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So ... we are back to thinking about series similar to what was
described back in Chapter 1, recalling the work of Fourier. We
have theorems that, along with the appropriate algebra and
trigonometric identities, can be used to demonstrate that these
series converge. But it still remains an open question regarding
whether the limit of those series is what we want it to be.
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Here is what we are hoping for: Given some function f , we can
find appropriate numbers an and bn somehow related to f , so that
the following series of functions converges:

F (x) = a0 +
∞∑

k=1

an cos(kx) + bn sin(kx)

and that f (x) = F (x), at least for x in some interval in which we
are interested.

The text plays a little fast and loose with the distinction between
the function we begin with, f , and the function defined by the
series, F . We will try to maintain that distinction here, since I
believe that it makes thinking about the homework questions a
little more clear. With certain conditions on f , the two will be
equal (more or less) at least on the interval (−π, π).
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Here are three (sets of) integrals we are going to need:

∫ π
−π cos(kx) cos(mx) dx =





0 if k 6= m

2π if k = m = 0

π if k = m 6= 0

∫ π
−π sin(kx) sin(mx) dx =

{
0 if k 6= m

π if k = m 6= 0

∫ π
−π sin(kx) cos(mx) dx = 0.

They may look like a pain, but with the relevant identities they are
easy.
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It will not prove what we want to prove, but it is not a difficult
calculus problem to show that if there is to be any hope that
F (x) = f (x) (the series converges to the given function) then the
constants ak and bk would necessarily be as follows:

a0 =
1

2π

∫ π

−π
f (t) dt.

ak =
1

π

∫ π

−π
f (t) cos(kt) dt k = 0, 1, 2, . . . .

bk =
1

π

∫ π

−π
f (t) sin(kt) dt k = 1, 2, 3, . . . .

There is nothing special about using t above instead of x . These
integrals are just numbers, after all, and essentially the variable
used to describe them is what we might call a “dummy” variable,
just there to define the integral. On a later slide, we will want to
bring back ak and bk in a context where x is already representing
something else. Thus, the “t” here to avoid any confusion.
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Our version of the theorem requires the ideas of piecewise
continuous and piecewise monotone.

A function is piecewise continuous if on any bounded interval there
are only a finite number of points where the function is not
continuous.

A function is piecewise monotone if on any bounded interval there
are only a finite number of points where the function changes from
increasing to decreasing or from decreasing to increasing.
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So, here is our version of Dirichlet’s Theorem for Fourier series:

Theorem Suppose that f is a function that is bounded, piecewise
monotone, and piecewise continuous on the interval [−π, π]. Let

F (x) = a0 +
∞∑

k=1

ak cos(kx) + bk sin(kx)

with ak and bk defined as above. Then

I F is periodic on R with period 2π.

I F (x) = f (x) at every x ∈ (−π, π) where f is continuous.

I If f is not continuous at x0 ∈ (−π, π), then

F (x0) =
limx→x+0

f (x) + limx→x−0
f (x)

2
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Our goal here: let’s not attempt to give every detail of the proof,
but just get the idea of why these seemingly odd connections with
trigonometric functions work out.

The theorem assumes we have function f with domain [−π, π]. In
practice, the f in which we are interested might very well have
larger domain, perhaps even R. But for purposes of the statement
of the theorem, we only care about values on [−π, π]. For the
proof of the theorem, however, it would be convenient if our
function is defined for all real numbers, but also periodic with
period 2π. We could accomplish that by creating a new function
by extending the values of f on the interval [−π, π) repeatedly in
both directions. Essentially, we would be making a new function.
We could call it something like f̄ ; f̄ is the same as f on the original
[−π, π). For example, if π ≤ x < 3π, then f̄ (x) = f (x − 2π), and
similarly for every other interval of length 2π. To simplify things,
just assume we have already done that, and when we refer to f we
are talking about this “extended” periodic function.
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And then, a very rough outline of the proof:
Partial sum for the F series:

Fn(x) = a0 +
n∑

k=1

an cos(kx) + bn sin(kx).

We replace the ak and bk with integrals that defined them (using t
and dt as the variable in those integrals). These are all finite sums,
so we can manipulate the sums and integrals nearly any way we
wish, and in doing so end up with Fn(x) equal to an integral from
−π to π of a function that involves f (t) along with a sum that has
products of sine and cosine involving t and x . Some trig identities
for those products, more algebra, and we end up with

Fn(x) =
1

π

∫ π

−π
(

1

2
+

n∑

k=1

cos(k(t − x)) )f (t)dt.
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Fn(x) =
1

π

∫ π

−π
(

1

2
+

n∑

k=1

cos(k(t − x)) )f (t)dt.

Now, a trig identity for the sum of cosines similar to the one for
sines that we proved back in section 4.4 (problem 4.4.7):

Fn(x) =
1

π

∫ π

−π

sin[(2n + 1)(t − x)/2]

2 sin[(t − x)/2]
f (t)dt.

Sure, that looks like a mess, but no more “summation” inside the
integral. Next, we need to observe that since all of the functions in
the integral are periodic with period 2π (assuming we have done
our little switch to replace f with a periodic function), it does not
matter what interval of length 2π is used for the integral.

Fn(x) =
1

π

∫ π+x

−π+x

sin[(2n + 1)(t − x)/2]

2 sin[(t − x)/2]
f (t)dt.
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Fn(x) =
1

π

∫ π+x

−π+x

sin[(2n + 1)(t − x)/2]

2 sin[(t − x)/2]
f (t)dt.

From here, break up the above into two integrals, one from
−π + x to x and the other from x to π + x . Then, a substitution,
letting u = − t−x

2 in the first integral and u = t−x
2 in the second.

We then have

Fn(x) =
1

π

∫ π/2

0

sin[(2n + 1)u]

sin[u]
f (x − 2u)du

+
1

π

∫ π/2

0

sin[(2n + 1)u]

sin[u]
f (x + 2u)du
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The behavior of the function 1
π
sin[(2n+1)u]

sin[u] ? Below are graphs of
this function with n = 1, n = 10, and n = 50:

The integral of each of those from 0 to π
2 is 1

2 . But with the
“spike” in the graph near u = 0, is it clear that as n increases,
most of the positive area “weight” in the integral is concentrated
in a increasingly narrow interval starting at u = 0? And that with
the positive and negative fluctuation (and positive/negative
canceling) the integral over the remainder of the interval out to π

2
is getting close to zero?
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Thinking about the second of the two integrals defining Fn(x):

1

π

∫ π/2

0

sin[(2n + 1)u]

sin[u]
f (x + 2u)du

As n gets very large, even with the extra f (x + 2u) thrown in, the
integral outside of a very (and increasingly) narrow interval starting
at zero will get very small, converging to zero If we were carefully
writing out the proof, it is at this point we would need the
“piecewise monotone” condition. We would not be able to show
that this portion of the integral gets small if f was changing
direction infinitely often similar to sin[(2n+1)u]

sin[u] .
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So, for any number δ > 0, if n is sufficiently large, then

1

π

∫ π/2

0

sin[(2n + 1)u]

sin[u]
f (x+2u)du ≈ 1

π

∫ δ

0

sin[(2n + 1)u]

sin[u]
f (x+2u)du

And if δ is sufficiently small, then knowing what we know about
the continuity f (continuous except at a finite number of points),
the values for f (x + 2u) will not vary much from the average value
of f immediately to the right of x , or approximately

lim
z→x+

f (z).

An odd notation, but the text refers to this number as
“f (x + 0).”What we end up with is

1

π

∫ π/2

0

sin[(2n + 1)u]

sin[u]
f (x+2u)du ≈ f (x+0)

1

π

∫ δ

0

sin[(2n + 1)u]

sin[u]
du

≈ f (x + 0) · 1

2
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We deal with the other integral for Fn(x) in the same way, except
in this case we have limz→x− f (z). Letting n→∞, our “≈” turn
into “=” and we end up with

Fn(x)→ F (x) =
1

2
· lim
z→x−

f (z) +
1

2
· lim
z→x+

f (z).

And of course for values of x where f is continuous, the limits from
left and right are both equal to f (x), and our theorem is complete.
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