−1)k+1

k that converge to 1, another rearrangement that
converges to -10, another rearrangement that converges to 10000,
and so on (and on!).
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Why is this true?

Writing out a formal proof is a headache, but in fact the idea is
pretty simple: For a conditionally convergent series, when we break
up the partial sums

n∑

k=1

ak =
n∑

k=1

a+k −
n∑

k=1

a−k

then we know that the two positive series related to the two sums
on the right side both must diverge (to infinity).
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n∑

k=1

ak =
n∑

k=1

a+k −
n∑

k=1

a−k

For any possible target T , to begin we merely need to take enough
positive terms until we get a sum greater than T . (Of course, if
T ≤ 0 that mean that the required number of positive terms is
zero!) We are sure that we can do this, since we know that the
partial sums of positive terms eventually run off to infinity. Next,
throw in enough negative terms so the the partial sums drop below
T . After that, more positive terms until we are above T , and so
on.
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Consider the series:

∞∑

k=1

2x2(k−1)(1− x2)

(1 + x2k)(1 + x2(k−1))

We have shown that the partial sums simplify as follows:

n∑

k=1

2x2(k−1)(1− x2)

(1 + x2k)(1 + x2(k−1))
=

1− x2n

1 + x2n

and that the series converges to G (x) given by

G (x) =





1 : −1 < x < 1
0 : x = ±1
−1 : x < −1 or x > 1
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A graph of partial sums with n = 2 and n = 20, and the series
limit G (x):

For series whose partial sums are continuous, apparently the limit
need not be continuous(?)
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But, what is wrong with the following “proof?” Let Sn(x) = 1−x2n
1+x2n

be the partial sums, and recall that G (x) is the series limit:
To attempt to “show” that G is continuous at point a, given ε > 0
we would need to find a corresponding δ > 0 so that |x − a| < δ
would imply |G (x)− G (a)| < ε.

Since Sn(x)→ G (x), we can find a number N so that
|Sn(x)− G (x)| < ε

3 when n ≥ N (and in particular when n = N).
Since SN is continuous, we can find δ so that |x − a| < δ implies
|SN(x)− SN(a)| < ε

3 . Thus if |x − a| < δ then:

|G (x)− G (a)| = |G (x)− SN(x) + SN(x)− SN(a) + SN(a)− G (a)|
≤ |G (x)− SN(x)|+ |SN(x)− SN(a)|+ |SN(a)− G (a)|
<

ε

3
+
ε

3
+
ε

3
= ε.

This would imply that function G is continuous, but based on our
example this cannot be???
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Definition For a series of functions

∞∑

k=1

gk(x)

with partial sums

Sn(x) =
n∑

k=1

gk(x)

we say that the series converges uniformly to function G on set E
if given ε > 0 we can find a number N so that |Sn(x)− G (x)| < ε
for all x ∈ E when n ≥ N.

The key here is that for any ε we can find a single N that “works”
for all x ∈ E . This is not to say that the series somehow converges
at the same “rate” for all x ; more often we can think of this as
meaning that there is a “worst case” and that once we identify
that worst case then convergence is at least that fast at every
value of x .
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Theorem For a series of functions
∑∞

k=1 gk(x), if each gk(x) is
continuous for x in some interval I and the series converges
uniformly on I to function G , then G is also continuous.

Let Sn(x) =
∑n

k=1 gk(x). Since Sn(x)→ G (x), we can find a
number N so that |Sn(x)− G (x)| < ε

3 for all x ∈ I when n ≥ N
(and in particular when n = N). Since SN is continuous, we can
find δ so that |x − a| < δ implies |SN(x)− SN(a)| < ε

3 . Thus if
|x − a| < δ then:

|G (x)− G (a)| = |G (x)− SN(x) + SN(x)− SN(a) + SN(a)− G (a)|
≤ |G (x)− SN(x)|+ |SN(x)− SN(a)|+ |SN(a)− G (a)|
<

ε

3
+
ε

3
+
ε

3
= ε.
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So...with pointwise convergence of continuous functions, the limit
may or may not be continuous.

With uniform convergence of continuous functions, the limit will
be continuous.

What about derivatives and integrals?
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There are many examples of series

∞∑

k=1

gk(x)

that converge (pointwise), but

∫ b

a

∞∑

k=1

gk(x)dx 6=
∞∑

k=1

∫ b

a
gk(x)dx
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Nonetheless:

Theorem For a series of functions
∑∞

k=1 gk(x), suppose that each
gk(x) is integrable on an interval [a, b] and the series converges
uniformly on [a, b] to function G , then G is also integrable and

∫ b

a
G (x)dx =

∞∑

k=1

∫ b

a
gk(x)dx .

That is: ∫ b

a

∞∑

k=1

gk(x)dx =
∞∑

k=1

∫ b

a
gk(x)dx
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The same theorem may be stated in a “sequence” version:

For a sequence of functions Sn(x), suppose that each Sn is
integrable on an interval [a, b] and the sequence converges
uniformly on [a, b] to function S . Then S is also integrable and

∫ b

a
S(x)dx = lim

n→∞

∫ b

a
Sn(x)dx

That is ∫ b

a
lim
n→∞

Sn(x)dx = lim
n→∞

∫ b

a
Sn(x)dx
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Why is this true?

The proof is not difficult to write out, but at a basic level we can
think of this graphically.
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In the graph, imagine that the smooth curve is the limit function
accompanied by an ε-band. With uniform convergence, partial
sums (the squiggly curve) eventually must be inside the band.
Thinking of areas related to integrals, functions with graphs inside
the band will have integral very close together.
The basic inequality: if |G (x)−∑n

k=1 gk(x)| < ε
b−a then

|
∫ b

a
G (x)dx −

n∑

k=1

∫ b

a
gk(x)dx | ≤

∫ b

a
|G (x)dx −

n∑

k=1

gk(x)|dx

<

∫ b

a

ε

b − a
dx = ε
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For derivatives, the situations is, how to say, “more complicated.”

Even with uniform limits, it may be that the derivative does not
even exist for the limit function.

If the limit function has a derivative, it may be that the derivative
of the limit is not the limit of the derivatives.
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But uniform convergence does play a role:

Theorem For a series of functions
∑∞

k=1 gk(x), suppose that we
know that the series converges for at least one value of x (say
x = a). In addition, suppose that each gk(x) is differentiable and
the series of derivatives

∑∞
k=1 g

′
k(x) converges uniformly on open

interval I (containing point a). Then:

1.
∑∞

k=1 gk(x) converges uniformly to a function G on the
interval I .

2. G is differentiable.

3. G ′(x) =
∑∞

k=1 g
′
k(x)
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Why is this true?

Our text author gives an alternate proof, but you can informally
think of this as related to the Fundamental Theorem of
Calculus.Basic idea? Start by defining G as follows:

G (x) =

∫ x

a

∞∑

k=1

g ′k(t)dt +
∞∑

k=1

g(a)

We know that for the series on the right
∫ x

a

∞∑

k=1

g ′k(t)dt =
∞∑

k=1

∫ x

a
g ′k(t)dt

(why?)
Also gk(x) =

∫ x
a g ′k(t)dt + gk(a) (why?)

From here, the primary thing would be to show why

G (x) =
∞∑

k=1

gk(x)
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A question we have (sort of) been ignoring: How to show that a
series converges uniformly?

In examples so far, the partial sums of series we were looking at
were either simple geometric series or the partial sum
“miraculously” simplified into something we could figure out in an
ad-hoc sort of way.

There are several more general versions of the following, but here
is the most useful form:

Theorem (Weierstrauss M-test For a series of functions∑∞
k=1 gk(x), suppose that we can find constants M1,M2, · · · so

that for all x in some interval I and for all k we have

|gk(x)| ≤ Mk .

If
∑∞

k=1Mk converges then
∑∞

k=1 gk(x) converges uniformly.
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A consequence of the Weierstrauss M-test:
Theorem Given a power series

∞∑

k=0

akx
k = a0 + a1x + a2x

2 + · · ·

with radius of convergence R > 0. Suppose that α is a number
with 0 < α < R. Then the power series converges uniformly on
[−α, α]. Furthermore, the function defined by this series is
differentiable at every x with |x | < R and

(
∞∑

k=1

akx
k)′ =

∞∑

k=1

kak−1x
k−1 = a1 + 2a2x + 3a3x

2 + · · ·

Also, when |x | < R we have:

∫ x

0

∞∑

k=0

akt
kdt = a0x +

a1
2
x2 +

a2
3
x3 + · · ·
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Dirichlet’s Test Given a series of the form

∞∑

k=1

gk(x)hk(x)

where gk and hk are functions defined on some interval I . Suppose
that

h1(x) ≥ h2(x) ≥ h3(x) ≥ ... ≥ 0

and that there is a sequence of numbers B1 ≥ B2 ≥ B3 ≥ ... with
Bk ≥ hk(x) for all x ∈ I , and Bk → 0.
Let

Sn(x) =
n∑

k=1

gk(x).

If there is a number M so that |Sn(x)| ≤ M for all n and all x ∈ I
then the original series

∑∞
k=1 gk(x)hk(x) converges uniformly.
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Two more:
Theorem Suppose that a series of functions

∑∞
k=1 gk(x)

converges uniformly on the interval (a, b) and that each gk(x) is
continuous on [a, b]. Then

∑∞
k=1 gk(x) converges (uniformly) on

the entire closed interval [a, b].

Theorem Given a power series

∞∑

k=0

akx
k = a0 + a1x + a2x

2 + · · ·

with radius of convergence R > 0. If the series converges at
x = R, then it converges uniformly on [0,R]. If the series
converges at x = −R, then it converges uniformly on [−R, 0].
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