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Chapter 1

The Nature of
Experimentation and
Analysis of Variance

1.1 Types of Statistical Studies

In this book we are going to be concerned with statistical studies in which
conditions of some kind are compared for groups of individuals or objects in
terms of some characteristic. We will be mainly interested in experiments but
will occasionally investigate observational studies as well. The two kinds of
studies, experiments and observational, are described below.

• Experiment: A study in which the conditions are deliberately (and usu-
ally randomly ) assigned by a researcher to individuals/objects/time slots
for the purpose of seeing the effect that these assigned conditions have on
some characteristic. The assigned conditions are called treatments. The
characteristic is called the response. The individuals or objects are called
the experimental units.

• Observational Study: A study in which the conditions are not as-
signed/controlled by the researcher but simply observed. The conditions
are inherent characteristics of the subjects/objects/time periods. Interest
still lies in comparing the groups defined by the conditions in terms of the
response variable.

1.2 Examples of Experiments

In this section examples of experiments are given and some basic terminology
is introduced.

7
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a. In a study to determine if number of calories consumed affects longevity,
60 mice were given diets differing by number of calories. Twenty mice
were randomly assigned to a low calorie diet, twenty to a medium calorie
diet, and twenty to a high calorie diet. The number of months that the
mice lived was recorded (mice have an average lifespan of about 2 years).

This study is an experiment. The diets that the mice get are controlled/assigned
by the researcher. The different diets, low, medium, and high calorie are
called the treatments. The response variable is the lifespan of a mouse
measured in months. The experimental units are the 60 mice.

b. Pop-up ads are advertisements that pop-up on your computer when you
are visiting or leaving a website. An internet service provider conducted
a study to see if reducing the number of pop-up ads would improve sat-
isfaction with their service. A group of 1000 subscribers were randomly
selected. Half of them saw roughly half the usual number of pop-up ads
when visiting the website. The other half saw the usual number of pop-
up ads. After two weeks the 1000 subscribers were asked to fill out a
satisfaction survey regarding how they feel about the provider.

This study is an experiment. The number of ads, “usual” or “half” are
conditions assigned to the subscribers, the experimental units. The re-
sponse variable is the satisfaction survey score.

c. Medical research has explored the medicinal uses of garlic. In one study
60 mice were fed high-cholesterol diets. Thirty of the mice were given
allicin, one of garlic’s active ingredients. These 30 mice developed fewer
fatty deposits in their arteries than the 30 mice not receiving allicin. The
experimental units are the 60 mice. The researchers determined which
mice received allicin and which did not. The treatments are ”received
allicin” and ”did not receive allicin.” The response variable is the number
of fatty deposits in the arteries.

The 30 mice making up the group not receiving allicin is called a control
group. A control group is a group that gets a standard treatment, no
treatment at all, or a sham treatment. The control group serves as a basis
of comparison.

d. In a study of a new headache relief medicine 100 headache suffers were di-
vided at random into two groups, with one group getting the new headache
relief medicine and the other group a placebo, an inactive substance de-
signed to look like the new headache medicine.

The placebo group above is a type of control group, a comparison group,
used to control for the placebo effect. In medical studies with human
subjects, often patients respond positively to any treatment, even dummy
treatments, presumably due to attention being paid to them. This re-
sponse is called the placebo effect.

To determine if a new treatment is truly beneficial or just the placebo
effect at work, another group is given a placebo, rather than nothing at
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all. If the new group receiving the new medicine is really beneficial, then
it should do better than the group getting the placebo.

1.3 Examples of Observational Studies

In this section examples of observational studies and surveys are given, empha-
sizing the difference between these studies and experiments.

a. When backing out of a parking space in a lot, do people take longer when
someone is waiting for them as compared with no one waiting? There
have been studies that looked at this question. Suppose a researcher does
a study by observing people getting into their cars in a university parking
lot. I record whether or not someone is waiting to obtain the parking
spot and also how long it took the driver leaving to depart. The response
variable is the amount of time to depart from the time that the person
stepped into his/her car until they moved forward. Also observed was
whether or not there was someone waiting to take the person’s spot.

This is not an experiment. It’s an observational study because the condi-
tions “someone waiting” and “someone not waiting” are not assigned by
the researcher.

b. Researchers wanted to know if IQs of children related to whether or not
they were breast-fed? Researchers measured the IQs of a large number
of first graders in a large city. The researchers also asked the mothers
of these first graders whether or not they had breast fed their children.
The researchers found that IQs of children who had been breast-fed were
greater on average than those children who had not been breast-fed.

This is an observational study. The conditions that are being compared,
”breast-fed”, ”not breast-fed” were not assigned by the researchers to the
children. These conditions were presumably selected by the mothers of
the children. The response variable is IQ of a child. The “experimental”,
or more accurately, observational units are the children.

c. Suppose you want to compare reading level by way of sentence length for
two magazines, People and Teen People. You randomly select 100 sen-
tences from an issue of People and 100 sentences from an issue of Teen
People. For each sentence you determine the number of letters and punc-
tuation signs and then compare the average sentence length for the two
magazines.

This is an observational study. The conditions associated with each sen-
tence, People and Teen People are not assigned, but are inherent char-
acteristics of the sentences. The observational units are the sentences and
the response variable is sentence length.
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1.4 Variables in an experiment

A variable is a characteristic of a person or object that varies from person
to person or object to object. So examples of variables are height, eye color,
population of a city and color of a car. The possible values of a variable can
be quantitative, such as for height, or categorical, such as for eye color.

The response variable in an experiment has been previously defined. In this
book we will be mainly concerned with studies where the response variable is
quantitative, such as longevity of a mouse or number of fatty deposits in the
arteries.

The treatments in an experiment are values of a variable called the factor of
the study. In the longevity study the factor of interest is diet. There are three
values or levels of diet: low, medium, and high. The purpose of an experiment
is to determine if the factor affects the response variable. Many of the studies
in this text have categorical factors. However factors can be quantitative, such
as dose level of a drug.

There are typically other variables in an experiment that researchers need to
take into consideration when designing an experiment. An extraneous vari-
able is a variable not of main interest in the study but believed to be associated
with the response variable.

A student performed a class experiment to determine whether microwaving
oranges results in more juice being squeezed from the oranges. The factor of
interest is categorical with two levels: microwaving and not microwaving. The
response variable is amount of juice squeezed from an orange. An extraneous
variable in this study would be the size of the orange since larger sizes would
presumably result in more juice than smaller sizes. Another extraneous variable
would be the amount of pulp in the orange. The color of the orange or how
many dimples on the peel, while variables, are not extraneous variables.

In the study of different fertilizers on the effect of amount of tomatoes
(in pounds) grown on a plant, extraneous variables include variety of tomato,
amount of water or sunlight the plant receives, and soil fertility.

1.5 What’s affecting the response variable?

Extraneous variables in an experiment are important to recognize and control
since differences in the response variable across the treatment groups may be
the result of extraneous variables, not the factor of interest.

Consider an experiment designed to compare two fertilizers on the amount
of tomatoes grown. Suppose that ten plants of about the same size and variety
are used. Five plants received fertilizer A and five receive fertilizer B. The plants
are assigned at random to ten plots in a garden. The resulting yields in pounds
are given below:

Fertilizer A: 45, 50, 47, 57, 52
Fertilizer B: 48, 52, 53, 48, 56
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Note that the fertilizer B yields appear to be slightly larger than those for
A? The mean yields for fertilizer A and B, respectively, are 48.2 and 51.4. Can
we say conclusively that fertilizer B is better? Note, however, that WITHIN
each treatment or fertilizer group the yields of the tomato plants vary because
of presumably extraneous variables. The different plots will have slightly dif-
ferent fertilities. The plants, while all of the same variety, will have slightly
different genetic makeups. This variation in values of the response variable for
identically treated plants is referred to as experimental error. So maybe the
slight differences seen in yields between the two groups are not due to fertilizer,
but are actually due to variation resulting from extraneous variables or due to
experimental error. How can we tell?

There are various sources of experimental error, such as natural variation in
experimental units, inability to identically treat the units in the same group,
inability to measure precisely. In general all extraneous variables contribute to
experimental error.

The key to designing a good experiment is to “control” the variation resulting
from extraneous variables. Controlling doesn’t mean getting rid of the effects
of the extraneous variables altogether, although sometimes that can be done.
For example, variety of tomato is an extraneous variable that we can control
by using the same variety. Controlling means NOT letting the effects of the
extraneous variables enter in a “systematic” way but only in a “random” way.

A systematic effect of an extraneous variable would be an effect which
generally goes one way: for or against a particular treatment. For example,
if we only watered the fertilizer A plants, that would be a systematic effect of
watering. This activity would bias the comparison in favor of fertilizer A.

A random effect would be an effect which sometimes favors fertilizer A and
sometimes favors fertilizer B. For example, if we randomly assigned the plants
to fertilizer A and fertilizer B, then the genetic predisposition for larger tomato
production of a particular plant might sometimes favor A and sometimes favor
B. Overall the effects of this extraneous variable would be mostly canceled out
and thus we would have a fair comparison in terms of genetic predisposition.

Extraneous variables whose effects enter an experiment in a systematic way
result in an association between the extraneous variable and the factor, in ad-
dition to the association between the extraneous variable and the response vari-
able. Then it’s impossible to tell whether the differences in the response variable
between the groups is because of differences in the treatments or differences in
the extraneous variable. The extraneous variable then becomes a confounding
variables and we say that the effects of the treatments are confounded with the
effects of the extraneous variable. So in the example above water would be a
confounding variable, whose effects are confounded with the effects of fertilizer.

1.6 Confounding and Observational Studies

In designing experiments it is often possible to ensure that the effects of ex-
traneous variables are controlled and enter only in a random way. Section 1.8
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presents some principles for doing this.
Researchers doing comparative observational studies often hope to show that

the factor of interest causes changes in the response variable. However in an
observational study groups determined by the factor levels may also differ in
other ways not controllable by the researcher. That is there may be confounding
variables which are influencing the response variable and resulting in differences
in the “treatment” groups.

Based on observational studies, it has been found that suicide rates in the
military are higher than in the general population. Is there something about
being in the military and its strict discipline that drives people to commit sui-
cide? Maybe not. A potential confounder here is socioeconomic status. Many
people who enlist in the military come from poor, unstable families and maybe
this is why the rate is higher. The point is that in observational studies group
membership is not under the control of an experimenter and treatment groups
may differ in other ways besides the factor of interest.

If in a medical study involving human subjects, one group gets the new
treatment and the other group no treatment at all, then the placebo effect is
a potential confounding variable. That is, whether subjects got something or
not could be related to the response and also whether they got something or
not is certainly related to group membership. In fact it defines group member-
ship. Thus the placebo effect is a potential confounder. The way to eliminate
the placebo effect is for the group not getting the treatment to get a dummy
treatment, or a placebo. Then both groups are receiving a “treatment.”

1.7 Blinding

In medical studies knowledge of what treatment a subject is getting is a potential
confounder. If I know I’m getting the real treatment as a compared to the
dummy treatment, then I may act in ways that affect the response. Thus
subjects in a medical study should not only be assigned at random to treatment
groups, but should not have knowledge as to what treatment they are receiving.
If this is true it is said that subjects are blinded.

A physician or evaluator’s knowledge of who got what treatment may also
be a confounder. The evaluator may subconsciously give better scores to those
subjects in a group whose treatment he/she believes to be better. Thus often
the physician or evaluator is blinded as well as the subject. This situation is
then called double blinding.

1.8 Principles of Experiment Design

The following are principles that researchers consider when designing experi-
ments to eliminate/reduce the potential biasing effects of variables and/or in-
crease the precision of the comparison of the treatments.

• Randomization
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Randomization should be used to assign treatments to experimental units.
This can be done in various ways to be described in subsequent chapters.
Randomly assigning experimental units to the treatment groups ensures
that the effects of extraneous variables enter the experiment in a ran-
dom fashion. Random assignment should, at least for larger group sizes,
create groups that are balanced with regard to extraneous variables as-
sociated with the units. For example, the average size of the oranges in
the microwave group should be about the same as the average size of the
oranges in the non-microwaved group, thus preventing size from becom-
ing a confounding variable. For experiments that use a small number of
experimental units, randomization may not produce balanced groups and
blocking should be used to achieve better balance.

Sometimes an experiment has to be performed over time. In this case
randomization should be used to balance out potential time effects. For
example suppose that I wanted to know which of two types of softballs,
A or B, I could hit further with my favorite bat. I buy 4 type A softballs,
which I label A1, A2, A3, A4 and 4 type B softballs, which I label B1, B2,
B3, and B4. Since I can only hit one ball at a time, this experiment will
have to be done sequentially. To control for time effects, such as fatigue,
I will randomize the order that the balls are pitched to me. In this way
the effects of fatigue will sometimes disfavor type A and sometimes type
B softballs.

• Blocking

Blocking refers to a statistical technique that attempts to eliminate con-
founding by grouping experimental units into blocks with similar values
on an extraneous variable then randomly assigning treatments within each
block. The procedure may also result in a more precise comparison be-
tween the treatments.

Reconsider the orange juice example. Size is an extraneous variable. One
way of randomly assigning oranges to treatments is completely at random
to the two treatments without regard to size. In theory, randomization
will, on average over many replications of the experiment, balance out
the effect of extraneous factors. However for a particular experiment, and
for small group sizes, the average size of the oranges for the microwave
group may not be about the same as the average size of the oranges in
the non-microwaved group. Thus any differences that are seen in the
average amount of juice between the two groups could be due to random
differences in size or other extraneous factors not fully balanced by the
randomization, and not necessarily due to microwaving.

An alternative way of designing the experiment is as follows. Before any
kind of randomization, sort the twenty oranges by size from largest to
smallest and then “block” or group them into pairs. The first pair would
be the two largest and would be about the same size, the 2nd pair would
be the next two largest and would be about the same size, . . . , until the
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last two which are the two smallest about the same size. Within each
pair of oranges flip a coin(use randomization) to decide which of the two
oranges gets microwaved and which does not. The result is two groups of
oranges with a greater likelihood of balance on the size variable since the
two groups were created by selecting from blocks where the size variable
was about the same. This is called a block design. The analysis for such
designs consists of comparing the amounts of juice within each block and
then pooling these comparisons. Since in theory the comparison of the
two treatments within each block is not affected by size (size of the two
oranges is the same within each block) the pooled comparison between the
two comparisons may be more precise than in the completely randomized
design. Greater precision is achieved by eliminating one of the extraneous
variables.

The idea of blocking first arose in agricultural settings. An agricultural
researcher wants to compare the response variable yield for three different
varieties of wheat. The varieties of wheat are denoted by A, B, and C. The
experimental units are 12 plots of land arranged in four rows and three
columns. The researcher could perform the experiment by assigning the
three varieties of wheat in a completely randomized fashion. The result
might be as in the following table:

A B C
C B C
B C A
A A B

Extraneous variables include soil fertility, amount of light, and pH of the
soil. Suppose that the layout of the plots is such that the plots in the
various rows have similar soil. Thus it makes sense to have all three vari-
eties in each row and compare the treatments within each row. Thus each
row of plots would be regarded as a block of plots and the three varieties
would be randomly assigned within each block/row. The experimental
arrangement with blocking might then look as follows:

B A C
B C A
A C B
C A B

Notice here that all three treatments appear in each row or block. Data
analysis would take this structure into account. The yields for the three
varieties of wheat would be compared within each block where soil is the
same and then the results pooled to draw an overall conclusion.

Note that blocking is a grouping of the experimental units BEFORE ran-
domization is performed. There is also a grouping of the plots by treat-
ment, here wheat variety, but this grouping occurs AFTER randomization.
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Sometimes blocks are natural sortings or groupings of the experimental
units. For example, several sets of twins may be used in a study to compare
the effects of two drugs. A block is a set of twins. The individuals of the
twin set are randomly assigned to the two drugs with one twin getting
drug A and one twin getting drug B. This is then repeated for several sets
of twins.

• Direct Control

Direct control refers to control of an extraneous variable by using experi-
mental units that have the same value on some extraneous variable.

For example, in the tomato production study cited earlier, variety of
tomato is an extraneous variable, but was directly controlled by using
only one variety. Assuming that all tomato plants were planted in an
open field, then amount of sunlight, another extraneous variable, is also
directly controlled. In the orange juice example, in theory, size could be
controlled by using oranges all of the same size.

Note that direct control can limit the scope of the conclusions. If only one
tomato variety is used, then the conclusions pertain only to that variety.
Blocking could be used in the tomato production study to extend the
scope of the study by including more than one variety.

• Replication

Replication of a treatment refers to a series of independent assignments
of experimental units to that treatment. There would not be replication in
the orange example if only one orange is used for each of the microwaving/
no microwaving treatments.

Because of extraneous variables and their effects on the response variable,
replication is obviously important. A difference in orange juice with only
one replication could be the result of a difference in size of the two oranges.
Only with replication is it possible to conclude that there are “true” dif-
ferences in amount of juice between microwaving and not microwaving.

To appreciate the benefits of replication consider an observational study
to compare the heights of adult males and females. If we only sampled one
male and one female at random (no replication) we might just by chance
obtain a taller female and then make the wrong conclusion that females
are taller than males. Obviously this would be wrong. If we replicate the
study, that is sampled many males and many females, the “true” pattern
would be concluded.

Recall from an earlier discussion that the differences in the average value
of a response variable among treatments must be judged in terms of the
amount of difference that can be expected from the effects of extraneous
variables alone, that is from experimental error. Replication is necessary
in order to measure the extent of the differences that could be due to the
effects of extraneous variables.
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1.9 Scope of the Conclusions of an Experiment

Experimental units in an experiment should ideally be selected at random from
some relevant population and then assigned at random to treatments in order
to be able to draw valid conclusions about the population. However random
selection from some population will usually mean a fair amount of variation
in the subjects and perhaps a large number of extraneous variables. This in
turn, can mean, imprecise comparisons and thus not being able to say much
at all with regard to the comparison of the treatments. Blocking can be used
to minimize the problem, that is group the subjects that are similar and then
make comparisons within each block. Thus we can have our cake and eat it too!

The subjects in experiments involving humans are usually not selected at
random from some population but are volunteers who have consented to being
part of a study. Volunteers are necessary because of the nature of experimenta-
tion in which people are treated in some kind of way. While volunteers can be
assigned at random to treatment groups, generalizing to some population may
require judgements from people who are familiar with the subject area. For
example, in a study which uses college students can we generalize to the general
population?
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Problems for Chapter 1

1.1 Osteoarthritis of the joints affects a large number of senior citizens. One
study looked at the perceived benefits of arthroscopic surgery for os-
teoarthritis by giving some patients a real knee operation, while others
underwent a sham surgery. Patients were assigned at random to either
receive arthroscopic surgery or a sham surgery. One response variable was
the speed of walking after surgery.

a. Is this study an experiment or an observation study? Explain.

b. What is the factor? What is the response variable?

c. What is the purpose of one group receiving a sham surgery?

1.2 Health experts suspect that re-circulated air in aircraft carries more germs
and causes more colds than on aircraft that pumps in fresh air. An article
in the New England Journal of Medicine reported the results of question-
naires given to 1100 passengers leaving the San Francisco area and trav-
eling to Denver between January and April 1999. Some of the passengers
had been aboard aircraft which used re-circulated air and others aboard
aircraft which circulated fresh air. A week after their flights, 21% of the
fresh-air passengers and 19% of the re-circulated air passengers reporting
having a cold.

a. What are the conditions in this study? Are they controlled or simply
observed? Explain

b. What is the response variable?

c. The researchers noted that the incidence of colds in both groups was
higher than that of non-travelers which is about 3%. Give some
possible reasons for this difference besides cabin air.

1.3 Proponents of massage therapy believe that massaging some or all parts of
the body affect psychological and physical health. In designing an exper-
iment involving children with cancer, one group received massages from
their parents at bedtime, while another group received no such massage.
One critic claimed that any benefits might be due to the “attention” being
given to the kids in the massage group and not the massage itself. How
should the experiment be conducted to control for the “attention” effect.

1.4 In a study of 4600 young people aged 12-19 females with body piercings
(other than the ears) were 2 1/2 times more likely to have sex and 2 1/2
more likely to have smoked than those who did not have body piercings.
Boys had similarly high risks. [2].

a. What is the factor of interest in this study? What is (are) the re-
sponse variable(s)?

b. Is this study an experiment or an observational study? Explain.
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c. Can we conclude that body piercing leads to more sexual activity
and more smoking? Explain.

1.5 A recent article in the Lancet medical journal reported the results of a
study to determine if the implantation of a patient’s own bone marrow
stem cells into their leg muscles could create new vessels. If successful
this could eliminate pain from bad circulation due to clogged arteries and
help prevent gangrene or amputations. Twenty subjects, in whom both
legs were starved of blood flow, participated in the study. They had their
bone marrow stem cells injected into one leg, randomly chosen, and regular
blood injected into the other leg. The legs that got the stem cells had more
improvement than the others on a test comparing blood pressure in the
ankle with that in the arm before and after the treatment. Similar results
were seen in a second circulation test that measured differences in oxygen
inside and outside tissues.

a. What are the treatments in this experiment?

b. What are the response variables?

c. What was the purpose of randomization?

d. Was there any blocking in the experiment? Explain.

1.6 A survey of 232 elderly patients who have recently undergone heart surgery
was undertaken. The patients were asked, among other items, whether or
not they derived strength or comfort from religion. Patients were followed
for a number of years. Those patients who said they derived strength or
comfort from religion lived longer than those who said they did not. [2]

a. What is the factor of interest in this study? What is the response
variable?

b. Is this study an experiment or an observational study? Explain.

c. Name some potential confounding variables.

1.7 An educational researcher is interested in comparing two different methods
of memorizing material to see if they differ with regard to retention. Thirty
subjects are available for the study. Explain how blocking might be used
in this study.

1.8 An experiment in Dean and Voss ([5], page 62) compares balloons of dif-
ferent colors in terms of amount of time needed to blow them up. One
individual blew up all 20 balloons of 4 different colors, 5 balloons of each
color.

a. What are the treatments in this experiment?

b. What are the experimental units?

c. Discuss how randomization would be used in this study and the pur-
pose of the randomization.
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d. Is there direct control of any extraneous variables in the study? Ex-
plain.
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Chapter 2

Basic Concepts and The
One Sample Problem

This chapter reviews the basic statistical concepts associated with inferences
about a single population based on a random sample selected from that popu-
lation. The notions of estimation of population parameters, standard errors of
estimators, and hypothesis testing are discussed.

2.1 Population versus Sample

Most statistical studies are concerned with the drawing of conclusions about
populations based on samples selected from those populations. In this chap-
ter we will concentrate on the one sample/one population case. Inferences as-
sume that the samples are randomly selected from the population of interest.
Often in practice samples are not randomly selected and thus judgement must
be exercised to determine if conclusions reached can be validly applied to some
population. Suppose y represents some quantitative variable in the population
with mean µ = E[y] and variance σ2. The mean is also referred to as the ex-
pected value of y, denoted by E[y]. The variance is defined as σ2 = E[(y−µ)2],
the expected value of the square of the difference between y and µ. The standard
deviation of y is defined to be σ =

√
σ2. The mean µ, variance σ2, and standard

deviation σ of y in the population are examples of population parameters.
The normal population is a type of population that should be familiar to the

reader. Much of the theory of the analysis of variance is based on the assumption
of normal populations. The histogram of a variable y in a normal population
is symmetric, bell-shaped with center at µ. Figure 2.1 provides a histogram
of a basic normal population with mean of y equal to µ = 23 and standard
deviation equal to σ = 1. The vertical axis (density) has been scaled so that
total area under the curve is equal to 1 and areas of regions under the curve
represent proportions in the population. The normal curve is an example of a
density curve. Recall that the area under a normal curve above the interval

21
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Figure 2.1: Normal Curve: µ = 23, σ = 1
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(µ − σ, µ + σ) is about 0.68, above (µ − 2σ, µ + 2σ) is about 0.95, and above
(µ−3σ, µ+3σ) about 1. Thus in this example about 68 percent of the values of
y in this normal population are between 22 and 24. The areas under the curve
can also be regarded as probabilities. Suppose one value is selected at random
from this population. The variable y is then called a random variable and
the curve is then referred to as the probability distribution for y. Areas under
the curve are then regarded as probabilities about y. Thus we can say before
sampling that there is about a 95% probability that the selection will result in
a value of y between 21 and 25.

The standard normal population is that normal population with mean µ = 0
and σ = 1. Fact 2.1 shows how the standard normal variable is related to an
arbitrary normal variable.

Fact 2.1 If y has a normal distribution with mean µ and standard deviation σ,
then z = (y − µ)/σ has a standard normal distribution.

Fact 2.1 generalizes. Subtracting from a normal random variable its mean
and dividing by its standard deviation results in a variable that has a standard
normal distribution. This general result will be applied in the next section.
Table A.1 in the Appendix provides right tail areas or probabilities for the
standard normal distribution.

2.2 Sample Mean and Standard Deviation

In practice the population mean µ and standard deviation σ are unknown and
interest is usually in estimating these parameters.

Let y1, y2, ..., yn represent a random sample of size n from a population y with
mean µ and standard deviation σ. Statistically y1, y2, ..., yn represent random
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Table 2.1: Sample Mean and Standard Deviation Calculation

Student i Weight yi (yi − y) (yi − y)2

1 180.1 17.9 321.8
2 157.7 -4.5 20.1
3 142.4 -19.8 393.1
4 155.5 -6.6 44.2
5 153.8 -8.4 70.2
6 131.1 -31.1 969.1
7 194.4 32.2 1034.5
8 157.3 -4.9 24.1
9 181.3 19.1 363.3
10 168.4 6.2 38.7

Sum 1621.9 0 3279.1

values which are independent, identically distributed as the population, each
with mean µ and standard deviation σ.

The sample mean, denoted by y, is an estimate of the population mean µ and
the sample standard deviation, denoted by s is an estimate of the population
standard deviation σ. The sample mean is defined as y = (

∑n
i=1 yi)/n. The

sample standard deviation, s, is defined as s =
√∑n

i=1(yi − y)2/(n− 1).

Example 2.1 Suppose that the weight of male students at a university in a
given semester is a normal random variable with population mean µ = 170
pounds and population standard deviation σ = 15 pounds. In practice neither
the population mean nor the population standard deviation would typically be
known. Suppose that a random sample of n = 10 students is selected. Table 2.1
gives the 10 weights and their deviations from the mean, the deviations of the
weights from the mean (yi − y) and the squares of the deviations.

The sample mean weights of the 10 students is y = 1621.9/10 = 162.2 and
the sample standard deviation is s =

√
3279.1/9 = 19.1. Notice that the sample

mean and standard deviation for this sample are not the same as the mean and
standard deviation for the population of students but differ due to sampling
error.

2.3 Sampling distribution of the Sample Mean

A sample mean, y, is unknown before the sample is selected and is a random
variable with its own probability distribution, mean, and standard deviation.
In Example 2.1 the sample mean for the particular sample selected was 162.2
pounds. If another sample is selected from the same population the sample
mean would be a different value. The probability distribution of the sample
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mean regarded as a random variable is called the sampling distribution of the
mean. Properties of the sampling distribution of the mean are reviewed below.

1. The mean of y, denoted by µy = E[y] = µ. Note this says that the
average of sample means under repeated sampling is equal to µ. In practice
repeated sampling is NOT done. A researcher will have only one sample
mean and that one sample mean will NOT be the same as µ.

2. The standard deviation of the random variable y is σy = σ/
√

n. The
quantity σy gives a crude measure of how far “off” an observed sample
mean is away from the unknown population mean µ. Note that this num-
ber is not very useful in practice, however, since σ is unknown. However
we could estimate σ with s, the sample standard deviation. See below.

3. If the population is normally distributed then y is exactly normally dis-
tributed. If the population is not normally distributed but the sample size
is sufficiently large, then by the Central Limit Theorem y is approxi-
mately normally distributed.

The properties listed above apply to repeated sampling from the same pop-
ulation. A computer can be programmed to illustrate the properties. The
following example illustrates.

Example 2.2 A SAS program was written to simulate the random sampling of
1000 samples of male university students, each of size n = 10 from the same
population used in Example 2.1. For each sample of 10 weights obtained the
sample mean was calculated. Figure 2.2 gives a histogram for the 1000 sample
means. Note the bell shaped appearance of the histogram. Also the mean of the
1000 sample means is 169.8 which closely approximates the theoretical value of
µy = µ = 170, in this example. The standard deviation of the 1000 sample
means is 4.71 which is close to the theoretical value of σy = σ/

√
n = 15/

√
10 =

4.74.

In practice usually only one sample is selected. That one sample will give a
particular sample mean which provides an estimate of the unknown population
mean µ. The sample will also provide an observed sample standard deviation,
s. This observed sample standard deviation is used to estimate σ, which then
provides an estimate of σy. This estimate of σy, called the standard error of
the mean, is sy = s/

√
n. The standard error of the mean provides a rough

idea of the error associated with the one observed sample mean as an estimate
of the unknown population mean.

By the properties, if the population is normally distributed or if the sample
size is large then the sample mean y is normally distributed (or approximately
normal) with mean µy = µ and σy = σ/

√
n. Hence by Fact 2.1 the standardized

sample mean,

(y − µ)
σ/
√

n
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Figure 2.2: Histogram of 1000 Sample Mean Weights

has a standard normal distribution. So for example if a normal variable/population
has a mean µ = 200 and standard deviation σ = 24 then if we repeatedly sample
from this population samples of size n = 9 then y has a normal distribution with
mean µy = 200 and standard deviation σy = 24/

√
9 = 8. Also

(y − 200)
8

has a standard normal distribution.
If in the standardized sample mean we replace σ in (y−µ)

σ/
√

n
with the sample

standard deviation, s, then the probability distribution of the resulting stan-
dardized sample mean (y−µ)

s/
√

n
no longer has the standard normal distribution. It

has what is called the Student’s t or simply the t distribution. The t distribu-
tion will arise within the context of a confidence interval for a single unknown
population mean in the next section and in many other contexts in this book.
It is an important probability distribution in analysis of variance.

2.4 Confidence Interval for a Normal Popula-
tion Mean

In practice a population mean µ is unknown and must be estimated based on a
sample. A confidence interval estimate for a population mean is an interval of
possible values for µ. Associated with the interval is a “confidence level” that
indicates how confident we are that the interval actually contains µ. The one
sample “t” interval for a population mean is based on the Student’s t distribution
or simply the t distribution.
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Figure 2.3: Example of t distributions; ν = 2, 15
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Fact 2.2 Suppose a random sample y1, y2, ..., yn of size n is selected from a
normal population with mean µ and standard deviation σ. Let y and s be the
sample mean and sample standard deviation, respectively. Then the standardized
sample mean

(y − µ)
s/
√

n

has a probability distribution called the t distribution with degrees of freedom
ν = n− 1.

The t distribution is symmetric, bell shaped with a mean of 0, that is

E[
(y − µ)
s/
√

n
] = 0

and standard deviation of ν
ν−2 . The t distribution is a family of distributions

indexed by the parameter ν. They are all bell shaped, symmetric, centered at
0 which makes them similar to the standard normal distribution. Unlike the
standard normal distribution which has a standard deviation of 1, the standard
deviation depends upon the parameter ν which will generally depend on sample
size. Figure 2.3 gives a picture of two t distribution compared to the standard
normal distribution.

Table A.2 gives the upper α probability points, denoted by tα;ν , for certain
values of α and ν. The area under the t distribution to the right of tα;ν is α.
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Thus for example, the upper α = 0.05 probability point from a t distribution
with ν = 2 degrees of freedom is 2.920. Note that the area under this t curve
to the left of 2.920 would be 0.95. The area under the t-curve between −2.920
and 2.920 would be 0.90.

Suppose a random sample of size n = 15 is to be selected from a normal
population with unknown population mean µ and population standard devia-
tion σ. The sample mean y and sample standard deviation s will be used to
summarize the sample. The goal is to estimate the unknown population mean
µ. A 95% confidence interval for µ is an interval of possible values for µ. The
95% “confidence level” refers to how confident we are that the value of µ takes
on one of the values in the interval. A brief derivation of such an interval follows.

By Fact 2.2, (Y−µ)
s/
√

n
has the t distribution with ν = 15−1 degrees of freedom.

Thus using Appendix Table A.2,

P [−2.145 <
(y − µ)
s/
√

n
< 2.145] = 0.95,

Note that 0.95 is a middle area. The area to the right of 2.145 under the t-curve
is 0.025. So the appropriate probability point from Table A.2 is the upper 0.025
probability point, 2.145, not the upper 0.05 probability point.

After some algebra the probability statement can be written as

P [y − 2.145(s/
√

n) < µ < y + 2.145(s/
√

n)] = 0.95

The interval within the brackets is a random interval because it has random
endpoints. The statement says that, before sampling, there is a 95% chance of
this random interval containing µ. After the sampling has occurred, the values
of y and s are known. They can then be substituted into the formula to obtain
an actual interval. This calculated interval is then called a 95% confidence
interval for µ.

Example 2.3 Suppose that amount of money spent by students on textbooks
in a given semester are normally distributed with some (unknown) mean µ and
standard deviation σ. Suppose a random sample of n = 15 students is selected.
The sample mean amount spent by those 15 students was y = $375.32 with
sample standard deviation s = $27.18. The standard error of the sample mean,
$375.32, as an estimate of µ is thus

s√
n

=
27.18√

15
= $7.02

The standard error of 7.02 gives a crude idea of how far away the sample
mean of 375.32 is from the unknown population mean amount spent. The 95%
“margin of error” for the estimate of $375.32 is 2.145($7.02) = $15.06. The 95%
confidence interval for the unknown mean amount of money spent on textbooks
is

375.32− 15.06 < µ < 375.32 + 15.06
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or

$360.26 < µ < $390.38

The general form of the endpoints of a confidence interval with confidence level
of 100(1− α)% is

y ± tα/2;n−1(s/
√

n)

where tα/2;n−1 is the upper α/2 probability point from the t distribution with
n − 1 degrees of freedom. Table A.2 is entered with α/2 to obtain the correct
probability point.

A more general form of confidence intervals that will be seen in this text is

point estimate±margin of error

or

point estimate±multiplier ∗ standard error of point estimate

The point estimate in the interval just considered was the sample mean y. The
multiplier was the upper α/2 probability point from the t distribution. The
standard error of the point estimate in the interval was the standard error of y,

s√
n
.

2.5 Hypothesis Testing about a Normal Popu-
lation Mean

The previous section described a statistical technique for estimating a normal
population mean with an interval and providing a measure of the reliability of
the interval. Another statistical technique that is used in practice is hypothesis
testing. In hypothesis testing a researcher wishes to provide evidence in favor
of a conjecture involving an unknown population mean. Data is collected and
based on the data the conjecture is either supported or not. The basic ideas are
illustrated with an example.

Example 2.4 Suppose that a standard method of treating a disease in the past
has resulted in a (population) mean survival time of 5 years or 60 months. The
actual survival time for particular individuals has varied from 60 months due
to extraneous variables. A new treatment is being proposed which is believed
to increase the (population) mean. A sample of 15 patients with the disease is
given the new treatment and their survival times (in months) is given below.

61 55 68 62 65 54 70 63 56 51 72
63 76 53 71
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The sample mean y = 62.7 months, sample standard deviation s = 7.7
months, and standard error of the mean is sY = 2.0 months. Is this enough
evidence to conclude that the new treatment results in higher average survival
time?

Certainly the sample mean of 62.7 months is greater than 60 months, but
this mean is based on a sample, not the entire “population” of individuals that
could be treated. Is the difference between 62.7 months and 60 months “real”,
that is an indication that the true population mean with the new treatment is
greater than 60 months? Or could we obtain a sample mean of 62.7 months
even if the true population mean is no different, that is 60 months, simply due
to sampling variability and the fact that survival times will vary naturally. That
is, is the result due solely to chance (sampling) or is the new treatment really
better?

Let µ be the true population mean survival time with the new treatment.
The claim that the researcher hopes to provide evidence for is µ > 60, which
is called the alternative claim or alternative hypothesis and denoted by Ha :
µ > 60. Of course the opposite or the null hypothesis could be true, which is
denoted by Ho : µ ≤ 60.

The general approach to decision making in hypothesis testing is as follows:

• Assume initially that Ho is true

• Assuming Ho is true, calculate a summary of the data called the test
statistic. The probability distribution of the test statistic is known.

• Calculate the probability of obtaining a value of the test statistic like
the observed value or more extreme in the direction of the alternative
hypothesis. This probability is called the P-value.

• If the P-value is less than or equal to (≤) some prescribed probability
then reject Ho as true and conclude that Ha is true. If the P-value is
greater than (>) the prescribed probability then Ho is not rejected - the
null hypothesis could be true. This prescribed probability is called the
significance level of the test and denoted by α. A common value used
for α is 0.05.

For this example suppose that H0 is true and for the moment suppose that
µ = 60 months, that is, there is no difference in mean survival time between
the new treatment and the standard treatment. Under this assumption and
normality of the population it is known from the previous section that

(y − 60)
s/
√

15

treated as a variable, has the Student’s t distribution with degrees of freedom
ν = 15− 1 = 14. Now the observed value of the test statistic in this example is
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Figure 2.4: P-value for Example 2.4
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t dist; df = 14

P−value

1.35

(62.7− 60)
2.0

= 1.35

That is, the observed sample mean of 62.7, is 1.36 standard errors above the
null hypothesized value of 60. Thus the P-value is

P [
(y − 60)
s/
√

15
≥ 1.35]

which is the area of the shaded region in Figure 2.4.
Using Table A.2 with ν = 15−1 = 14 degrees of freedom, the P-value (area)

is approximately 0.10. A statistical program such as SAS or SPSS will give
P−value = 0.1010. Using a significance level of α = 0.05, since P−value > 0.05
there is not enough evidence to reject the population mean being equal to 60
months and thus not enough evidence to support the researcher’s claim that the
new treatment extends the survival times of these patients.

2.6 The General Form of the One Sample t test

The example in the previous section was an example of a one-sided single sample
t test. The term one sided comes from the form of the alternative hypothesis
and the fact that the alternative is supported if the observed value of the test
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Table 2.2: General Forms of Null and Alternative Hypothesis for Single Sample
t test

(1) (2) (3)
Ho : µ ≤ µo Ho : µ ≥ µo Ho : µ = µo

Ha : µ > µo Ha : µ < µo Ha : µ 6= µo

statistic is on one side, the upper side, of the appropriate t distribution. The
general form of null and alternative hypotheses for the three versions of the t
test are given in Table 2.2.

Table 2.2 is a generalization of Example 2.4. The test statistic for all three
tests is the t statistic,

t =
y − µo

s/
√

n

which has a “t” distribution if the population is normally distributed and an
approximate t distribution as long as the sample size is “large.”

Let t∗ be the observed value of the t statistic based on the data. Then
the P-values for the alternatives (1), (2), and (3) in Table 2.2 are, respectively,
P [t ≥ t∗], P [t ≤ t∗], and P [|t| ≥ |t∗|]. The alternative hypotheses in (1) and
(2) of Table 2.2 are called one-sided alternatives and the tests are called one-
sided tests. The alternative hypothesis in (3) of Table 2.2 is called a two-sided
alternative and the test is called a two-sided test.

2.7 Errors and Probabilities of Errors in Hy-
pothesis Testing

In the decision making process of hypothesis testing one of two possible errors
may result. The null hypothesis is really true yet the data and the test indicate
that the null hypothesis should be rejected or the alternative accepted. This is
called a Type I error. The other possible error is incurred if the alternative hy-
pothesis is true but the null hypothesis is retained or the alternative hypothesis
is not accepted.

In Example 2.4 concluding that the new drug increases the survival time as
compared to the standard treatment when in fact the true mean survival time
is 60 months (or less) would be a Type I error. A Type II error would be to
not conclude that the new drug increases survival time (fail to reject the null
hypothesis) when in fact the new drug does increase mean survival time.

Researchers cannot guarantee that either error is not made but they can
ensure that the probabilities of making these errors is low. Let’s consider the
probability of making the Type I error first.

Recall in the one sample t test that we reject the null hypothesis if the
P-value, calculated assuming the null is true, is smaller than some prescribed
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probability, called the significance level, or the α level. Typical values used
here are α = 0.01 or α = 0.05. Symbolically the null hypothesis is rejected is
P − value ≤ α. Now it is possible to obtain a P-value this low even if the null
hypothesis is true and thus mistakenly reject a true null hypothesis, a Type I
error. In fact the probability is exactly α of obtaining a P − value ≤ α when
in fact the null hypothesis is true. Thus the probability of making a Type I
error is α, a value prescribed by the researcher. Thus it is relatively easy to
control the probability of a Type I error. If the Type I error is a very serious
error then the researcher or some regulatory authority would request that the
significance level or α level be perhaps set at 0.01 rather than 0.05. Note that
regardless of sample size setting the α level to some prescribed value ensures
that the probability of a Type I error is fixed at that level. Sample size however
does influence the probability of a Type II error.

The probability of a Type II error, β, is not as easily controlled as the prob-
ability of a Type I error. Discussion of the probability of a Type II error usually
focuses on 1− β, called bf power of the test. Thus power is the probability of a
correct decision, that of concluding that the alternative hypothesis is true based
on the test, when in fact the alternative hypothesis is true. Thus researchers
want β to be small, such as 0.20 or 0.10, or power to be high such as 0.80 or
0.90.

There are many different values for β or power depending upon various
characteristics of the study. For example in the one sample t test β, or power
depends upon:

1. Sample size. For a particular population standard deviation and particular
α level, increasing sample size will decrease β.

2. The α level. For a particular population standard deviation and fixed
sample size, increasing α decreases β and decreasing α increases β.

3. Population standard deviation. For fixed sample size and α level, β will
be larger for populations with larger standard deviations.

4. The difference between the null hypothesis value of µ and the true value
of µ under the alternative hypothesis. In our example the null hypothesis
value of µ was 60 months. If the new drug is more effective and the
true mean is 62 months then the difference or effect of the drug is an
increase of 2 months. If the new drug is more effective and the true mean
is 70 months then the difference or effect of the drug is an increase of 10
months. The β level will depend upon the difference or “effect” in this
example. The greater the effect the smaller the level of β or the higher the
power. Thus in this example it is more likely that the new drug is correctly
concluded as being effective if it is a lot more effective as compared with
being minimally effective.

The probability of correctly concluding a true alternative hypothesis that is,
1−β, is called the power of a test. Table 2.3 gives the power of a one-sided single
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Table 2.3: Power of One-Sided One Sample t test, α = 0.05

Standardized Effect E
Sample Size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

5 0.073 0.102 0.140 0.185 0.239 0.300 0.366 0.436 0.508 0.580
10 0.088 0.145 0.222 0.317 0.427 0.543 0.655 0.754 0.836 0.898
15 0.101 0.182 0.295 0.432 0.578 0.714 0.824 0.903 0.952 0.979
20 0.112 0.217 0.363 0.532 0.695 0.827 0.915 0.964 0.987 0.996
25 0.123 0.250 0.426 0.617 0.783 0.898 0.960 0.987 0.997 0.999
30 0.134 0.283 0.484 0.690 0.848 0.941 0.982 0.996 0.999 1.000
35 0.143 0.314 0.538 0.750 0.895 0.967 0.998 0.999 1.000 1.000
40 0.153 0.344 0.587 0.800 0.928 0.981 0.992 1.000 1.000 1.000
45 0.162 0.373 0.632 0.841 0.951 0.990 0.997 1.000 1.000 1.000
50 0.172 0.401 0.673 0.874 0.967 0.994 0.999 1.000 1.000 1.000
55 0.181 0.428 0.710 0.900 0.978 0.997 0.999 1.000 1.000 1.000
60 0.190 0.455 0.743 0.922 0.985 0.998 1.000 1.000 1.000 1.000
65 0.198 0.480 0.773 0.939 0.990 0.999 1.000 1.000 1.000 1.000
70 0.207 0.505 0.800 0.952 0.994 1.000 1.000 1.000 1.000 1.000
75 0.216 0.528 0.824 0.963 0.996 1.000 1.000 1.000 1.000 1.000
80 0.224 0.551 0.845 0.971 0.997 1.000 1.000 1.000 1.000 1.000
85 0.233 0.573 0.864 0.978 0.998 1.000 1.000 1.000 1.000 1.000
90 0.241 0.594 0.881 0.983 0.999 1.000 1.000 1.000 1.000 1.000
95 0.249 0.614 0.896 0.987 0.999 1.000 1.000 1.000 1.000 1.000
100 0.257 0.634 0.909 0.990 1.000 1.000 1.000 1.000 1.000 1.000
150 0.335 0.786 0.978 0.999 1.000 1.000 1.000 1.000 1.000 1.000
200 0.407 0.880 0.995 1.000 1.000 1.000 1.000 1.000 1.000 1.000
500 0.722 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

sample t test using a significance level of α = 0.05 in terms of the standardized
effect E,

E =
|µa − µo|

σ

and sample size n. The values µo and µa are null and alternative values of µ,
respectively.
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SAS Code for Chapter 2

Example 3.2

* Input survival times;
Data SURVIVAL;

Input Survival_Time @@;
datalines;
61 55 68 62 65 54 70 63 56 51 72
63 76 53 71
;
run;

* Use proc ttest to obtain results of one sample t test;
Proc ttest ho=60 data = SURVIVAL;
var Survival_time;
run;
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Problems for Chapter 2

2.1 A group of 48 pigs receiving a new medicine for treating a bacterial in-
testinal disease gained during the study period on average 1.25 pounds
per day with a standard deviation of 0.2 pound. What is the standard
error of the sample mean of 1.25 pounds? Explain within the context of
this example the difference between the sample standard deviation and
the standard error of the mean?

2.2 Suppose that a random sample of size n = 16 is selected from a normal
population with µ = 50 and standard deviation σ = 5. Let the random
variables y and s refer to the sample mean and sample standard deviation,
respectively.

a. What is the sampling distribution of the sample mean y?

b. What is the sampling distribution of y−50

5/
√

16
?

c. What is the sampling distribution of y−50

s/
√

16
?

2.3 Suppose a random sample of size n = 25 is selected from a normal pop-
ulation with µ = 100. Let the random variables Y and S represent the
sample mean and sample standard deviation of the sample.

a. What is the upper 0.05 probability point (or 95th percentile) of the
sampling distribution of y−100

s/
√

25

b. Find P [−1.318 < y−100

s/
√

25
< 1.318].

2.4 One question asked of randomly selected students at a university was how
many hours the student typically spent studying during the week. Based
on the data for n = 30 responses the 95% confidence interval for the mean
amount of time spent studying was (28.7, 36.5).

a. What is the sample mean amount of time for the 30 students?

b. What is the 95% error margin for the sample mean from part (a)?

c. What is the standard error associated with the sample mean from
part (a)?

d. Interpret the interval (28.7, 36.5) within the context of this example.

e. Suppose a different set of n = 30 students were random selected from
the same population of students. Would we get a different interval?
Explain.

2.5 This example is taken from Devore and Peck ([7], page 555). Calorie
contents for each n = 12 frozen dinners was taken from the production
line during a particular period and are reported in the table below:
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255 244 239 242 265 245 259 248
225 226 251 233

The calorie content given on the box is 240. Do the data give any reason
to believe that the true mean calorie of the population of frozen dinners
is different than stated? Carry out a hypothesis test using a significance
level of 0.05. Use a statistical program to obtain a P − value. Use this
P −value to make your decision. Interpret the P-value within the context
of this example.



Chapter 3

The Two Sample Problem

In this chapter it is assumed that there are two samples of quantitative normally
distributed data corresponding to the two treatment groups in an experiment
or the two observed groups in an observational study. We will examine the case
where the two samples are independent and where they are dependent. Section
3.1 will examine hypothesis testing and confidence interval estimation in the
independent two samples situation. Section 3.2 will examine inferences within
the dependent samples situation.

3.1 Two Independent Samples/Completely Ran-
domized Design

In this section it is assumed two samples of data have been gathered by one of
two ways:

• An experiment has been conducted whereby two treatments have been
assigned completely at random to two groups of experimental units, that
is a completely randomized design.

• A study survey or observational study has been conducted whereby two
samples have been randomly and independently selected from two different
populations.

As an example of a survey, a group of students doing a project wanted to
compare GPAs of male and female undergraduates at their universities. They
obtained a list of all undergraduate male and all undergraduate female students
and randomly selected 100 students from each list.

Let y11, y12, ..., y1n1 represent the values of a random sample of size n1 from
a normal population with mean µ1 and variance σ2

1 . Let y1· and s1 represent the
sample mean and standard deviation of the sample. Then from Chapter 2, E[y1·]
= µ1 and standard error of y1· is σy1· = σ1/

√
n1 . Similarly, let y21, y22, ..., y2n1

37
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represent the values of a random sample of size n2 from another normal popu-
lation with mean µ2 and variance σ2

2 . Let y2· and s2 represent the sample mean
and standard deviation of the sample. Then from Chapter 2, E[y2·] = µ2 and
standard error of y2· is σy2· = σ2/

√
n2.

Suppose the purpose of the two sample study is to compare the two unknown
population means of y, µ1 and µ2. The comparison is typically carried out by
drawing inferences on the unknown difference µ1−µ2. Similar to Chapter 2, we
need an estimator of µ1 − µ2 and the standard error of this estimator. We also
need to know the sampling distribution of the estimator. The usual estimator
of µ1 − µ2 is the analogous difference in sample means, y1· − y2·.

3.1.1 Sampling Distribution of y1· − y2·
Properties of the sampling distribution of y1· − y2· are given below.

• The mean of y1· − y2· is µy1·−y2· = E[y1· − y2·] = µ1 − µ2. Thus while
differences in sample means y1· − y2· will vary from pair of samples to
pair of samples the average of these differences is equal to the difference
in population means µ1 − µ2.

• The variance of (y1· − y2·) is σ2
y1·−y2·

= E[{(y1· − y2·) − (µ1 − µ2)}2] =
σ2
1

n1
+ σ2

2
n2

. The variance σ2
1

n1
+ σ2

2
n2

measures the average squared distance
between possible differences in sample means y1· − y2· and the difference
in the population mean µ1 − µ2.

• The sampling distribution of y1·− y2· is normal if the two populations are
normal and approximately normal if the two sample sizes are “large.”

The “standard error” of y1·−y2· as an estimate of µ1−µ2 is the square root

of the variance, σy1·−y2· =
√

σ2
1

n1
+ σ2

2
n2

. The standard error gives the average
distance differences in sample means are from the difference in population means
µ1−µ2. In practice after sampling the difference in sample means is known. The
standard error then gives a rough idea of how far off that observed difference
is from the unknown difference in population means. However the population
variances σ2

1 and σ2
2 are unknown. So in order to be of practical value these two

population variances need to be estimated to derive an estimated standard error.
We will first consider hypothesis testing and confidence interval estimation that
estimates the two population variances separately with the sample variances s2

1

and s2
2.

3.1.2 Two sample t test and Confidence Interval

Since y1· − y2· is normally distributed with mean µ1 − µ2 and variance σ2
1

n1
+ σ2

2
n2

then the standardized version

(y1· − y2·)− µy1·−y2·

σy1·−y2·
=

(y1· − y2·)− (µ1 − µ2)√
σ2
1

n1
+ σ2

2
n2
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has a standard normal distribution. Suppose that we substitute the sample
variances s2

1 and s2
2 for the population variances in the standard error in the

denominator to obtain an estimated standard error, sy1·−y2· =
√

s2
1

n1
+ s2

2
n2

. Then
the resulting ratio

y1· − y2· − (µ1 − µ2)√
s2
1

n1
+ s2

2
n2

(3.1)

has an approximate Student’s t distribution if the populations are normally
distributed or if the sample sizes are sufficiently large. The degrees of freedom, ν,
used in this approximate distribution is called the Satterthwaite approximation
and is data based:

ν =

(
s2
1

n1
+ s2

2
n2

)2

1
n1−1

(
s2
1

n1

)2

+ 1
n2−1

(
s2
2

n2

)2

Fortunately we can use computer software to obtain the degrees of freedom
and P-values.

The general form of the two sided 100(1−α)% confidence interval for µ1−µ2

is

(y1 − y2)± tα/2;ν

√
s2
1

n1
+

s2
1

n2
(3.2)

where tα/2;ν is the upper α/2 probability point from a t distribution with degrees
of freedom, ν, the Satterthwaite approximation. The Satterthwaite degrees of
freedom is not usually integer. If using Table A.2 then round down to the
nearest integer to obtain the probability point. This will result in a wider or
more conservative interval. Computer software will give more precise probability
points and intervals. Note that the interval of possible values for µ1 − µ2 is
formed by taking the estimate y1 − y2 and adding and subtracting a margin of

error, here tα/2;ν

√
s2
1

n1
+ s2

1
n2

. The margin of error is the product of a probability
point from a t distribution and the estimated standard error of y1 − y2. This is
the same general form as the confidence interval for a single population mean
given in Chapter 2.

The general forms of the null and alternative hypotheses for a test involving
the difference between µ1 and µ2 are given in Table 3.1. Note that the alternative
hypotheses in (1), (2) and (3) reflect differences (one or two directional) in the
two means and thus the test is used to determine if there is sufficient evidence
of a difference of some specified type.

The test statistic for the two independent samples t test is given in (3.3) and
is just the ratio (3.1) assuming that the null hypothesis is true, in particular that
µ1 − µ2 = 0. Thus the numerator is a measure of how far away the observed
difference in sample means is away from null hypothesized value of 0 for the
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Table 3.1: General Forms of Ho and Ha for Two Sample t test

(1) (2) (3)
Ho : µ1 − µ2 ≤ 0 Ho : µ1 − µ2 ≥ 0 Ho : µ1 − µ2 = 0
Ha : µ1 − µ2 > 0 Ha : µ1 − µ2 < 0 Ha : µ1 − µ2 6= 0

difference in population means. If the observed difference in sample means is
sufficiently far from 0 then the null hypothesis of no difference in population
means is rejected in favor of the alternative of a difference. Sufficiently far away
can be defined in terms of P-values like in Chapter 2.

t =
y1· − y2·√

s2
1

n1
+ s2

2
n2

(3.3)

The P-value is the probability, assuming equal population means, of getting a
value of the test statistic (3.3) like the observed value or more extreme in the
direction of the alternative hypothesis. The P-value is an area under a t curve
with degrees of freedom ν equalling the Satterthwaite approximation. For the
one-sided alternative hypothesis (1) in Table 3.1 the P-value is the area under the
t-curve to the right of the observed value of (3.3). For the one-sided alternative
hypothesis (2) in Table 3.1 the P-value is the area under the t-curve to the left
of the observed value of (3.3). For the two-sided alternative hypothesis (3) in
Table 3.1 the P-value is twice the area to the right of the observed value if the
observed value is positive or twice the area to the left of the observed value if the
observed value is negative. As with the confidence interval, the Satterthwaite
degrees of freedom is generally not integer. If using Table A.2 to obtain an
approximate P-value then round down to the nearest integer for a conservative
value. Computer software will calculate more precise P-values based on the
Satterthwaite degrees of freedom.

Example 3.1 Animal health researchers develop drugs to treat diseases of an-
imals. Suppose that in one study n1 = 22 pigs are treated with a medication to
control an intestinal disease while n2 = 18 other pigs served as a control and
were not treated. Weight gain (lbs.) is measured over the study period and is
reported in the table below.

Control(2) 16.4,12.8,13.0,10.7,3.9,9.1,8.7,9.5,8.5,6.0
9.0,13.4,3.4,9.6,14.4,11.3,6.8,2.3

Treated(1) 11.6,8.9,14.6,12.4,13.3,16.0,11.1,15.8,15.6,10.7
12.4,14.6,11.2,10.7,11.6,14.7,13.9,11.8,13.4,12.1
13.4,12.5

Is there sufficient evidence that the medication improves weight gain for pigs?
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Figure 3.1: Plot of Weight Gain (lbs) versus Treatment

Figure 3.1 gives a plot of the weight gains versus treatment. Weight gain
does appear to be improved in the treated group. There also appears to be less
variability in weight gains in the treated group.

Let n1 and n2 represent the numbers of pigs in the treated and control
groups respectively. The sample mean weight gains for the treated and control
groups, respectively, are y1 = 12.83 and y2 = 9.38. The standard deviation of
weight gains for the treated and control groups are, respectively, s1 = 1.87 and
s2 = 3.88. Let µ1 and µ2 represent the “true” mean weight gains for the treated
and control pigs, respectively. Then the null and alternative hypotheses are of
the form (1) in Table 3.1. The observed value of the test statistic is

t =
y1· − y2·√

S2
1

n1
+ S2

2
n2

=
12.83− 9.38√

1.822

22 + 3.882

18

=
3.48
0.99

= 3.46

Degrees of freedom would be

ν =

(
1.872

23 + 3.882

18

)2

1
22−1

(
1.822

22

)2
+ 1

18−1

(
3.882

18

)2 = 23.4

The P-value is the probability of getting a value of the test statistic like
the observed value, 3.46, or more extreme (greater than) if in fact there is no
difference in population mean weight gains for the treated and control groups.
The P-value can only be approximated using Appendix Table A.2. Rounding
down and using ν = 23 from Table A.2 we see that

0.0005 ≤ P − value ≤ 0.005
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Thus at α = 0.05 there is evidence that weight gain is improved with the
medication.

The mean improvement in weight gain could be estimated with a 95% con-
fidence interval using Formula 3.2. The appropriate upper 0.025 probability
point, using ν = 23 and Appendix Table A.2 would be 2.069. Thus the confi-
dence interval would be

(12.83− 9.38)− 2.069(0.99) < µ1 − µ2 < (12.83− 9.38) + 2.069(0.99)

or
3.45− 2.05 < µ1 − µ2 < 3.45 + 2.05

or
1.4 < µ1 − µ2 < 5.5

Thus it is estimated with 95% confidence that the true effect of the treatment
when compared to control is to increase average weight gain by anywhere from
1.4 to 5.5 pounds.

3.1.3 Two Sample Pooled t test and Confidence Interval

In some experimental situations and survey situations it is reasonable to assume
that the two population variances are equal either based on the data or on
theoretical considerations, that is, it is assumed that σ2

1 = σ2
2 = σ2. Thus the

true standard error of y1 − y2 is then
√

σ2

n1
+ σ2

n2
.

Example 3.2 An example from McClave and Sincich [13], page 329, will il-
lustrate. A new method of teaching reading to children who are slow learners is
compared to a current standard method. The comparison is based on a reading
test score given at the end of the learning period. Ten subjects are taught by
the new method and 12 are taught by the standard method. The results of the
reading scores are given in the table. Is there statistical evidence that the new
method results in higher scores? Use a significance level of 0.05.

New Method (1) 80,76,70,80,66,85,79,71,81,76
Standard Method (2) 79,73,72,62,76,68,70,86,75,68,73,66

A plot of the scores versus the method is given in Figure 3.2. Note that
average and variation in scores are similar for the two methods.

Let n1 and n2 represent the numbers of children receiving the new and stan-
dard methods respectively. The sample mean reading scores for the new and
standard method groups are y1· = 76.40 and y2· = 72.33. The standard devia-
tion of reading scores for the new and standard method groups are, respectively,
s1 = 5.83 and s2 = 6.34. Let µ1 and µ2 represent the “true” mean reading scores
for the new and standard methods. Then the null and alternative hypotheses
are of the form (1) in Table 3.1.
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Figure 3.2: Plot of Reading Score versus Method

If the assumption of equal population variances is reasonable and since then
there is only one unknown population variance, it makes sense to combine the
two sample variances into one “pooled” sample variance, s2

p, where

s2
p =

(n1 − 1)s2
1 + (n2 − 1)s2

2

(n1 − 1) + (n2 − 1)

Note that the numerator is just the sum of squared deviations of the observations
from their respective means. The denominator is the sum of the degrees of
freedom associated with the two sample variances. Estimating the common
population variance, σ2 with s2

p we have the estimated standard error of y1·−y2·,
sy1·−y2· to be

sy1·−y2· =

√
s2

p

n1
+

s2
p

n2

or

sy1·−y2· = sp

√
1
n1

+
1
n2

This is the standard error used in practice. In order to construct confidence
intervals and perform hypothesis testing we need to have a sampling distribu-
tion to calculate p-values and to obtain percentiles for error margins. From
earlier it is known that Y 1 − Y 2 is normally distributed with mean µ1 − µ2

and true standard error
√

σ2

n1
+ σ2

n2
, assuming equal population variances. Thus

(y1·−y2·)−(µ1−µ2)

σ
√

1
n1

+ 1
n2

has the standard normal distribution and P-values and error
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margins could be based on this distribution. However, again, the true standard
error is unknown. If we replace the true standard error with the estimated
standard error then the ratio

(y1· − y2·)− (µ1 − µ2)

sp

√
1

n1
+ 1

n2

has a “t” distribution with degrees of freedom ν = n1 + n2 − 2.
Thus using the general form of a confidence interval from Chapter 2, we have

that the general two sided 100(1− α)% confidence interval for µ1 − µ2 is

(y1· − y2·)± tα/2;(n1+n2−2)sp

√
1
n1

+
1
n2

Continuing with our example, we have that

sp =

√
(n1 − 1)s2

1 + (n2 − 1)s2
2

(n1 − 1) + (n2 − 1)
=

√
(10− 1)5.832 + (12− 1)6.342

(10− 1) + (12− 1)
= 6.12

The (estimated) standard error of y1 − y2 is therefore

sp

√
1
n1

+
1
n2

= 6.12

√
1
10

+
1
12

= 2.62

The value of the test statistic under the null hypothesis is thus

(y1 − y2)− (µ1 − µ2)

sp

√
1

n1
+ 1

n2

=
(72.23− 68.30)− (0)

2.62
= 1.55

The appropriate degrees of freedom is ν = n1 + n2 − 2 = 20. The P-value
can only be approximated using Appendix Table A.2 with

0.05 < P − value < 0.10

Thus there is not enough evidence that reading scores are improved with the
new method at the 0.05 level of significance.

The appropriate upper 0.025 probability point for a 95% confidence interval
with ν = 20 from Appendix Table A.2 would be 2.086. Thus the confidence
interval would be

(76.40− 72.33)− 2.086(2.62) < µ1 − µ2 < (76.40− 72.33) + 2.086(2.62)

or
4.07− 5.47 < µ1 − µ2 < 4.07 + 5.47

or
−1.40 < µ1 − µ2 < 9.54

The results based on the interval are inconclusive. With 95% confidence,
the new method may result in greater reading scores by as much as 9.54; there
could be no difference in mean reading scores between the two methods; or the
standard method may result in greater reading scores by as much as 1.40.
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3.1.4 Which independent samples t test to use?

As previously described there are two possible tests, the two sample t test and
the pooled two sample t test, for comparing means of normal populations when
the samples are independent. When the sample sizes are the same the test
statistics for the two procedures take on identical values; however P-values will
be different since the degrees of freedom will generally be different. When the
sample sizes are different the two procedures will generally result in different
values of the test statistics, degrees of freedom, and P-values. The two sample
t test does not make any assumptions about population variances whereas the
pooled t test assumes population variances are equal.

If the two population variances are equal both tests are valid. The pooled t
test does have slightly higher power. But how does one know if the population
variances are equal. These are unknown population characteristics. There are
statistical tests for comparing population variances but the test are extremely
sensitive to the assumption of normality and significant results may indicate a
difference in standard deviations or non-normality. Also the hypothesis tests do
not address the magnitude of the difference in the population variances. The
pooled two sample t test is still approximately valid in some circumstances when
the population variances, while not equal, are approximately the same. Instead
of tests, some authors recommend rules of thumb regarding sample standard
deviations (or sample variances) to decide if the assumption is reasonable. Cobb
[3] recommends that if the ratio of the largest to smallest standard deviation is
greater than 3 then do not assume that the population standard deviations are
equal. Agresti and Franklin [1] comment that in practice equality of population
standard deviations is not relied upon if the ratio of the largest to smallest
standard deviation is greater than two.

When the population variances are not equal, the two sample t test is valid.
The pooled t test may be invalid depending upon the degree of difference be-
tween the population variances and the distribution of the sample sizes across
the two groups.

The recommendation of this text for two sample comparisons is the two
sample t test. It is approximately valid regardless of the population variances.
Some elementary statistics texts discuss the pooled t test but also recommend
using the two sample t test (See DeVeaux, Velleman, and Bock [6]; Peck and
Devore [8]).

So why is the pooled t test even discussed in the text? As is shown in later
chapters the assumption of equal population variances is a basic assumption of
ANOVA. In fact the ANOVA for a one factor study with only two groups is
equivalent to the pooled two sample t test.

An alternative approach to handling the unequal variance besides the two
sample t test would be to transform the data to a new scale where the variances
would be equal or approximately equal. A greater discussion on transformation
will be given in Chapter 8 on the checking of ANOVA assumptions.
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3.2 Two Dependent/Paired Samples

In this section we consider two sample designs where the two samples are depen-
dent or paired. Listed below are types of pairing (See Cobb [3]) and examples.
These are all examples of blocking as discussed in Chapter 1.

Types of Pairing/Blocking

• Re-Using: Each person or object is measured at two different time slots.
There may be two treatments of interest. Each individual receives one
treatment on one occasion and the other treatment at another occasion.
Or the individual may be measured before some treatment or intervention
and then measured again at a later time. In an observational study, blood
pressures of women in late pregnancy are compared while at work and
while at home. Here each women is measured twice under two conditions:
while at work and while at home. The individual is the block or the pair
of time slots/occasions corresponding to each individual.

• Sorting/Pairing. Subjects/objects are paired according to some extra-
neous variable related to the response variable. The two persons in each
pair are randomly assigned to the two treatments in the study. This is
repeated for several pairs. In an experiment to compare two methods for
learning difficult material subjects are paired according to academic abil-
ity and IQ. Each person within the pair is assigned at random to one of
the methods. A score is obtained indicating the degree of learning. Each
pair of individuals serves as a block.

• Splitting. Some experimental material, such as a liquid or piece of cloth,
is physically split. The two halves are randomly assigned to the two treat-
ments and the response variable measured resulting in two samples of
data. The two halves form a pair/block.

Let the n random pairs of observations be denoted by (y11, y21), ..., (y1n, y2n).
As before it is assumed that the y′1s are a random sample from a population
with mean µ1 and variance σ2

1 . The y′2s are a random sample from a population
with mean µ2 and variance σ2

2 . The degree of relationship between any two y’s
in a pair is quantified by the covariance, σ12 and correlation, ρ. Readers
may remember covariance and correlation from their elementary class. The
covariance between any two observations in a pair is a measure of the degree of
linear relationship between the two observations. The correlation coefficient is
a scaled version of the covariance which takes on values between -1 and 1 with
values close to -1 or 1 indicating a strong linear relationship between the two
variables.

The analysis for paired data is based on the differences

d1 = y11 − y21
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d2 = y12 − y22

.. = ..

.. = ..

dn = y1n − y2n

In theory the difference between the y′s is a comparison of the two treatments
for each individual uninfluenced by the pairing or blocking variable since the
pairing variable is roughly constant within the pair. Thus the analysis of the d′s
should give a more precise comparison of the treatments than the comparison
of treatments in a completely randomized design.

The sample of d′s is summarized by the sample mean and standard deviation
of the d′s, denoted by d and sd, respectively. Inferences are about the unknown
“population” mean of differences, µd = µ1 − µ2, the true effect or difference of
the treatments.

If it is assumed that the d′s constitute a random sample from a normal
population with mean µd and standard deviation σd then we can use the one
sample t confidence interval and t test from Chapter 2 to draw inferences about
µd and thus conclusions about the differences in treatments or conditions.

The general form of the confidence interval for µd with a confidence level of
100(1− α)% is thus

d± tα/2;n−1sD/
√

n

The hypotheses for a two-sided test regarding µd are Ho : µd = δ versus
Ha : µd 6= δ. The hypotheses for the upper one-sided test are Ho : µd ≤ δ
versus Ha : µd > δ. The hypotheses for the lower one-sided test are Ho : µd ≥ δ
versus Ha : µd < δ. The value δ is taken to be 0 if the objective is to determine
if there are any differences in the treatments.

The test statistic for a hypothesis test of µd is

t =
d− δ

sd/
√

n

where δ is a null hypothesized value for µd. P-values are determined by the t
distribution with ν = n− 1, that is number of differences minus 1.

The paired samples procedures assume normality of the differences. The
procedures do not assume that the standard deviations, σ2

1 and σ2
2 , of y in the

populations are equal.

Example 3.3 One semester the author conducted an experiment in his 3 el-
ementary statistics classes to determine if the ability to recall words was de-
pendent on the type of word, concrete or abstract. Two lists of words, each
of size 25, were constructed. List A had 25 concrete words, such as Bridge,
Supermarket, Television; List B had more abstract words, such as Happiness,
Government, Beauty. The entire set of words is given in Table 3.2. The two
lists were constructed so that length of the words and familiarity were not much
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different. Each student studied both lists, in a random order, for two minutes,
and then immediately wrote down the number of words that he or she recalled.
The number of words recalled from each list by each student is given in Table 3.3
along with the difference in the numbers of words. Is there sufficient evidence
that recall depends upon the type of word? Use a significance level of 0.05.

In this example µd equals the “true” mean difference of numbers of words
recalled (List A - List B) over a population of students. The value δ = 0 so
that Ho : µd = 0 and the alternative is two sided with Ha : µd 6= 0. The sample
mean of the differences d = 0.05 with standard deviation sd = 3.45. Thus the
observed value of the test statistic is

t =
0.05− 0
3.45/

√
60

= 0.11

The P-value is determined from a computer program to be P [|t| ≥ |0.11|] =
0.9110 based on a t distribution based on 60− 1 = 59 degrees of freedom. Thus
at the 0.05 level of significance there is no evidence of a difference in recall for
the two types of words. Note that since sample size is large then normality of
the population of differences is not necessary for the validity of the test result.

3.3 Connection between Two-Sided Tests and
Confidence Intervals

In the two-sided tests described in this chapter using a significance level of α
the null hypothesis of equality of two population means is rejected and the
alternative of a difference in means is concluded if the P − value ≤ α. It can be
shown in this case that a 100(1−α)% confidence interval for the difference µ1−µ2

will not contain zero, indicating that the two means are different, consistent
with the results of the test. Similarly if the null hypothesis is not rejected
(P −value > α), implying that the two means could possibly be the same, then
the 100(1 − α)% confidence interval will contain 0, again consistent with the
test. Thus the confidence interval could be used to perform a two-sided test.
Additionally the confidence interval provides information about the magnitude
of differences between the means.

3.4 Power of the Pooled Two Sample t test

In this section we will give some power calculations for the one-sided two in-
dependent samples t test (assuming equal population variances) under certain
alternatives. Consider the test of the null hypothesis Ho : µ1 − µ2 ≤ 0 versus
the alternative Ha : µ1 − µ2 > 0. Suppose the alternative hypothesis is true.
Let E be defined as the absolute difference |µ1−µ2| in numbers of the common
standard deviation σ, i.e.

E = |µ1 − µ2|/σ
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Table 3.2: Words Lists for Student Experiment

List A List B
Bridge Happiness
Supermarket Government
Bathroom Reputation
Refrigerator Beauty
Chocolate Music
Screwdriver Christmas
Lightning Health
Bicycle Time
Candle Marriage
Sister Magic
Baseball Power
Spoon Love
Apartment Foolishness
Piano Excitement
Underwear Honesty
Microphone Internet
Water Religion
Chimpanzee Fairness
Newspaper Friendship
Television Wealth
Mountain Motivation
Honeybee Inflation
Highway Jealousy
Rainbow Anger
Eyeglasses Competition
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Table 3.3: Number of Words Recalled out of 25

Student List A List B Difference
1 18 17 1
2 20 19 1
3 20 16 4
4 15 14 1
5 17 11 6
6 16 19 -3
7 13 14 -1
8 22 21 1
9 18 17 1
10 16 14 2
11 15 19 -4
12 13 14 -1
13 12 15 -3
14 21 16 5
15 13 12 1
16 20 14 6
17 18 15 3
18 7 10 -3
19 16 23 -7
20 13 14 -1
21 19 22 -3
22 10 19 -9
23 18 15 3
24 11 13 -2
25 14 13 1
26 24 21 3
27 16 16 0
28 12 13 -1
29 12 12 0
30 17 15 2
31 17 22 -5
32 15 16 -1
33 20 19 1
34 21 22 -1
35 19 17 2
36 19 21 -2
37 15 18 -3
38 12 10 2
39 20 12 8
40 17 19 -2
41 17 16 1
42 21 19 2
43 16 15 1
44 14 14 0
45 16 16 0
46 16 18 -2
47 20 13 7
48 17 15 2
49 17 17 0
50 13 12 1
51 18 12 6
52 16 20 -4
53 19 17 2
54 11 17 -6
55 15 18 -3
56 22 25 -3
57 17 13 4
58 12 11 1
59 18 19 -1
60 12 19 -7
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Table 3.4: Power of One-Sided Two Sample t test

Common Sample Size n
E 5 10 15 20 25 30 35 40 45 50
0.5 0.179 0.285 0.379 0.463 0.539 0.606 0.665 0.716 0.761 0.799
0.6 0.219 0.362 0.483 0.587 0.672 0.743 0.780 0.845 0.881 0.909
0.7 0.264 0.445 0.589 0.702 0.787 0.850 0.895 0.928 0.951 0.966
0.8 0.313 0.530 0.689 0.799 0.874 0.922 0.952 0.971 0.983 0.990
0.9 0.366 0.615 0.776 0.875 0.932 0.964 0.981 0.990 0.995 0.998
1.0 0.421 0.694 0.848 0.928 0.967 0.985 0.994 0.997 0.999 1.000
1.1 0.478 0.764 0.902 0.962 0.986 0.995 0.998 0.999 1.000 1.000
1.2 0.536 0.825 0.941 0.981 0.994 0.998 1.000 1.000 1.000 1.000
1.3 0.592 0.875 0.966 0.992 0.998 1.000 1.000 1.000 1.000 1.000
1.4 0.647 0.914 0.914 0.982 0.997 0.999 1.000 1.000 1.000 1.000
1.5 0.698 0.943 0.991 0.999 1.000 1.000 1.000 1.000 1.000 1.000

Table 3.4 gives power for various values of E and common sample size n.
Suppose that an educational researcher believes that a new method of teach-

ing reading will increase reading scores by as much as 10 points compared to
a standard method. Variability of reading scores for the standard method has
been about 15 points. The researcher will conduct an experiment comparing the
two methods with two equal sized groups of students. The researcher believes
that variability will be about the same in the two groups and will use the two
sample test to compare reading scores for the two groups. The researcher would
like at least a 90% chance of concluding that the new method is better assuming
the parameters above are correct.

Thus E = 10/15 = 0.7. From Table 3.4 it is concluded that the researcher
needs 40 students in each group to achieved a power of 92.8%.
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3.5 SAS Code

3.5.1 Example 3.1

* The following data step inputs the weights for each
of the treated and control animals;

data WEIGHTS;
input Treatment $ WeightGain;

datalines;
Control 16.4
Control 12.8
Control 13.0
Control 10.7
Control 3.9
Control 9.1
Control 8.7
Control 9.5
Control 8.5
Control 6.0
Control 9.0
Control 13.4
Control 3.4
Control 9.6
Control 14.4
Control 11.3
Control 6.8
Control 2.3
Treated 11.6
Treated 8.9
Treated 14.6
Treated 12.4
Treated 13.3
Treated 16.0
Treated 11.1
Treated 15.8
Treated 15.6
Treated 10.7
Treated 12.4
Treated 14.6
Treated 11.2
Treated 10.7
Treated 11.6
Treated 14.7
Treated 13.9
Treated 11.8
Treated 13.4
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Treated 12.1
Treated 13.4
Treated 12.5
;
run;
* The proc means calculates descriptive statistics

associated with the two groups;
proc means data = WEIGHTS;

class treatment;
var weightgain;

run;
* The proc ttest does the necessary calculations necessary

for an independent samples t test and a confidence interval;
proc ttest data = WEIGHTS;

class treatment;
var weightgain;

run;

3.5.2 Example 3.2

* The following data step inputs the scores for each
of the children getting the new and standard methods;

data READING;
input Method $ Score;

datalines;
New 80
New 76
New 70
New 80
New 66
New 85
New 79
New 71
New 81
New 76
Standard 79
Standard 73
Standard 72
Standard 62
Standard 76
Standard 68
Standard 70
Standard 86
Standard 75
Standard 68
Standard 73
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Standard 66
;
run;
* The proc means calculates descriptive statistics

associated with the two methods;
proc means data = READING;

class Method;
var Score;

run;
* The proc ttest does the necessary calculations

for an independent samples t test and a confidence interval;
proc ttest data = READING;

class Method;
var Score;

run;

3.5.3 Example 3.3

* Input the number of words recalled by each student
from List A and List B;

data WORDLIST;
input Student NumWordsA NumWordsB;

datalines;
1 18 17
2 20 19
3 20 16
4 15 14
5 17 11
6 16 19
7 13 14
8 22 21
9 18 17
10 16 14
11 15 19
12 13 14
13 12 15
14 21 16
15 13 12
16 20 14
17 18 15
18 7 10
19 16 23
20 13 14
21 19 22
22 10 19
23 18 15



55

24 11 13
25 14 13
26 24 21
27 16 16
28 12 13
29 12 12
30 17 15
31 17 22
32 15 16
33 20 19
34 21 22
35 19 17
36 19 21
37 15 18
38 12 10
39 20 12
40 17 19
41 17 16
42 21 19
43 16 15
44 14 14
45 16 16
46 16 18
47 20 13
48 17 15
49 17 17
50 13 12
51 18 12
52 16 20
53 19 17
54 11 17
55 15 18
56 22 25
57 17 13
58 12 11
59 18 19
60 12 19
;
run;
* Use proc ttest to do the necessary calculations to

perform a paired samples t test and to obtain a
confidence interval for the difference in means;

proc ttest data = WORDLIST;
paired NumWordsA * NumWordsB;

run;
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Problems for Chapter 3

3.1 A researcher tested two new fertilizers for growing tomatoes. One fertil-
izer, A, was a fertilizer that was used for two years and the other, B, was a
new fertilizer being tested for the first time. Sixteen tomato plants of the
same variety and about the same size were planted in a garden in a 4x4
rectangular fashion with the plants being about 6 feet apart. The sixteen
plants were randomly assigned to their plots and the two fertilizers were
randomly assigned to the plant/plot combination with eight plants receiv-
ing each of the two fertilizers. The total amount of tomatoes in pounds
from each plant for the two different fertilizers was measured.

a. What is the factor of interest? What is the response variable?

b. What are the experimental units?

c. Is this a completely randomized design or a paired design? Explain.

d. What are some extraneous variables? How are these controlled?

3.2 A student in an experimental design class wanted to see if there was a
difference in the amount of time (in minutes) that scented candles burned
as compared with non-scented candles. She bought twenty candles which
appeared to be the same except ten were scented and ten were unscented.
She could not burn all candles in the same day so she decided to burn
a pair of candles, one scented and one unscented per day at roughly the
same time of the day, for ten days. The same two locations in a room were
used for all days. On each day she randomly selected one scented and one
unscented candle. These two were then randomly assigned to location and
initial lighting. The data are given in the table below.

Test Scented Unscented
1 680 696
2 752 697
3 818 750
4 793 774
5 771 672
6 744 676
7 798 782
8 678 777
9 742 762
10 763 703

a. This is a paired design. Explain.

b. What is the factor? What is the response variable?
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c. Is there evidence that scented candles of this kind have different
mean burning times than unscented candles. Use a significance level
of 0.05. Use statistical software to obtain a P-value and look at a
histogram of differences to check the normality assumption.

3.3 Identify the experimental design in the following studies as either being
completely randomized or paired/blocked. If the design is a paired design,
then identify the type of pairing (re-using, sorting/grouping or splitting).

a. In the study of a diet for reducing weight, the weights of ten subjects
are measured both before and after being put on the diet for five
weeks.

b. In a study of flirtatious behavior, sixty male students were given
false information about female job applicants with whom the male
students selected at random were falsely told that the female appli-
cant was attracted to her interviewer and the other thirty were not
told such false information. The men in both groups were asked if
the female exhibited any flirtatious behavior on the phone.

c. In order to determine whether the zipcode+4 gets a letter faster to
its destination than just the zipcode, a student data project mailed
two letters to each of twenty-six cities. The letters/envelopes were
the same except that one had the 5 digit zipcode on it while the other
letter had the zipcode+5 digits on it.

3.4 Approximately 200 patients with Alzheimer’s disease were measured for
mental ability before and after being given 120 mg to 240 mg of ginkgo
biloba, a plant extract, daily for three to six months.

a. What are the conditions of interest to be compared?

b. What are the “experimental” units?

c. Are the conditions assigned to the units? Explain

d. What are the consequences of your response to part (c) on the inter-
pretation of the results of the study?

3.5 A trucking firm wishes to choose between two alternate routes for trans-
porting merchandize from one depot to another. One major concern is
the travel time. In a study, 5 drivers are randomly assigned to route A,
the other 5 were assigned to route B. Data was obtained from each driver
on travel time (hours) and given below.

Route A: 18 24 30 21 32

Route B: 22 29 34 25 35

a. What is the factor in this experiment?

b. What is the response variable?
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c. Give one extraneous variable whose effects are potentially balanced
out by the randomization.

d. Based on the data, is there evidence of a difference in driving time
between the two routes? Use the independent samples t test that does
not assume anything about the population variances. Use computer
software to obtain a P-value. Use a significance level of 0.05.

e. Describe an alternate design for this experiment that would use pair-
ing/blocking.

3.6 In the article ”Feeding Preferences of Captive Tassel-Eared Squirrels (Sci-
urus Aberti) for Ponderosa Pine Twigs”(Journal of Mammalogy [1980]:
734-737 ) researchers wanted to determine in a laboratory setting if squir-
rels could distinguish between twigs from known feeding trees (FT) and
nonfeeding trees (FT). The feeding trees and nonfeeding trees were de-
termined in the field by the extent of defoliation and amounts of clipped
needles. Squirrels in the field presumably eat from certain Ponderosa
pines depending on nutritional quality, the occurrence of certain plant
compounds in the tree, pheronomnal cures and other contextual factors.
Each of five squirrels was tested for preference on 6 different days at two-
week intervals. A testing consisting of providing a squirrel with one FT
twig and one NFT twig and then measuring the amount of the twig eaten
after 24 hours. The data below provide the mean amounts eaten by each
of the six squirrels over the 6 day treatment (The data were approximated
from a bar graph in the article).

Squirrel 1 2 3 4 5
FT 5.5 4.4 6.0 4.8 8.4

NFT 3.2 2.4 3.2 4.4 1.7

a. Is this an independent samples or paired samples design? Explain.

b. Based on the data, is there evidence that squirrels are attracted to
the twigs that come from the FTs. Use statistical software to obtain
a P-value. Use a significance level of 0.05.

3.7 The article ”Operational Plantations of Improved Slash Pine: Age 15 re-
sults” (http://www.rngr.net/Publications/sftic/1983/)compared “improved”
and “unimproved” slash pines in terms of volume production and fusiform
rust infection after 15 years of planting. The “improved” trees were grown
from seeds taken from parents selected for volume production, crown and
bole characteristics, and disease resistance. The data below are based on
two stands of slash pines, one with improved (I) and one with unimproved
(U) trees at each of the 10 locations.
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Location Seed Vol/Acre Vol/Acre Fusiform
Source (ft3)o.b. (ft3)i.b. %

Appling Co I 1677 1115 27.3
U 1792 1181 15.4

Atkinson Co I 2248 1535 16.8
U 2041 1355 13.9

Ben Hill Co I 849 529 28.9
U 937 570 12.9

Camden Co I 2252 1534 12.0
U 2102 1402 8.2

Laurens Co I 905 592 60.4
U 1243 794 73.8

Long Co I 849 534 16.1
U 994 625 15.2

Toombs Co I 1076 707 45.2
U 874 546 41.3

Ware Co I 1760 1171 5.8
U 1734 1135 6.7

Wheeler Co I 447 282 35.9
U 577 358 33.0

Wayne Co I 1466 959 13.2
U 1350 862 10.6

a. This is a paired samples design. Explain.

b. Based on the data, is there evidence that “improved” trees have
higher inner bark (i.b.) volume per acre. Use a significance level of
0.05.

3.8 Researchers studied the the maximum voluntary closing forces (in new-
tons, N) of the upper and lower lips for 15 young male and 15 young
female subjects (“Maximum Voluntary Closing Forces in the Upper and
Lower Lips of Humans”,Journal of Speech and Hearing Research, Volume
28, 373-376, 1985). Each subject was measured 5 times on the upper lip
and 5 times on the lower lip. The table below gives means of the 5 upper
and lower lip measures approximated from a scatterplot of the data given
in the article.
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Males Females
Subject Lower Lip Upper Lip Subject Lower Lip Upper Lip

1 19.5 3.0 1 7.0 2.5
2 7.5 5.5 2 13.0 3.0
3 17.0 6.0 3 11.0 4.5
4 11.5 2.0 4 8.0 4.0
5 13.0 4.0 5 4.5 2.0
6 16.0 3.5 6 12.0 4.5
7 15.0 5.0 7 9.0 4.0
8 11.0 4.0 8 5.5 3.5
9 10.0 5.5 9 8.5 3.0
10 19.0 4.0 10 5.5 1.0
11 13.5 5.0 11 13.0 3.0
12 9.0 5.0 12 7.0 3.0
13 17.0 5.5 13 11.0 4.0
14 10.0 4.5 14 6.0 3.0
15 21.0 3.5 15 11.0 4.0

a. i. Construct a plot of lower lip force versus gender. Comment on
any difference in average and spread.

ii. Is there evidence of a difference in mean lower lip force between
young males and females? Use statistical software to perform
an independent samples t test (do not assume anything about
population variances). Use a significance level of 0.05.

iii. Why is the independent samples t test more appropriate than
the paired samples t test?

b. Give an another example of a comparison involving the data for which
the independent samples t test would be appropriate. Give an ex-
ample of a comparison for which the paired samples t test would be
appropriate.



Chapter 4

Analysis for the One Factor
Completely Randomized
Design

4.1 Decomposing Data

A medical researcher on aging is studying the effects of diet on the longevity of
mice. Twelve mice were randomly assigned to one of three different diets with
four mice assigned to each diet. Thus the design is completely randomized.
There is only one factor of interest. The diets along with the lifelengths (in
months) of the mice are given below. A scatterplot of the data is given in
Figure 4.1.

Diet 1 (High Calorie) 22 18 21 22
Diet 2 (Medium Calorie) 20 19 23 21
Diet 3 (Low Calorie) 23 24 20 25

In general suppose there are t treatments and ni observations on the response
y for the ith treatment where i = 1, ...t. In the example above t = 3, n1 = 4,
n2 = 4, and n3 = 4. Often treatment group sizes are the same or similar. Let
N =

∑t
i=1 ni be the total number of observations on y. In this example N = 12.

For each treatment let yij denote the jth observation on the treatment i. In this
example, y11 = 22, y32 = 24, etc.

The goal in this chapter is to develop a hypothesis test to determine if the
observed differences in longevity among the three diets are “real” or could be
explained by random extraneous factors such as genetics, stress factors, etc.
The hypothesis test will be based on a decomposition of the data into parts.

The parts will be based on means and deviations from means. Table 4.1 pro-
vides the means and standard deviations for each diet group and the combined
groups. The mean y·· = 21.50 of all 12 lifespans is called the grand mean.

61
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Figure 4.1: Plot of Lifelength versus Diet

Table 4.1: Descriptives for Mice Data

Group Mean St.Dev.
Diet 1 (High Calorie) y1· = 20.75 s1 = 1.89
Diet 2 (Medium Calorie) y2· = 20.75 s2 = 1.71
Diet 3 (Low Calorie) y3· = 23.00 s3 = 2.16
All y·· = 21.50 s = 2.07
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Table 4.2: Errors for Mice Receiving Diet 3

e31 = y31 − y3· = 23− 23 = 0
e32 = y32 − y3· = 24− 23 = 1
e33 = y33 − y3· = 20− 23 = −3
e34 = y34 − y3· = 25− 23 = 2

Now consider a particular diet, say Diet 3, the low calorie diet. While all
mice received Diet 3 the observed lifelengths differed, presumably because of
extraneous variables such as genetics, weight, etc. The effects of these extrane-
ous variables, called “errors” and denoted by e for these mice is measured by
the difference between lifelength and the mean for Diet 3, 23.00. The errors for
all 4 mice receiving Diet 3 are given in Table 4.2.

In your first course in statistics these were probably called deviations from
the mean. The term “error” does not mean that something is wrong with a
mouse; it is simply a reflection of the fact that all animals getting the same Diet
will still vary in lifelength due to other uncontrolled variables. For example,
the error for the second animal receiving Diet 3 is 1 month. The particular
extraneous variables associated with this animal resulted in a lifelength which
was 1 month higher than the average lifelength of all animals receiving the
same Diet 3. Note that the sum of the errors for all four mice receiving Diet 3
is 0 + 1 +−3 + 2 = 0. In general the differences between a group of values and
their mean will equal to 0.

The errors for the other groups are calculated similarly by subtracting from
the lifelength of an animal the mean of the group to which the animal belongs.
The errors for groups 1 and 2 are given below.

Diet 1
e11 = y11 − y1· = 22− 20.75 = 1.25

e12 = y12 − y1· = 18− 20.75 = −2.75
e13 = y13 − y1· = 21− 20.75 = 0.25
e14 = y14 − y1· = 22− 20.75 = 1.25

Diet 2
e21 = y31 − y2· = 20− 20.75 = −0.75
e22 = y32 − y2· = 19− 20.75 = −1.75
e23 = y33 − y2· = 23− 20.75 = 2.25
e24 = y34 − y2· = 21− 20.75 = 0.25

Note that by solving for lifelength in the definition of error we have a de-
composition of lifelength. Consider Diet 3 again.

y31 = y3· + e31 or 23 = 23 + 0
y32 = y3· + e32 or 24 = 23 + 1

y33 = y3· + e33 or 20 = 23 + (−3)
y34 = y3· + e34 or 25 = 23 + (−2)
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Table 4.3: Decomposition of Lifelength Data: Group Mean + Error

yij = yi· + eij

Diet 1 22 = 20.75 + 1.25
18 = 20.75 + −2.75
21 = 20.75 + 0.25
22 = 20.75 + 1.25

Diet 2 20 = 20.75 + −0.75
19 = 20.75 + −1.75
23 = 20.75 + 2.25
21 = 20.75 + 0.25

Diet 3 23 = 23.00 + 0.00
24 = 23.00 + 1.00
20 = 23.00 + −3.00
25 = 23.00 + 2.00

Thus each observed value of lifelength can be expressed as the Diet 3 mean
lifelength plus the “effect” due to the other uncontrollable variables.

Table 4.3 gives the entire decomposition of the 12 lifelengths in terms of
group mean and error.

There is one more step in the decomposition process. The effect of diet,
denoted with the letter A, will be measured by comparing the mean lifelength
for a diet to the grand mean of all lifelengths. The effects for the three diets
A1, A2, A3 are calculated as follows:

A1 = y1· − y·· = 20.75− 21.50 = −0.75
A2 = y1· − y·· = 20.75− 21.50 = −0.75
A3 = y1· − y·· = 23.00− 21.50 = 1.50

Thus diet 3 has the “effect” of raising lifelength by 1.50 months compared
to the grand mean of 21.50 months. Diet 1 and 2 have the same effects, that is
of lowering lifelength compared to the grand mean. In general effects can all be
different, but note that the effects add to 0.

Using the effect definition the three diet group means can be decomposed as
follows:

y1· = y·· + A1 or 20.75 = 21.50 + (−0.75)
y2· = y·· + A2 or 20.75 = 21.50 + (−0.75)
y3· = y·· + A3 or 23.00 = 21.50 + (1.50)

Replacing each diet group mean in Table 4.3 with its decomposition results
in Table 4.4 where each lifelength is now written in terms of a sum of grand
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Table 4.4: Decomposition of Lifelength Data

yij = y·· + Ai + eij

Diet 1 22 = 21.50 + -0.75 + 1.25
18 = 21.50 + -0.75 + -2.75
21 = 21.50 + -0.75 + 0.25
22 = 21.50 + -0.75 + 1.25

Diet 2 20 = 21.50 + -0.75 + -0.75
19 = 21.50 + -0.75 + -1.75
23 = 21.50 + -0.75 + 2.25
21 = 21.50 + -0.75 + 0.25

Diet 3 23 = 21.50 + 1.50 + 0.00
24 = 21.50 + 1.50 + 1.00
20 = 21.50 + 1.50 + -3.00
25 = 21.50 + 1.50 + 2.00

mean, diet effect, and error (effect of extraneous variables). This completes the
decomposition of the lifelength data.

The 12 equations in Table 4.4 can be expressed symbolically as

yij = y·· + Ai + eij (4.1)

where i = 1, 2, 3 and j = 1, 2, 3, 4.

4.2 Degrees of Freedom

A concept associated with the decomposition in the last section and the analysis
in subsequent sections is degrees of freedom. A set of numbers or as we
shall see shortly a sum of squared numbers is said to have a certain “number
of degrees of freedom” associated with them. For example, the 12 values for
lifelength in the decomposition Table 4.4 have “12 degrees of freedom” because
the 12 values can be almost anything, that is all 12 are free to vary–there are no
mathematical restrictions on them. The 12 grand means have only ”1 degree of
freedom” since they all have to be the same number, because of the way they
were calculated. The 12 diet/treatment effects in the decomposition table have
2 degrees of freedom because of the repetitiveness within each diet and the fact
that they all add to 0. Only two of the 12 treatment effects are free to vary.
The other 10 can be determined by repeating and the restriction that they add
to zero. The 12 “errors” in the decomposition table have 9 degrees of freedom.
This is so because within each diet only 3 of the errors are free to vary–once we
know 3, we can get the 4th since the errors for a particular diet have to add to
zero.

The degrees of freedom (df) are additive, that is

df for data = df for grand mean + df for treatment effects + dffor errors
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or
N = 1 + (t− 1) + (N − t)

. In our example,

12 = 1 + 2 + 9

4.3 Population Models

The set of equations

yij = yi· + eij

given in Section 4.1 is referred to as the sample means model. The set of
equations that uses the effects,

yij = y·· + Ai + eij

is referred to as the sample effects model. Both models are sample based,
that is based on the observed data.

The population means model for the lifelength data is:

yij = µi + εij

and the population effects model is

yij = µ· + αi + εij

In the above equations,

• µi = the population or true mean longevity for the iith diet

• µ· = the population or true grand mean = (
∑t

i=1 µi)/t

• αi = µi − µ· = population or true effect of the ith diet on longevity

• εij = yij − µi population or true effect of extraneous variables associated
with the experimental unit for the jth observation on the ith diet.

An assumption of the population model is that the εij
′s are independent normal

random variables each with mean 0 and unknown variance σ2.
It is important to realize that µ·, µi, αi, εij are NOT the same as y··, yi·, Ai

and eij . The latter are based on sample data; the former are the “true” values
obtained if populations or very large numbers of mice were observed for each
diet. The distinction is analogous to the distinction between a sample mean and
a population mean in a first course in statistics. Inferences, such as confidence
interval estimation and hypothesis testing, concern the “true” values.

Returning to the lifelength study, recall that for diet 3,
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y31 = y·· + A3 + e31 (4.2)
y32 = y·· + A3 + e32

y33 = y·· + A3 + e33

y34 = y·· + A3 + e34

Substituting actual values we have

23 = 21.50 + 1.50 + 0 (4.3)
24 = 21.50 + 1.50 + 1
20 = 21.50 + 1.50 + (−3)
25 = 21.50 + 1.50 + 2

With the population effects model we would have, for example, for y31,

y31 = 23 = µ· + α3 + ε31

We cannot fill in values for µ·, α3, ε31 because we don’t know what the true
values are. The value of y·· = 21.50 is an estimate of µ·; A3 = 1.50 is an
estimate of α3; e31 = 0 is an estimate of ε31.

4.4 Testing for Overall Differences

4.4.1 Logic of the Test

In this section a hypothesis test is developed to test the null hypothesis that all
true or population treatment means are equal versus the alternative hypothesis
that the true means are not all the same. We will use the lifelength data to
illustrate. In that example the null hypothesis is

Ho : µ1 = µ2 = µ3

versus the alternative hypothesis,

Ha : not all µi
′s are equal

Note that µ1 = µ2 = µ3 is equivalent to α1 = α2 = α3 = 0 so an equivalent set
of hypotheses is

Ho : α1 = α2 = α3 = 0

versus

Ha : not all αi
′s = 0
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Intuitively if the null hypothesis of no difference in true diet means or equiv-
alently 0 diet effects holds, then the sample mean lifelengths yi· would all be
about the same or the sample diet effects Ai would all be about 0. If the
alternative hypothesis is really true, then the sample means should be different
looking or the sample diet effects should not be close to 0.

Just because the sample diet means look different or the sample diet effects
are not close to 0 does not necessarily prove that the diets truly have differential
effects. One can obtain different sample means yi· even if the µi are the same
or obtain sample effects Ai different from 0 even if the true effects αi are all
0, simply because of the effects of extraneous factors. To see this consider the
means model for diet 1 and diet 2, which are, respectively:

y1j = µ1 + ε1j

and

y2j = µ2 + ε2j

Remember that the ε’s represent the effects of extraneous variables. Now av-
eraging y11, y12, y13, y14 and y21, y22, y23, y24 according to the two models we
have

y1· = µ1 + ε1· (4.4)
y2· = µ2 + ε2· (4.5)

Thus according to the models,

y1· − y2· = (µ1 − µ2) + (ε1· − ε2·)

The difference in sample means is a function of the difference in true means
AND the difference of (average) errors. So even if the true means for diet 1
and diet 2 are the same (µ1 − µ2 = 0), it is still possible to obtain two sample
means that are different simply due to the effects of extraneous variables. Thus
what is needed to assess whether or not differences in sample means are “real”
is some idea of what to expect for a difference in sample means solely from the
effects of extraneous variables.

Consider the decomposition table again in Table 4.4. The calculated errors
eij measure solely the effects of extraneous variables. The calculated diet effects,
Ai, however, contain the effects of extraneous variables and also the effects of
diets if there truly are diet effects. So intuitively if the calculated diet effects, Ai

are “larger” than the calculated errors or extraneous variable effects, eij , then
that is evidence that diet truly has an effect on lifelength. If the calculated diet
effects are of about the same magnitude as the extraneous variable effects, then
there is not enough evidence of true Diet effects.

In order to develop a test statistic which compares the “Diet” effects Ai with
the extraneous variable effects eij , we shall summarize the two sets of values.
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We are going to summarize the two sets not by averaging the effects, but by
averaging the squares of the effects.

The sum of squared effects for the Diet treatment, SSTR, is defined as the
sum of the squared diet effects for all observation in the decomposition table,
and since there are repeats,

SSTR = n1A
2
1 + n2A

2
2 + n3A

2
3 (4.6)

= 4(−0.75)2 + 4(−0.75)2 + 4(1.50)2

= 2.25 + 2.25 + 9.00
= 13.50

The mean square of effects for the Diet treatment, MSTR, is obtained by
dividing SSTR by its degrees of freedom, t− 1 = 3− 1 = 2.

MSTR = SSTR/(t− 1) (4.7)
= 13.50/2
= 6.75

Now we will “average” the squared errors eij by summing the squares of
these values and then dividing by degrees of freedom. The sum of squared
errors, denoted by SSE, for the lifelength data is

SSE = (1.25)2 + (−2.75)2 + (0.25)2 + (1.25)2 Diet1
+(−0.75)2 + (−1.75)2 + (2.25)2 + (0.25)2 Diet2
+(0.00)2 + (1.00)2 + (−3.00)2 + (2.00)2 Diet3

= 10.75 + 8.75 + 14.00
= 33.5 (4.8)

The mean squared error, denoted by MSE, is defined as the sum of squared
errors divided by the degrees of freedom associated with the errors, which is
N − t = 12− 3 = 9. Thus

MSE = SSE/(N − t) = 33.5/9 = 3.72

It would be expected that mean square diet effects, MSTR, would be about
the same as MSE if diet truly has no effect, or equivalently it would be expected
that the ratio MSTR

MSE would be about 1. If diet does have an effect, then we would
expect MSTR

MSE to be somewhat larger than 1. Expectations can be quantified.
It can be shown (see Kuehl [10], page 62) that

E[MSTR] = σ2 +
1

t− 1

t∑

i=1

niα
2
i

E[MSE] = σ2
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Recall that σ2 is the common variance of the errors εij
′s.

Thus on average MSE is equal to the error variance σ2 regardless of whether
or not treatments have an effect. The actual observed value of MSE will be our
estimate of the unknown error variance. If diet truly has an effect on lifelength
(not all αi are zero) then the expected value or average of MSTR is greater
than the expected value or average of MSE, equal to σ2. If diet does not have
an effect (αi are all zero), then the expected values of MSTR and MSE are
both equal to σ2, in which case the observed values should be similar.

In the lifelengths example, the estimate of the error variance σ2, regardless
of whether treatment effects exist, is the observed value of MSE = 3.72. The
observed value of MSTR = 6.75. Thus the ratio

MSTR

MSE
= 6.75/3.72 = 1.81

Thus the ratio is larger than 1, but is it “large enough” to provide convincing
evidence that the diets truly have an effect. In order to answer this question we
need to consider the sampling distribution of the ratio under the null hypothesis
that Diet has no effect. That is, what are the possible values of the ratio simply
due to error (effects of extraneous variables) when diet has no real effect. This
sampling distribution is considered in the next section.

4.4.2 The F Sampling Distribution

In this section we describe the sampling distribution of the ratio MSTR
MSE .

Fact 4.1 From statistical theory it is known that if the t populations corre-
sponding to the t different treatments are normally distributed with identical
population variances, the observations from the populations are independent,
and the null hypothesis Ho : α1 = α2 = ... = αt = 0 is true, then the ra-
tio MSTR/MSE has the Fisher’s “F” probability distribution with “numerator
degrees of freedom”, ν1 = t−1 and “denominator degrees of freedom” ν2 = N−t.
The numerator degrees of freedom ν1 = t−1 is the degrees of freedom associated
with MSTR in the numerator of the ratio. The denominator degrees of freedom
ν2 = N − t is the degrees of freedom associated with MSE in the denominator
of the ratio.

Properties of the F probability distribution:

• There are an infinite number of F distributions, depending on two param-
eters, the numerator degrees of freedom, ν1 and denominator degrees of
freedom, ν2.

• The F distribution represents the probability distribution of a statistic
which is non-negative, such as MSTR/MSE.
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Figure 4.2: Examples of F distributions
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• The F distributions are positively skewed.

The density curves for three different F distributions are given in Figure 4.2.
Note the skewness of the distributions. The upper α probability points, denoted
by Fα;ν1,ν2 , are given in the Appendix, Tables A.7 and A.8, for α = 0.05 and
α = 0.01, respectively, for various values of ν1 and ν2. For example, the upper
0.05 probability point for the F distribution in Figure 4.2 with ν1 = 2 and ν2 = 6
is from Table A.7, F0.05;2,6 = 5.14.

The right tail of the appropriate F distribution for the Diet example with
ν1 = t − 1 = 3 − 1 = 2 and ν2 = N − t = 12 − 3 = 9 is graphed in Figure 4.3.
The upper 0.05 probability point, 4.26, and the observed value of the ratio
MSTR/MSE are plotted along the horizontal axis. The P-value is shaded.

The observed value of the F ratio for the lifelength data is F = 1.81. The
P-value associated with this value is

P − value = P (F ≥ 1.81)

This P-value can only be approximated from Table A.7 as P > 0.05. A
computer program will show that P − value = 0.218. Assuming a significance
level α = 0.05 then there is not enough evidence that Diet has an effect on
lifelength.

4.4.3 Summary of the F test for Treatment Effects

The null and alternative hypotheses for the test of treatment effects for t treat-
ments are

Ho : α1 = α2 = . . . = αt = 0

or equivalently,



72

Figure 4.3: P-value for Diet Example
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Ho : µ1 = µ2 = . . . = µt

The alternative hypothesis is

Ha : not all αi
′s = 0

or equivalently,
Ha : not all µi

′s are equal

The test statistic is

F =
MSTR

MSE
=

SSTR/(t− 1)
SSE/(N − t)

where

SSTR =
t∑

i=1

niA
2
i =

t∑

i=1

ni(yi· − y··)
2

and

SSE =
t∑

i=1

ni∑

j=1

[eij ]2 =
t∑

i=1

ni∑

j=1

[yij − yi·]
2

If the null hypothesis is true and the assumption of independent, normally
distributed errors with mean 0 and common standard deviation holds, the F
ratio above has the “F” distribution with ν1 = (t − 1) numerator degrees of
freedom and ν2 = (N − t) denominator degrees of freedom.

At a significance level of α the null hypothesis would be rejected if the
observed value of the test statistic, Fo, is larger than Fα;(t−1),N−t the upper
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Table 4.5: Decomposition of Lifelength Data

yij = y·· + Ai + eij

Diet 1 22 = 21.50 + -0.75 + 1.25
18 = 21.50 + -0.75 + -2.75
21 = 21.50 + -0.75 + 0.25
22 = 21.50 + -0.75 + 1.25

Diet 2 20 = 21.50 + -0.75 + -0.75
19 = 21.50 + -0.75 + -1.75
23 = 21.50 + -0.75 + 2.25
21 = 21.50 + -0.75 + 0.25

Diet 3 23 = 21.50 + 1.50 + 0.00
24 = 21.50 + 1.50 + 1.00
20 = 21.50 + 1.50 + -3.00
25 = 21.50 + 1.50 + 2.00

α probability point from the appropriate F distribution. Equivalently the null
hypothesis is rejected if P − value ≤ α, where P − value = P [F ≥ Fo]. Upper
α probability points for α = 0.05 and α = 0.01 are given in Tables A.7 and A.8,
respectively. P-values can only be approximated using Table A.7 or A.8. More
precise P-values can be obtained using statistical computing software such as
SAS or SPSS.

4.5 The Analysis of Variance (ANOVA) Table

The decomposition of the lifelength data is reproduced in Table 4.5.
Recall that we used the sum of squared diet effects and the sum of squared

errors to develop a test for true diet effects, where SSTR = 13.50 and SSE =
33.50.

In this section we will also sum the squares of the lifelengths, which we shall
call total sum of squares and denoted by SSTOT :

SSTOT = (22)2 + (18)2 + (21)2 + (22)2 Diet1
+(20)2 + (19)2 + (23)2 + (21)2 Diet2
+(23)2 + (24)2 + (20)2 + (25)2 Diet3

= 1733 + 1731 + 2130
= 5594 (4.9)

We will also consider the sum of the squares of the grand mean, SSGM
associated with each lifelength. This is easier since all values are the same.

SSGM = 12(21.50)2 = 5547

Note that
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Table 4.6: ANOVA Table for Lifelength Data

Source of Variation Df SS MS F P-value

Grand Mean 1 5547
Treatments 2 13.50 6.75 1.81 0.218

Error 9 33.50 3.72

Total 12 5594

Table 4.7: General ANOVA Table - One Factor CRD

Source of Variation Df SS MS F P-value

Grand Mean 1 SSGM
Treatments t− 1 SSTR MSTR MSTR/MSE ***

Error N − t SSE MSE

Total N SSTOT

SSTOT = SSGM + SSTR + SSE

or
5594 = 5547 + 13.50 + 33.50

From a conceptual standpoint SSTOT can be regarded as a summary mea-
sure of variability in the lifelengths and we are partitioning this variability into
components, that due to some common value, the grand mean, that due to the
treatments (diets here), and that due to error. Or we are analyzing the variation
in lifelengths and breaking it up into parts.

An ANOVA table is a summary of the components of the total variation in
the response variable with also the F ratio for testing for treatment effects (and
a P-value if you are using a computer). An ANOVA table in our example is
given in Table 4.6.

The general form of the ANOVA table for a one factor completely random-
ized design when there are t treatments and N total observations is given in
Table 4.7. Note that MSE, the estimate of the variance of the error terms in
the model, appears in the denominator of the F test statistic and thus is used
to determine if there are treatment effects. MSE will also be used in the next
chapter to help determine which means differ if we conclude from the F test
that there are differences somewhere.

An alternative partitioning of the lifelength data is given in Table 4.8



75

Table 4.8: Decomposition of Lifelength Corrected for Mean

yij − y·· = Ai + eij

Diet 1 0.50 = -0.75 + 1.25
-1.50 = -0.75 + -2.75
-0.50 = -0.75 + 0.25
0.50 = -0.75 + 1.25

Diet 2 -1.50 = -0.75 + -0.75
-2.50 = -0.75 + -1.75
1.50 = -0.75 + 2.25
-0.50 = -0.75 + 0.25

Diet 3 1.50 = 1.50 + 0.00
2.50 = 1.50 + 1.00
-0.50 = 1.50 + -3.00
3.50 = 1.50 + 2.00

The grand mean of 21.50 months was subtracted from each lifelength (this
is called lifelength corrected for the mean). The interpretation now is that each
deviation of a lifelength from the grand mean of 21.50 is partly due to diet effect
and partly due to error. For example, the difference between the lifelength of
22 months and the grand mean of 21.50 months is part diet effect of −0.75 and
part error of 1.25.

To obtain the modified ANOVA table we sum the squares of the corrected
lifelengths and obtain the total sum of squares corrected for the mean, denoted
by SSTOTC

SSTOTC = (0.50)2 + (−1.50)2 + . . . + (3.50)2 = 47

The sums of squares partitioning is

SSTOTC = SSTR + SSE

or in the lifelength example,

47 = 13.50 + 33.50

The modified ANOVA table would then look as in Table 4.9.
The general form of the ANOVA table with the correction for the mean is

given in Table 4.10.

4.6 Independent Samples t Test Revisited

Consider the two sided independent samples t test introduced in Chapter 3 that
assumed equal population variances. This special testing situation can be shown
to be equivalent to the F test of this chapter with t = 2 treatments.

First we can model the independent samples t test situation as follows. Let
y11, y12, ..., y1,n1 be independent measurements from a population with mean
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Table 4.9: ANOVA Table for Lifelength Data: Correction for Mean

Source of Variation Df SS MS F P-value

Treatments 2 13.50 6.75 1.81 0.218
Error 9 33.50 3.72

Total (Corrected) 11 47

Table 4.10: General ANOVA Table with Correction for Mean - One Factor CRD

Source of Variation Df SS MS F P-value

Treatments t− 1 SSTR MSTR MSTR/MSE ***
Error N − t SSE MSE

Total(Corrected) N − 1 SSTOTC

µ1. Let y21, y22, ..., y2,n2 be independent measuresment from a population with
mean µ2. Let σ2 be the common population variance.

We can decompose the yij as in this chapter:

yij = µi + εij

where the εij are independent, normally distributed random variables with mean
of 0 and variance of σ2. These are the conditions that are assumed in this
chapter. Note that without the assumption of equal population variances the
variances of the errors would not be equal. Thus an F test for the equality of
the t = 2 means should be equivalent to the two sided t test of Chapter 3. An
example follows.

Example 4.1 This example is from the Chapter 3 exercises. A trucking firm
wishes to choose between two alternate routes for transporting merchandise from
one depot to another. One major concern is the travel time. In a study, 5 drivers
are randomly assigned to route A, the other 5 were assigned to route B. Data
was obtained from each driver on travel time (hours) and given below.

Route Travel Time (hours)
A 18,24,30,21,32
B 22,29,34,25,35

Is there evidence of a difference in driving time between the two routes?
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The following table gives the means and standard deviations of the two
groups of travel times:

Route n Mean Standard Deviation
A 5 25.0 5.92
B 5 29.0 5.61

The pooled sample variance s2
p, the estimate of the population variance, s2

p =
33.25. The observed t ratio is t = −1.10. The two-sided P-value is P [|t| ≥
| − 1.10|] = 0.3046 with df = 5 + 5 − 2 = 8. The ANOVA table for the route
times data is given below.

Source of Variation Df SS MS F P-value

Routes 1 40 40 1.20 0.3046
Error 8 266 33.25

Total (Corrected) 9 306

Note that the P-value for the observed F ratio of 1.20 is the same as the P-
value for the observed t ratio of -1.10. It can also be shown that the square
of the t ratio is equal to the F ratio. Note here that the square of the t ratio,
(−1.10)2 = 1.21 differs slightly from the observed F ratio, 1.20, because of
rounding. The equivalence is only between the two-sided independent samples
t test, assuming equal population variances, and the F test. It should also be
noted that the estimate of the common population variance, s2

p = 33.25 from
the t procedure, is the same as MSE = 33.25, the estimate of the common
variance of the error terms in the one factor population model. Thus one can
cast the independent samples t test (with equal population variances) within
the context of analysis of variance.
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4.7 SAS Code

4.7.1 Lifelength Example

* Lifelength Example;

* Input diet and lifelength;
data DIET;

input Diet Lifelength;
datalines;
1 22
1 18
1 21
1 22
2 20
2 19
2 23
2 21
3 23
3 24
3 20
3 25
;
run;

* Use proc glm to obtain ANOVA table;
proc glm data = DIET;

class Diet;
model Lifelength = Diet;

run;

4.7.2 Example 4.1

* Example 4.1;

* Input;
data TruckRoute;

input Route $ TravelTime;
datalines;
A 18
A 24
A 30
A 21
A 32
B 22
B 29
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B 34
B 25
B 35
;

* proc ttest for obtaining results of independent
samples t test;

proc ttest data = TruckRoute;
class Route;
var TravelTime;

* proc glm for obtaining ANOVA table;
proc glm data = TruckRoute;

class Route;
model TravelTime = Route;

run;
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Problems for Chapter 4

4.1 A psychologist was interested in the effects of three different kinds of drugs
on the mean time to complete a certain task. The psychologist used 15
subjects and randomly assigned 5 of them to each drug A, B, and C. The
data represent the time in minutes to complete the task.

A 20 22 25 24 19
B 21 26 26 27 25
C 30 24 26 25 30

a. Construct a decomposition table (one without the correction for the
mean and one with the correction for the mean).

b. Construct the ANOVA table (not corrected for mean and corrected
for mean).

c. At the 5% significance level, is there evidence of a difference in true
mean time (or a difference in true effects from 0) for the drugs? Use
the upper 0.05 probability point from the F-table in the Appendix
rather than a P-value to make your decision.

4.2 Consider the following incomplete ANOVA table for a one factor com-
pletely randomized design.

Source of Variation Df SS MS F P-value

Grand Mean 1 1728
Treatments 4
Error 105

Total 30 1918

a. Fill in the blanks of the table. Using Table A.7 or A.8 give an in-
equality expressing the approximate P − value.

b. How many treatments are in the study upon which this ANOVA table
is based?

c. Assuming equal replication of treatments how many replications are
there per treatment?

d. At a significance level of α = 0.01 would the null hypothesis of equal
true treatment means be rejected?

4.3 A former statistics student investigated the effects of plant food and music
on growth of pansy plants. She investigated two levels of plant food (yes,
no) and three levels of music (techno, classical, reggae). The data for plant
growth (in inches) for those replications where plant food was supplied
only is given below.
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Classical 2.3 2.6 2.9 3.0
Reggae 2.5 2.1 2.3 2.4
Techno 1.7 2.3 2.7 2.9

Is there evidence that the different types of music result in different mean
growth for pansy plants? Use α = 0.05.

4.4 Two students, Cheryl Butterworth and Josh Hiller, performed an exper-
iment to study the effect of beverage type on the amount of time for ice
cubes to melt. Types of beverage were coca-cola, orange juice, and water.
The beverages were left out over night to set them at a constant temper-
ature. Fifteen ice cubes of approximately the same size were randomly
assigned to fifteen identical cups. Equal amounts of beverage, five of each
kind, were randomly assigned to the cups. The amount of time (minutes)
for the ice cubes to melt was recorded and given below.

Coca cola 19 17 15 14 18
Orange Juice 27 28 30 26 27
Water 10 11 13 7 9

a. What is the factor of interest?
b. What are the treatments?
c. What are the experimental units?
d. Give some extraneous variables that are part of experimental error?
e. Give the (true) effects model for the data and describe the parameters

of the model within the context of this study.
f. Is there evidence of a difference in melting times for the three treat-

ments?

i. Give the null and alternative hypotheses in terms of the effects
parameters from part (e).

ii. Use a statistical program to calculate the F ratio and associated
P-value. Answer the question at the 0.05 level of significance.

iii. What assumptions about the true errors are necessary in order
to ensure that your conclusions in part(ii) are valid?

4.5 This data comes from an example in Kutner, Nachtsheim, Neter, and
Li [11]. Four brands of rust inhibitors (A,B,C,D) were compared. The
four brands were assigned to 40 experimental units, 10 for each brand in
a completely randomized design. The rust inhibition measurements are
given in the table below with the higher the value, the more effective is
the brand.

A 43.9 39.0 46.7 43.8 44.2 47.7 43.6 38.9 43.6 40.0
B 89.8 87.1 92.7 90.6 87.7 92.4 86.1 88.1 90.8 89.1
C 68.4 69.3 68.5 66.4 70.0 68.1 70.6 65.2 63.8 69.2
D 36.2 45.2 40.7 40.5 39.3 40.3 43.2 38.7 40.9 39.7
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With the help of statistical software answer the following:

a. Give the sample means and standard deviations. Does there appear
to be a different in brands?

b. Obatin an ANOVA table for this data. What is the estimate of the
variance of the errors?

c. Is there evidence of a difference in the degree of inhibition? Use
α = 0.05. Use the P-value obtained from your software to answer
the question.



Chapter 5

Multiple Comparisons

5.1 Introduction

If it has been concluded from the F test that there are some differences in the
means of a response variable, then a researcher typically would want to know
which means differ. Depending upon the study objectives the researcher may
wish to make pairwise comparisons of all possible means and then rank the
treatments. Or the researcher may only be interested in comparing treatment
means with a control mean. In another scenario the researcher may wish to
compares means of subsets of treatments. The researcher will in general make
multiple comparisons of the means to satisfy the objectives of the study.

5.2 Types of Multiple Comparisons

5.2.1 All Pairwise Comparisons

If there are t treatments in a study then it is easily shown that there are

m =
t!

2!(t− 2)!

possible pairwise comparisons, where in general the symbol x! stands for the
product (x)(x−1) . . . (1). For example, if t = 3 there are 3 possible comparisons;
if t = 4 there are 6 possible comparisons, and so on.

Suppose that a one factor experiment is conducted using a completely ran-
domized design as in Chapter 4. A significant F test is obtained and the re-
searcher is interested in making all possible pairwise comparisons of the t means.
One approach to making the m comparisons is the do m t-tests according to
methods of Chapter 3. We shall use the method that assumes equal population
variances, consistent with the assumption of equal population variances in the
ANOVA. The pooled standard deviation sp in the test statistic from Chapter 3
will be replaced by

√
MSE from the ANOVA. Suppose that population means

83
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µi and µj are to be compared with i and j referring to two of the possible t
means. Then for an α level of significance and a two sided test the null hypoth-
esis Ho : µi = µj is rejected if P − value ≤ α, or equivalently,

∣∣∣∣∣∣
yi· − yj·√

MSE
√

1
ni

+ 1
nj

∣∣∣∣∣∣
≥ tα

2 ;ν (5.1)

or

|yi − yj | ≥ tα
2 ;ν

√
MSE

√
1
ni

+
1
nj

(5.2)

Here tα
2 ;ν refers to the upper α

2 percentile from a t distribution with degrees
of freedom ν = N−t associated with MSE.

√
MSE is the estimate from ANOVA

of the common population standard deviation σ. The product
√

MSE
√

1
ni

+ 1
nj

is the standard error of the difference in sample means yi· − yj·. Note that
this procedure differs slightly from the t test considered in Chapter 3. First
the estimate of the population standard deviation,

√
MSE, is based on all t

samples, not just the two samples being compared. The appropriate degrees of
freedom, ν, is the degrees of freedom associated with MSE. For other designs
discussed later in this text, degrees of freedom associated with the estimate
of the population standard deviation will differ from that of the one factor
completely randomized design.

A 100(1− α)% confidence interval for the difference µi − µj is

(yi· − yj·)± (tα
2 ;ν)

√
MSE

√
1
ni

+
1
nj

(5.3)

If the confidence interval does not include zero then the null hypothesis is re-
jected and we conclude that the two population means µi and µj are different.
If the interval includes zero the null hypothesis is not rejected, i.e. there is not
enough evidence that the two means are different.

Example 5.1 Source: Weber and Skilling, p. 241. A company is considering
three different covers for boxes of a brand of cereal. Box cover 1 has a picture
of a sports hero eating the cereal, cover 2 has a picture of a child eating the
cereal, and cover 3 has a picture of a bowl of the cereal. The company wants
to determine which cereal box type provides for the most sales. Eighteen test
markets were selected by the company and each box type was randomly assigned
to six markets. The number of boxes of this cereal sold per 10,000 population in
a specified period is recorded for each test market. The data are as follows:

Cover 1: Sports Hero 52.4 47.8 52.4 51.3 50.0 52.1
Cover 2: Child 50.1 45.2 46.0 46.5 47.4 46.2
Cover 3: Cereal Bowl 49.2 48.3 49.0 47.2 48.6 48.2
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Table 5.1: Descriptives for Sales Data

Group Mean St.Dev.
Cover 1 (Sports Hero) y1· = 51.00 s1 = 1.81
Cover 2 (Child) y2· = 46.90 s2 = 1.72
Cover 3 (Cereal Bowl) y3· = 48.42 s3 = 0.71

Table 5.2: ANOVA Table for Box Cover Sales

Source of Variation Df SS MS F P-value

Covers 2 51.57 25.78 11.43 0.0010
Error 15 33.83 2.26

Total (Corrected) 17 85.40

Is there evidence of a difference in population mean sales among the three types
of covers? Use a significance level of 0.05. If the F test for overall differences is
significant then use 95% t confidence intervals to determine which means differ.

Table 5.1 provides the means and standard deviations of the sales data for
the three cover types. The ANOVA table is given in Table 5.2.

The ANOVA is given in Table 5.2.
The differences in the mean sales for the three cover types are significant

with F = 11.43 and P − value = 0.0010. The endpoints for the confidence
intervals for the differences in population means µ1 − µ2, µ1 − µ3, and µ2 − µ3,
respectively, are

(y1· − y2·) ± (t 0.05
2 ;15)

√
MSE

√
1

n1
+ 1

n2

(y1· − y3·) ± (t 0.05
2 ;15)

√
MSE

√
1

n1
+ 1

n3

(y2· − y3·) ± (t 0.05
2 ;15)

√
MSE

√
1

n2
+ 1

n3

The upper 0.025 percentile from the t distribution, t 0.05
2 ;15, with ν = 15 degrees

of freedom is, from Table A.2, 2.131. Thus the endpoints for the 3 confidence
intervals are:

(51.00− 46.90) ± (2.131)
√

2.26
√

1
6 + 1

6

(51.00− 48.42) ± (2.131)
√

2.26
√

1
6 + 1

6

(46.90− 48.42) ± (2.131)
√

2.26
√

1
6 + 1

6

or
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4.10 ± 1.85
2.58 ± 1.85
−1.52 ± 1.85

Thus the three intervals are:

2.25 ≤ µ1 − µ2 ≤ 5.95
0.73 ≤ µ1 − µ3 ≤ 4.43

−3.37 ≤ µ2 − µ3 ≤ 0.33

It can be concluded that the box cover with the sports hero results in the highest
means sales. There is not enough evidence of a difference in mean sales between
the box cover with the child and the box cover with the bowl of cereal. It is
estimated that the mean sales with the sports hero as the box cover is between
2.25 (x 10,000) and 5.95 (x 10,000) boxes higher than when the cover has a
child. It is estimated that the mean sales with the sports hero as the box cover
is between 0.73 (x 10,000) and 4.43 (x 10,000) boxes higher than when the cover
has a bowl of cereal.

5.2.2 Contrasts - generalization of pairwise difference

The difference between two means, µi − µj , is an example of a more general
comparison of the means called a contrast. In some studies there is some
kind of structure to the treatments and interest is not in all possible pairwise
differences but in certain pre-planned comparisons of subgroups of the means.

Let µ1, ..., µt be the treatment means. Then we define a contrast of the
means to be a linear combination of the means, C:

C = c1µ1 + c2µ2 + ... + ctµt (5.4)

where the c′s are constants defined so that c1 + c2 + ... + ct = 0.
Suppose in a study with one factor there are t = 4 treatments with means

µ1, ..., µ4. An example of a contrast would be a pairwise difference such as
µ3 − µ4 because we can write this difference as C1 where

C1 = 0µ1 + 0µ2 + (1)µ3 + (−1)µ4

where c1 = 0, c2 = 0, c3 = −1, and c4 = 1 with the sum of the c′s is 0.
However another example of a contrast would be C2 defined as

C2 =
1
2
µ1 +

1
2
µ2 − 1

2
µ3 − 1

2
µ4

This contrast represents a comparison of the average of µ1 and µ2 with the
average of the µ3 and µ4. Here c1 = 1

2 , c2 = 1
2 , c3 = − 1

2 , and c4 = − 1
2 with the

sum of the c′s equalling 0.
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We will now consider estimation and hypothesis testing regarding an arbi-
trary contrast defined as in Equation 5.4. We first need an estimate of C.

The point estimate of the contrast in Equation 5.4 is

Ĉ = c1y1· + c2y2· + ... + ctyt· (5.5)

This estimate is normally distributed with mean

E[Ĉ] = C (5.6)

and variance, denoted by σ2{Ĉ}, can be shown to be

σ2{Ĉ} = c2
1σ

2{y1·}+ c2
2σ

2{y2·}+ ... + c2
t σ

2{yt·}

= c2
1

σ2

n1
+ c2

2

σ2

n2
+ ... + c2

t

σ2

nt

= σ2(
c2
1

n1
+

c2
2

n2
+ ... +

c2
t

nt
) (5.7)

In practice the error variance, like in Chapter 4, is unknown and is estimated
with MSE from the analysis of variance. Thus the estimate of the variance of
Ĉ, denoted by s2{Ĉ} is

s2{Ĉ} = MSE(
c2
1

n1
+

c2
2

n2
+ ... +

c2
t

nt
) (5.8)

The estimated standard error, s{Ĉ} of the estimated contrast Ĉ is the square
root of the estimated variance, that is,

s{Ĉ} =
√

s2{Ĉ} (5.9)

Since Ĉ is normally distributed with mean C and variance σ2{Ĉ} then the
ratio

Ĉ − C√
σ2{Ĉ}

(5.10)

has a standard normal distribution. If we replace the denominator with the
estimate we have the ratio

Ĉ − C√
s2{Ĉ}

(5.11)

which has a t distribution with degrees of freedom equal to N − t for the one
factor model in a completely randomized design.

Thus the endpoints for the 100(1− α) confidence interval for C is:
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Ĉ ± tα/2;N−t

√
s2{Ĉ} (5.12)

Testing hypotheses about C usually involves testing hypotheses of the form:

H0 : C = 0 (5.13)
Ha : C 6= 0 (5.14)

The test statistic is

t =
Ĉ√

s2{Ĉ}
(5.15)

The null hypothesis is rejected and the alternative accepted at the α level
of significance if |t| ≥ tα/2;N−t. An example follows.

Example 5.2 A study was conducted at a large university to compare different
methods of teaching the non-calculus based elementary statistics course. Five
different methods were used:

Method 1: Lecture method of instruction, large class
Method 2: Lecture method of instruction, large class with smaller problem

sessions once a week
Method 3: Lecture method of instruction, small class
Method 4: Half lecture, half group work, small class
Method 5: All group work, small class
The five methods of instruction were assigned completely at random to 30

sections, with five sections per method. At the end of the session students rated
their satisfaction with the course on a scale from 1 to 15, with larger values indi-
cating greater satisfaction. The response variable is the class mean satisfactory
score.

Four comparisons of the methods were formulated prior to the conduct of the
study:

1. Large classes versus small classes (1,2 vs 3,4,5)

2. Comparison of large classes, with and without problem sessions (1 vs. 2)

3. Comparison of small classes, all group work versus other (3,4 vs 5)

4. Comparison of small classes, lecture versus mix of lecture and group (3 vs
4)

The researchers used a significance level of 0.05 to test each comparison.

The values of the class mean satisfaction score for the different methods of
instruction are given in Table 5.3.
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Table 5.3: Satisfaction Data

Method 1 8.0 9.3 8.3 6.6 10.7 7.8
Method 2 7.3 7.7 8.2 10.0 8.7 8.6
Method 3 8.7 10.6 10.7 10.4 8.1 7.5
Method 4 11.5 10.2 9.3 9.3 12.1 11.7
Method 5 9.4 10.9 8.2 8.7 9.3 9.2

Table 5.4: Descriptives for Satisfaction Data

Group Mean St.Dev.
Method 1 y1· = 8.45 s1 = 1.40
Method 2 y2· = 8.42 s2 = 0.94
Method 3 y3· = 9.33 s3 = 1.41
Method 4 y4· = 10.68 s4 = 1.25
Method 5 y5· = 9.28 s5 = 0.91

Table 5.4 provides the means and standard deviations of the satisfaction
data for the five methods of instruction.

The ANOVA is given in Table 5.5. The differences in the sample mean class
satisfaction scores are significantly different at the 0.05 level with F = 3.53, P =
0.0205.

The contrasts of the instruction method population means corresponding to
the four comparisons of interest are:

C1 = (
1
2
)µ1 +

1
2
µ2 + (−1

3
)µ3 + (−1

3
)µ4 + (−1

3
)µ5

C2 = (1)µ1 + (−1)µ2 + (0)µ3 + (0)µ4 + (0)µ5

C3 = (0)µ1 + (0)µ2 + (
1
2
)µ3 + (

1
2
)µ4 + (−1)µ5

C4 = (0)µ1 + (0)µ2 + (1)µ3 + (−1)µ4 + (0)µ5 (5.16)

Table 5.5: ANOVA Table for Instruction Method Satisfaction

Source of Variation Df SS MS F P-value

Methods 4 20.37 5.09 3.53 0.0205
Error 25 36.09 1.44

Total (Corrected) 29 56.47
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Note that the coefficients add to 0 for each of the linear combinations of
means.

The estimated contrasts are:

Ĉ1 = (
1
2
)y1· + (

1
2
)y2· + (−1

3
)y3· + (−1

3
)y4· + (−1

3
)y5·

= (
1
2
)8.45 + (

1
2
)8.42 + (−1

3
)9.33 + (−1

3
)10.68 + (−1

3
)9.28

= 8.43− 9.76
= −1.33 (5.17)

Ĉ2 = (1)y1· + (−1)y2· + (0)y3· + (0)y4· + (0)y5·
= (1)8.45 + (−1)8.42 + (0)9.33 + (0)10.68 + (0)9.28
= 0.03 (5.18)

Ĉ3 = (0)y1· + (0)y2· + (
1
2
)y3· + (

1
2
)y4· + (−1)y5·

= (0)8.45 + (0)8.42 + (
1
2
)9.33 + (

1
2
)10.68 + (−1)9.28

= 10.00− 9.28
= 0.72 (5.19)

Ĉ4 = (0)y1· + (0)y2· + (1)y3· + (−1)y4· + (0)y5·
= (0)8.45 + (0)8.42 + (1)9.33 + (−1)10.68 + (0)9.28
= −1.35 (5.20)

The estimated variances of the estimated contrasts are from 5.11:

s2{Ĉ1} = (1.44)(
(1/2)2

6
+

(1/2)2

6
+

(−1/3)2

6
+

(−1/3)2

6
+

(−1/3)2

6
)

= 0.20

s2{Ĉ2} = (1.44)(
(1)2

6
+

(−1)2

6
+

(0)2

6
+

(0)2

6
+

(0)2

6
)

= 0.48

s2{Ĉ3} = (1.44)(
(0)2

6
+

(0)2

6
+

(1/2)2

6
+

(1/2)2

6
+

(−1)2

6
)

= 0.36

s2{Ĉ4} = (1.44)(
(0)2

6
+

(0)2

6
+

(1)2

6
+

(−1)2

6
+

(0)2

6
)

= 0.48

The small and large classes will be compared first. The null and alternative
hypotheses are

H0 : C1 = 0
Ha : C1 6= 0
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The observed value of the test statistic is t = Ĉ1

s{Ĉ1} = −1.33√
0.20

= −2.97. For
a significance level of 0.05 the upper 0.05/2 probability point is tα/2;N−t =
t0.05/2;30−5 = 2.060. Since |−2.97| ≥ 2.060, the alternative hypothesis is ac-
cepted and it is concluded that there is a difference in mean satisfaction be-
tween the small and large classes. The 95 percent confidence interval for C1 is
−1.33± (2.060)(

√
0.20) or −1.33± 0.92 or

−2.25 ≤ C1 ≤ −0.41

Thus we are 95% confident that small classes result on average anywhere be-
tween 0.41 and 2.25 points higher on the satisfaction scale compared to large
classes.

The second comparisons is a comparison between the large classes for prob-
lem session effect. The null and alternative hypotheses are:

H0 : C2 = 0
Ha : C2 6= 0

The observed value of the test statistic is t = Ĉ2

s{Ĉ2} = 0.03√
0.48

= 0.04. Since
|0.04| < 2.060 there is not enough evidence of an effect of problem session on
student satisfaction among the large class methods. The 95% confidence interval
for C2 is 0.03± (2.060)(

√
0.48) or 0.03± 1.43 or

−1.40 ≤ C2 ≤ 1.46

The interval includes 0, indicating a possibility of no difference in mean satis-
faction between the large classes with and without the problem sessions.

The contrast C3 is a comparison of satisfaction among the small classes,
those with all group work versus those with some group work and no group
work.

H0 : C3 = 0
Ha : C3 6= 0

The observed value of the test statistic is t = Ĉ3

s{Ĉ3} = 0.72√
0.36

= 1.20. Since
|1.20| < 2.060 there is not enough evidence of a difference in satisfaction between
those small classes doing all group work and those small classes doing some or
no group work. The 95% confidence interval for C3 is 0.72± (2.060)(

√
0.36) or

0.72± 1.24 or

−0.52 ≤ C3 ≤ 1.96

The interval includes 0, indicating a possibility of no difference in mean satis-
faction between the small classes with all group work and those with some or
no group work.
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The contrast C4 is a comparison of satisfaction among the small classes,
those with all lecture versus those with some lecture or no lecture.

H0 : C4 = 0
Ha : C4 6= 0

The observed value of the test statistic is t = Ĉ4

s{Ĉ} = −1.35√
0.48

= −1.95. Since
|−1.95| < 2.060 there is not quite enough evidence of a difference in satisfaction
between those small classes doing all lecture and those doing some lecture or
none. The 95% confidence interval for C4 is from −1.35 ± (2.060)(

√
0.48) or

−1.35± 1.43 or

−2.78 ≤ C4 ≤ 0.08

The interval includes 0, indicating a possibility of no difference in mean
satisfaction between the small classes with all lecture versus those with some
lecture and none.

5.3 Effect of Multiple Testing on Type I error
rate and Confidence Levels

In the procedures described in the last section α represents the pre-assigned
probability of making a Type I error for a particular test, called the significance
level of the test. 1− α is the preassigned confidence level associated with each
confidence interval. Of interest in multiple testing is the overall or experimen-
twise significance level, denoted by αe and the overall or experimentwise
confidence level denoted by CLe.

The experimentwise wise significance level αe is defined to be the probability,
assuming that all true means are the same, of at least one Type I error among
the m tests. It can be shown that if each of the m hypothesis tests is carried
out at the α level, then

αe ≤ mα

In this context α is called the comparison wise Type I error rate. Thus
if each of m = 6 tests is conducted at the α = 0.05 significance level then the
experimentwise error rate αe ≤ (6)(0.05) = 0.3. The probability of at least one
Type I error among the 6 tests can be as high as 0.3. If there are t = 5 treatments
and all m = 10 tests are conducted then the experimentwise error rate can be
as high as 10(0.05) = 0.5. This is the price one pays for multiple testing. The
more tests that one performs the greater the likelihood of concluding at least
one significant result if in fact there are no differences among the treatment
means.
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A similar situation holds for confidence interval estimation. If m confidence
intervals are calculated for differences in population means, then the experimen-
twise or overall confidence level, CLe, is defined to be the probability that all
m confidence intervals are correct. If the m confidence intervals are conducted,
each at level 1− α then it can be shown that

CLe ≥ 1−mα

In this context 1−α is called the comparison wise confidence level. So
for example if m = 6 and the 95% confidence level is used for each of the 6
intervals, then the probability that all 6 intervals are correct is not 95%, but
can be as low as 1− (6)(.05) = 0.7 or 70%.

There are several methods that have been proposed to reduce the size of
the experimentwise error rate, αe when conducting several tests (or to increase
the experimentwise confidence level, CLe, when constructing several intervals).
Two of these methods are discussed in Sections 5.4 and 5.5.

5.4 Bonferroni method

The Bonferroni approach can be used for general contrasts as well as for pairwise
comparisons. The Bonferroni approach recognizes that the experimentwise error
rate is

αe ≤ mα

where α is the comparison-wise significance level used for each test. So suppose
we want the experimentwise error rate to be at most α, rather than mα. Then
clearly if we carry out each test at comparison level of α

m rather than α we have

αe ≤ m
α

m
= α

So if we want the experimentwise error rate to be at most 0.05, then choose
the comparison level to be 0.05/m. If m = 6 then each t test should be carried
out at the comparison wise error rate of 0.05

6 = 0.008. Thus in general to insure
that the experimentwise error rate is at most some pre-specified α level for m
tests use α

m for the comparison wise error rate.

5.4.1 Set of m Contrasts

For a set of pre-planned contrasts, C1, C2, ..., Cm the null hypothesis H0 : Ci = 0
would be rejected in favor of the alternative H0 : Ci 6= 0 if |t| ≥ tα/2m;N−t where

t =
Ĉi√

s2{Ĉi}
(5.21)

These m tests would have an experimentwise error rate αe ≤ α.
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The endpoints for the Bonferroni adjusted confidence intervals are:

Ĉi ± tα/2m;N−t

√
s2{Ĉi} (5.22)

These m confidence intervals would have an overall confidence level of at least
1− α.

Note that the t percentile is t α
2m ;N−t, the upper α

2m percentile from a t
distribution with N − t degrees of freedom. The necessary t percentile for the
Bonferroni procedures will not generally be found in the usual t table, Table
A.2, since the right tail probability α

2m will usually not correspond to one of the
listed right tail probabilities. The appropriate t percentiles for the Bonferroni
procedures can be obtained from either Table A.3 or Table A.4. Use Table
A.3 if the desired experimentise error rate, αe is to be at most 0.05 (or the
desired experimentwise confidence level is to be at least 0.95). Use Table A.4
if the desired experimentise error rate, αe is to be at most 0.01 (or the desired
experimentwise confidence level is to be at least 0.99). Enter either table with
the appropriate degrees of freedom N − t for MSE and m equal to the number
of comparisons.

The instruction example (Example 5.2) will be reconsidered here. There
were m = 4 contrasts of interest. Thus to ensure that the experimentwise error
rate is at most 0.05 the values of the test statistics need to be compared to
t0.05/2(4);30−5 = 2.69 from Table A.3. Note that the value 2.69 is greater than
the critical value used previously of 2.069, and thus the Bonferroni procedure
is more conservative. The values of the t statistics for the four contrasts C1,
C2, C3, and C4, respectively, were -2.97, 0.04, 1.20, and -1.95. As before only
the comparison of satisfaction for the small and large classes, C1, is significant.
Since the Bonferroni t percentile is different it is possible for different conclusions
to be reached. The Bonferroni confidence intervals for the contrasts C1, C2, C3,
and C4 with overall confidence level of at least 95% are

(−1.33) ± 2.69(
√

0.20)
(0.03) ± 2.69(

√
0.48)

(0.72) ± 2.69(
√

0.36)
(−1.35) ± 2.69(

√
0.48)

or

−1.33 ± 1.20
0.03 ± 1.86
0.72 ± 1.61
−1.35 ± 1.86

Thus the four Bonferroni intervals with overall confidence level of at least 95%
are

−2.53 ≤ C1 ≤ −0.13
−1.83 ≤ C2 ≤ 1.89
−0.89 ≤ C3 ≤ 2.33
−3.21 ≤ C4 ≤ 0.51
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These intervals are wider than unadjusted intervals, again illustrating the con-
servative nature of the Bonferroni procedure.

5.4.2 All Pairwise Comparisons

For all pairwise comparisons of means using the Bonferroni method and exper-
imentwise error rate of at most α one rejects the null hypothesis Ho : µi = µj

if

|yi· − yj·| ≥ t α
2m ;ν

√
MSE

√
1
ni

+
1
nj

If one wants to ensure that m confidence intervals have an experimentwise
confidence level of at least 1 − α then the comparison wise confidence level for
each interval should be 1− α

m . The form of the Bonferroni confidence intervals
is

yi − yj ± (t α
2m ;ν)

√
MSE

√
1
ni

+
1
nj

Determination of the appropriate t percentile is illustrated in Example 5.3.

Example 5.3 The Bonferroni confidence intervals will be illustrated with the
sales data from Example 5.1. If an experimentwise confidence level of at least
95% is desired for the three intervals then from Table A.3 has with ν = 15 and
m = 3, the appropriate t percentile t 0.05

2(3) ;15 = 2.69. Thus the endpoints of the
Bonferroni confidence intervals with experimentwise confidence level of at least
95% are:

(51.00− 46.90) ± 2.69
√

2.26
√

1
6 + 1

6

(51.00− 48.42) ± 2.69
√

2.26
√

1
6 + 1

6

(46.90− 48.42) ± 2.69
√

2.26
√

1
6 + 1

6

or

4.10 ± 2.33
2.58 ± 2.33
−1.52 ± 2.33

Thus the three intervals are:

1.77 ≤ µ1 − µ2 ≤ 6.43
0.25 ≤ µ1 − µ3 ≤ 4.91

−3.85 ≤ µ2 − µ3 ≤ 0.81
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Note that the t percentile used for the Bonferroni intervals, 2.69, is larger
than the t percentile used for the usual t intervals, 2.131. This results in larger
error margins for the differences in the sample means and thus wider confidence
intervals for the Bonferroni intervals. In general wider confidence intervals might
result in different conclusions because wider intervals are more likely to include
0. However for this example the conclusions are the same. The box cover with
the sports hero results in the greatest mean sales. There is no evidence of a dif-
ference in mean sales between the box cover with a child and that with a bowl
of cereal. We are at least 95% confident in this set of conclusions being cor-
rect. A comparison of the unadjusted t and Bonferroni procedures for pairwise
comparisons is made in Section 5.6.

5.5 Tukey-Kramer Method for Pairwise Com-
parisons

The Bonferroni method uses a larger t percentile to ensure that the experimen-
twise error rate is at most some prescribed value. The Tukey-Kramer multiple
comparison method also uses a larger percentile, but one from an entirely dif-
ferent distribution, called the Studentized Range distribution.

The null hypothesis Ho : µi = µj for a pairwise comparison is rejected if

|yi· − yj·| ≥
qα;ν,t√

2

√
MSE

√
1
ni

+
1
nj

where qα;ν,t is the upper α probability point from the Studentized Range Dis-
tribution, tabulated in Tables A.5 (α = 0.05) and A.6 (α = 0.01). The tables
depend upon a degrees of freedom parameter, ν, which for the one-way ANOVA
is degrees of freedom associated with MSE and t, the number of means being
compared.

If the group sizes ni are all equal, then the experimentwise error rate for the
set of all pairwise comparisons is exactly α, that is αe = α. If the group sizes
are not equal then αe ≤ α. Thus one can prescribe the experimentwise error
rate or an upper bound for it.

The Tukey-Kramer confidence intervals for the differences µi − µj are

(yi· − yj·)±
qα;ν,t√

2

√
MSE

√
1
ni

+
1
nj

The confidence intervals have an overall confidence level, CLe of exactly (1−α)
if the group sizes are identical. If the group sizes are not identical then the
CLe ≥ (1− α).

Example 5.4 The Tukey-Kramer confidence intervals will be illustrated with
the sales data from Example 5.1. If an experimentwise confidence level of 95%



97

is desired then Table A.6 has for ν = 15 and t = 3, q0.05;15,3 = 3.67. Thus the
endpoints of the Tukey-Kramer confidence intervals are

(51.00− 46.90) ± 3.67√
2

√
2.26

√
1
6 + 1

6

(51.00− 48.42) ± 3.67√
2

√
2.26

√
1
6 + 1

6

(46.90− 48.42) ± 3.67√
2

√
2.26

√
1
6 + 1

6

or

4.10 ± 2.25
2.58 ± 2.25
−1.52 ± 2.25

Thus the three intervals are:

1.85 ≤ µ1 − µ2 ≤ 6.35
0.33 ≤ µ1 − µ3 ≤ 4.83

−3.77 ≤ µ2 − µ3 ≤ 0.73

Notice that the multiplier, 3.67√
2

= 2.60, on for the Tukey intervals, is larger than
the multiplier of 2.131 for the t intervals of Example 5.1, but slightly smaller than
the multiplier of 2.69 used in the Bonferroni intervals. Thus the Tukey-Kramer
intervals are wider than those for the unadjusted or usual t procedure but not
as wide as those for the Bonferroni procedure. The conclusions are the same as
for the unadjusted t and Bonferroni procedures. However the conclusions can
be different than the two other procedures. A comparison is made between the
three procedures in Section 5.6.

5.6 Summary and Comparison of the Three Meth-
ods

1 Depending upon the research objectives, comparisons among means fol-
lowing a significant F ratio may involve all pairwise comparisons or more
general comparisons among the means (contrasts). The type of compar-
ison to be made is specified in the research protocol before the data is
collected.

2 A multiple comparison procedure refers to a procedure for making multiple
comparisons of means. One possible procedure is to perform a series of t
tests for the comparisons. Multiple t tests can be used to make the set of all
pairwise comparisons or to make a set of more general comparisons which
might include some pairwise comparisons. The usual t tests do not control
the family wise significance level. The Bonferroni procedure controls the
family wise significance level and can be used if the set of comparisons is
all pairwise or some other set of more general contrasts. The group sizes
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Table 5.6: Multipliers for Multiple Comparison Procedures

Multiplier
t m ν Unadjusted t Bonferroni Tukey-Kramer
3 3 6 2.45 3.29 3.07

9 2.26 2.93 2.79
12 2.18 2.78 2.67
15 2.13 2.69 2.60
18 2.10 2.64 2.55
21 2.08 2.60 2.52
24 2.06 2.57 2.49
27 2.05 2.55 2.48

4 6 8 2.31 3.48 3.20
12 2.18 3.15 2.97
16 2.12 3.01 2.86
20 2.09 2.93 2.80
24 2.06 2.88 2.76
28 2.05 2.84 2.73

do not have to be of equal size. The Tukey-Kramer procedure is used to
control the family wise significance level when the set of comparisons is all
pairwise. The group sizes do not have to be of equal size. When the group
sizes are the same the Tukey-Kramer procedure is then usually called the
Tukey procedure.

3 Suppose that the family of comparisons of interest is the set of all pair-
wise comparisons. Then the confidence intervals for all three methods
(Unadjusted t, Bonferroni, and Tukey-Kramer) can be written as

estimate± (multiplier)× SE(estimate)

where estimate = yi· − yj· and SE(estimate) =
√

MSE
√

1
ni

+ 1
nj

.

Table 5.6 provides the multipliers for the three methods for the family
of all pairwise comparisons when there are t = 3 treatments (m = 3
comparisons) comparisons and when there are t = 4 treatments (m = 6
comparisons) for certain degrees of freedom ν.

Note that the unadjusted t procedure multiplier is smallest and the Bon-
ferroni procedure multiplier is largest, with Tukey-Kramer procedure mul-
tiplier in between. Thus if used with the same set of data (same MSE),
the Bonferroni and Tukey-Kramer procedures will have wider intervals
than those for the unadjusted t procedure. The Bonferroni intervals will
be wider than the Tukey intervals but less so with increasing degrees of
freedom. Wider intervals are more likely to include 0 and thus less likely
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Table 5.7: P-values for Pairwise Comparisons of Box Covers

Cover Cover Mean Diff Std.Error DF t Value P-value Bonf P Tukey P

1 2 3.1 0.87 15 4.73 0.0003 0.0008 0.0007
1 3 2.58 0.87 15 2.98 0.0094 0.0281 0.0239
2 3 -1.52 0.87 15 -1.75 0.1007 0.3020 0.2201

to conclude significance difference in means. The Bonferroni and Tukey-
Kramer procedures are thus more conservative than the unadjusted t pro-
cedure with the Bonferroni procedure being more conservative than the
Tukey-Kramer procedure. Being more conservative is a good characteris-
tic of a procedure if in fact there are no differences among the means, but
not good if there are differences among the means. If there are differences
among the means somewhere then the Bonferroni and Tukey-Kramer will
have less statistical power to detect those differences than the unadjusted t
procedure. Thus a balance has to be struck between Type 1 error rate and
statistical power. The Tukey-Kramer procedure is often used because it
offers better protection against the type 1 error rate than the unadjusted t
test but has better statistical power than the Bonferroni procedure. How-
ever a researcher might use the unadjusted t procedure if the purpose of
the study is to select among several proposed treatments a few for further
study. The type I error rate may not of major concern in this situation.
The Tukey-Kramer or the Bonferroni procedures would be used in future
studies of the selected treatments.

5.7 P-values for Bonferroni and Tukey Methods

Computer programs, such as SAS and SPSS will report t statistics and two-
sided P-values for the Bonferroni and Tukey procedures as well as confidence
intervals. The P-values have been adjusted so that conclusions based on these
are equivalent to conclusions based on the confidence intervals. The t statistics
along with P-values are given in Table 5.7 for the cereal data.
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5.8 SAS Code for Chapter 5

5.8.1 Example 5.1

* Input sales (number of boxes) for
three types of box covers;

data CEREAL;
input BoxCover $ NumberBoxes;

datalines;
SportsHero 52.4
SportsHero 47.8
SportsHero 52.4
SportsHero 51.3
SportsHero 50.0
SportsHero 52.1
Child 50.1
Child 45.2
Child 46.0
Child 46.5
Child 47.4
Child 46.2
CerealBowl 49.2
CerealBowl 48.3
CerealBowl 49.0
CerealBowl 47.2
CerealBowl 48.6
CerealBowl 48.2
;

* Use proc glm to obtain results of F test
for overall differences in mean sales and
to obtain pairwise comparisons using
Multiple t, Bonferroni, and Tukey procedures;

proc glm data = CEREAL;
class BoxCover;
model NumberBoxes = BoxCover;
lsmeans BoxCover / cl pdiff t;
lsmeans BoxCover / cl pdiff t adjust = Bonferroni;
lsmeans BoxCover / cl pdiff t adjust = tukey;

run;
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Problems for Chapter 5

5.1 Suppose that there are t = 5 treatments in a study with 6 replications per
treatment. Suppose that the F test for overall differences is significant and
interest is in making all pairwise comparisons by constructing confidence
intervals for differences in pairs of means? Suppose that MSE is 36.

a. How many possible intervals are there? That is what is the value of
m?

b. What is the appropriate t percentile for the unadjusted t procedure
if the comparison wise error rate is set at 0.01. What is the margin of
error associated with each of the differences in sample means? What
is lower bound on the the family wise confidence level?

c. Suppose that the Bonferroni procedure is to be used with the family
wise confidence level required to be at least than 0.99. What is the
appropriate t-percentile? What is the margin of error associated with
each of the differences in sample means?

d. Suppose that the Tukey procedure is to be used with family wise
confidence level specified to be exactly 0.99. What is the appropriate
percentile from the Studentized Range distribution? What is the
margin of error associated with each of the differences in sample
means?

e. Which procedure would result in the widest confidence intervals?
Which would result in the narrowest confidence intervals? Explain.

5.2 Two students, Cheryl Butterworth and Josh Hiller, performed an exper-
iment to study the effect of beverage type on the amount of time for ice
cubes to melt. Types of beverage were coca-cola, orange juice, and water.
The beverages were left out over night to set them at a constant temper-
ature. Fifteen ice cubes of approximately the same size were randomly
assigned to fifteen identical cups. Equal amounts of beverage, five of each
kind, were randomly assigned to the cups. The amount of time (minutes)
for the ice cubes to melt was recorded and given below.

1. Coca cola 19 17 15 14 18
2. Orange Juice 27 28 30 26 27
3. Water 10 11 13 7 9

This is the data from Problem 4.4 in the Chapter 4 exercises. The sample
mean melting times for the Coca-cola, orange juice, and water treatments,
are, respectively, 16.6, 27.6, and 10.0. The F test for overall differences
in the beverages on melting time is significant (F = 102.22, P < 0.0001).
Mean squared error from the ANOVA is 3.87.
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a. Construct the Tukey-Kramer confidence intervals for all possible pair-
wise comparisons of the three population mean melting times. Use
a family wise confidence level of 99%. Which pairs of means are
significantly different?

b. What does the 99% experimentwise confidence level mean?

c. Would your confidence intervals be wider or narrower if the experi-
mentwise confidence level was 95%? Explain.

5.3 Suppose that a study has only t = 2 treatments and thus there is only
m = 1 pairwise comparison of interest. Then since α/2 and α/2m are the
same when m = 1 the t percentiles would be the same for the Multiple
t and Bonferroni procedures and thus the two procedures give the same
results. Show for the case when t = 2, comparison wise confidence of
0.95, and ν = 20 that the Multiple t procedure and the Tukey-Kramer
procedure give the same multiplier on the standard error and thus the
same confidence interval.



Chapter 6

Two Factor Completely
Randomized Design - Equal
Replications

6.1 Introduction and Notation

In this chapter we will consider studies that employ two factors: factor A
with a levels denoted by A1, A2, . . . , Aa and factor B with b levels denoted
by B1, B2, . . . , Bb. The treatments given to the experimental units are combi-
nations of the levels of A and B. For example, A may represent amount of water
given to a plant and B amount of fertilizer. Then the word “treatment” refers
to a combination of level of water and level of fertilizer.

If there are a = 2 levels of A and b = 3 levels of B then there are (2)(3) = 6
treatments which would be denoted by

A1B1, A1B2, A1B3, A2B1, A2B2, A2B3

. In the completely randomized design studied in this chapter the 6 treatments
would be assigned completely at random to the N experimental units. It is
assumed in this chapter that the number of replications per treatment is the
same and equal to n.

6.2 Example and the No Interaction Model

Suppose that in an agricultural experiment factor A is type of fertilizer with
a = 2 levels and factor B is a second factor of interest, watering regimen, with
b = 2 levels. Thus the four treatments are denoted by

A1B1, A1B2, A2B1, A2B2

103
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Table 6.1: Sample Randomization

A1B2 A2B1 A1B1 A2B1

A2B2 A1B1 A2B2 A1B2

A1B2 A2B1 A1B1 A2B2

A2B1 A1B2 A2B2 A1B1

.
Suppose that these four treatments are to be assigned completely at random

to 16 plots laid out in a rectangular arrangement with each treatment being ap-
plied to 4 plots. A schematic of the resulting randomization is given in Table 6.1
The response variable is tomato production in pounds for a plant.

Let the true mean tomato production (in pounds) for the four treatments
be

µ11, µ12, µ21, µ22

where µij is the mean production for treatment Aij .
We can apply the means model from Chapter 4 for each of the treatments

resulting in

y11k = µ11 + ε11k (6.1)
y12k = µ12 + ε12k (6.2)
y21k = µ21 + ε21k (6.3)
y22k = µ22 + ε22k (6.4)

for k = 1, . . . , 4. The errors εijk represent as in Chapter 4 the effects of extra-
neous variables on the tomato production of a plant, such as particular plot soil
fertility, genetic composition of the particular plant.

Suppose for the sake of discussion in this chapter that we know the true
treatment means to be

µ11 = 10, µ12 = 12, µ21 = 6, µ22 = 8

These values are given in Table 6.2 along with summaries of these treatment
means.

The true “marginal” mean production for fertilizer A1 averaged over the
two different watering regimens is µ1· = (10 + 12)/2 = 11. Similarly µ2· = 7
is the true “marginal” mean production for A2 averaged over the two water
regimens. The “grand mean” tomato production averaged over all 4 treatments
is µ·· = (10+12+6+8)/4 = 9. The true “main effect” of fertilizer A1 is defined
to be

α1 = µ1· − µ·· = 11− 9 = 2
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Table 6.2: Table of Treatment Means

Watering Regimen
B1 B2

Fertilizer
A1 µ11 = 10 µ12 = 12 µ1· = 11 α1 = 2
A2 µ21 = 6 µ22 = 8 µ2· = 7 α2 = −2

µ·1 = 8 µ·2 = 10 µ·· = 9
β1 = −1 β2 = 1

Similarly α2 = −2 is the true “main effect” of fertilizer A2. The true marginal
means for the water regimens and the true main effects of watering regimens
are defined similarly.

Note that each treatment mean can be written as the sum of the grand mean
+ effect of fertilizer + effect of watering regimen.

µ11 = 10 = µ·· + α1 + β1 = 9 + 2 + (−1) = 10

µ12 = 12 = µ·· + α1 + β2 = 9 + 2 + 1 = 12

µ21 = 6 = µ·· + α2 + β1 = 9 + (−2) + (−1) = 6

µ22 = 12 = µ·· + α2 + β2 = 9 + (−2) + 1 = 8

Thus each observed value of the response tomato production can be written

y11k = µ11 + ε11k = µ·· + α1 + β1 + ε11k

y12k = µ12 + ε12k = µ·· + α1 + β2 + ε12k

y21k = µ21 + ε21k = µ·· + α2 + β1 + ε21k

y22k = µ22 + ε22k = µ·· + α2 + β2 + ε22k

for k = 1, . . . , 4. This model is called the NO INTERACTION MODEL. Two
equivalent characterizations of this model are

• Each true treatment mean can be written as a sum of the grand mean,
factor A treatment effect, and factor B treatment effect.

• The difference between true treatment means at two levels of one factor
do not depend upon levels of the other factor. This is perhaps the more
intuitive condition.
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Figure 6.1: Interaction Plot: Tomato Production - No Interaction
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In the tomato production example, the difference between the true means
for B1 and B2 at level A1, µ12−µ11 = 12−10 = 2, is the same as the difference
between the true means for B1 and B2 at level A2, µ22 − µ21 = 8− 6 = 2.

Similarly the difference between the true means for A1 and A2 at level B1,
µ11 − µ12 = 10 − 6 = 4, is the same as the difference between the true means
for A1 and A2 at level B2, µ12 − µ22 = 12− 8 = 4.

In other words, the effect of water regimen does not depend on fertilizer or
the effect of fertilizer does not depend on watering regimen.

The concept of no interaction can be demonstrated with a plot such as that
in Figure 6.1. The plot is simply a plot of the means on the vertical axis versus
one of the factors on the horizontal axis. Lines are then drawn connecting values
having the same values on the 2nd factor. In Figure 6.1 Watering Regimen was
put on the horizontal axis and there are two lines corresponding to the two
levels of fertilizer. Fertilizer could just as well have been put on the horizontal
axis. If the factors do not interact then the lines will be parallel. If the factors
interact then the lines will not be parallel. We shall look at an example where
interaction exist shortly.

The tomato production example was a hypothetical example where it was
assumed that we knew the true means and could plot them. In practice one does
not know the true means and only has estimates of these, that is the sample
treatment means. Thus in practice one plots the sample means. If the lines are
approximately parallel then the no interaction assumption is plausible.

6.3 Interaction Model

Suppose that in the tomato production example the (true) treatment means
were as in Table 6.3.
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Table 6.3: Table of Treatment Means

B1 B2

A1 µ11 = 10 µ12 = 16 µ1· = 13 α1 = 3
A2 µ21 = 6 µ22 = 8 µ2· = 7 α2 = −3

µ·1 = 8 µ·2 = 12 µ·· = 10
β1 = −2 β2 = 2

The difference between the two treatment means at B1 and B2 for level A1 is
µ12−µ11 = 16− 10 = 6, which is NOT equal to the difference between the true
treatment means at B1 and B2 for level A2, µ22−µ21 = 8−6 = 2. Similarly the
difference in true treatment means at A1 and A2 when watering regimen is at
B1, µ11−µ21 = 10− 6 = 4 is NOT the same as the difference in true treatment
means at A1 and A2 when watering regimen is at B2 µ12 − µ22 = 16− 8 = 8.

Thus the effect of fertilizer DOES DEPEND upon watering regimen or the
effect of watering regimen on production depends on type of fertilizer. A graph-
ical representation is given in Figure 6.2. The lines corresponding to the levels
of fertilizer are NOT parallel.

Note also that the true means CANNOT expressed as the sum of the grand
mean, fertilizer effect, and watering regimen effect:

µ11 6= µ·· + α1 + β1 or 10 6= 10 + 3 + (−2) = 11
µ12 6= µ·· + α1 + β2 or 16 6= 10 + 3 + 2 = 15
µ21 6= µ·· + α2 + β1 or 6 6= 10 + (−3) + (−2) = 5
µ22 6= µ·· + α2 + β2 or 8 6= 10 + (−3) + 2 = 9

Thus we need a more complex model to cover possible situations like this.
Note that in order for the first equation above to be true we could add (−1) on
the right side. Thus

10 = 10 + 3 + (−2) + (−1)

To get (−1), µ·· + α1 + β1 was subtracted from µ11. Thus the new equation
looks like

µ11 = µ·· + α1 + β1 + [µ11 − (µ·· + α1 + β1)] or 10 = 10 + 3 + (−2) + [−1]

The necessary adjustments are illustrated for all equations below:

µ11 = µ·· + α1 + β1 + [µ11 − (µ·· + α1 + β1)] or 10 = 10 + 3 + (−2) + [−1]
µ12 = µ·· + α1 + β2 + [µ12 − (µ·· + α1 + β2)] or 16 = 10 + 3 + 2 + [1]
µ21 = µ·· + α2 + β1 + [µ21 − (µ·· + α2 + β1)] or 6 = 10 + (−3) + (−2) + [1]
µ22 = µ·· + α2 + β2 + [µ22 − (µ·· + α2 + β2)] or 8 = 10 + (−3) + 2 + [−1]
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Figure 6.2: Tomato Production - Interaction between Watering Regimen and
Fertilizer
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The adjustments of -1, 1, 1, and -1 that are made to the above inequalities
to make them equalities are called INTERACTION EFFECTS and are denoted
by αβij .

Thus a more general expression for the relationship of the treatment means
to effects is given in Equations 6.5. These expressions allow for the possibility
of INTERACTION between the two factors A and B. A statistical test involv-
ing the αβij that we develop later may conclude that there is no evidence of
interaction.

µ11 = µ·· + α1 + β1 + [µ11 − (µ·· + α1 + β1)] (6.5)
µ11 = µ·· + α1 + β1 + αβ11

µ12 = µ·· + α1 + β2 + [µ12 − (µ·· + α1 + β2)]
µ12 = µ·· + α1 + β2 + αβ12

µ21 = µ·· + α2 + β1 + [µ21 − (µ·· + α2 + β1)]
µ21 = µ·· + α2 + β1 + αβ21

µ22 = µ·· + α2 + β2 + [µ22 − (µ·· + α2 + β2)]
µ22 = µ·· + α2 + β2 + αβ22
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Thus the “full” model, means and effects, for each of the treatments is:

y11k = µ11 + ε11k

= µ·· + α1 + β1 + αβ11 + ε11k

y12k = µ12 + ε12k

= µ·· + α1 + β2 + αβ12 + ε12k

y21k = µ21 + ε21k

= µ·· + α2 + β1 + αβ21 + ε21k

y22k = µ22 + ε22k

= µ·· + α2 + β2 + αβ22 + ε22k

(6.6)

The model with interaction written as one equation is

yijk = µ·· + αi + βj + αβij + εijk (6.7)

where in general i = 1, . . . , a, j = 1, . . . , b, k = 1, . . . , n.
In practice the terms on the right side of the equation are unknown and

must be estimated based on the data to draw conclusions about these terms.

6.4 Data Decomposition

When a two factor experiment is carried out the data that results can be de-
composed using the general interaction model (6.7) discussed in the last sec-
tion. Based on this decomposition an analysis of variable table similar to that
in Chapter 4 can be formed.

Suppose the tomato experiment was carried out with the results in Table 6.4
being tomato production in pounds for four replications per treatment combi-
nation.

Note that y11· = 9.25, the average of the four treatment A1B1 observations,
is an estimate of the true treatment mean µ11. Similarly, y12· = 11.75, y21· =
5.75, and y22· = 8.00 are estimates of the true means µ12, µ21, µ22, respectively.
The values y1·· = 10.5, y2·· = 6.88, y·1· = 7.50, and y·2· = 9.88 are sample
estimates of µ1., µ2., µ.1, µ.2, respectively. The values α̂1 = 1.81 and α̂2 = −1.81
are estimates of the true effects α1 and α2. The values β̂1 = −1.19 and β̂2 = 1.19
are estimates of the true effects β1 and β2. Finally y··· = 8.69 is an estimate of
the true grand mean µ...

We can write each observed tomato yield y in terms of the estimated param-
eters. As an example,
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Table 6.4: Tomato Production with Means

B1 B2

A1 y11· = 9.25 8 y12· = 11.75 11 y1·· = 10.5 α̂1 = 1.81
8 11
9 12
12 13

A2 y21· = 5.75 5 y22· = 8.00 7 y2·· = 6.88 α̂2 = −1.81
6 8
6 8
6 9

y·1· = 7.50 y·2· = 9.88 y··· = 8.69

β̂1 = −1.19 β̂2 = 1.19

y111 = 8 = y11· + e111

= 9.25 + (8− 9.25)
= 9.25 + (−1.25)
= 8.69 + 1.81 + (−1.19) + [9.25− (8.69 + 1.81− 1.19)] + (−1.25)
= 8.69 + 1.81 + (−1.19) + (−0.06) + (−1.25)
= y··· + α̂1 + β̂1 + α̂β11 + e111

y123 = 12 = y12· + e123

= 11.75 + (12− 11.75)
= 11.75 + 0.25
= 8.69 + 1.81 + (1.19) + [11.75− (8.69 + 1.81 + 1.19)] + (0.25)
= 8.69 + 1.81 + 1.19 + 0.06 + 0.25
= y··· + α̂1 + β̂2 + α̂β12 + e123

The complete decomposition is given in Table 6.5. The interaction effect of
−0.07 is in theory the same as the other interaction effects in magnitude but
differs because of rounding.

In order to develop hypothesis tests to test for factor A, factor B, and in-
teraction effects, similar to Chapter 4, we will now calculate sums of squared
effects across the different observations. These sums of squared effects for the
tomato example are given in Table 6.6.

It can be shown that in general

SSTOT = SSGM + SSA + SSB + SSAB + SSE
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Table 6.5: Decomposition for Two Factor Model

yijk = y··· + α̂i + β̂j + α̂βij + eijk

8 = 8.69 + 1.81 + (-1.19) + (-0.06) + (-1.25)
8 = 8.69 + 1.81 + (-1.19) + (-0.06) + (-1.25)
9 = 8.69 + 1.81 + (-1.19) + (-0.06) + (-0.25)
12 = 8.69 + 1.81 + (-1.19) + (-0.06) + 2.75

11 = 8.69 + 1.81 + 1.19 + 0.06 + (-0.75)
11 = 8.69 + 1.81 + 1.19 + 0.06 + (-0.75)
12 = 8.69 + 1.81 + 1.19 + 0.06 + ( 0.25)
13 = 8.69 + 1.81 + 1.19 + 0.06 + (1.25)

5 = 8.69 + (-1.81) + (-1.19) + 0.06 + (-0.75)
6 = 8.69 + (-1.81) + (-1.19) + 0.06 + 0.75
6 = 8.69 + (-1.81) + (-1.19) + 0.06 + 0.25
6 = 8.69 + (-1.81) + (-1.19) + 0.06 + 0.25

7 = 8.69 + (-1.81) + (1.19) + -0.07 + (-1.00)
8 = 8.69 + (-1.81) + (1.19) + -0.07 + 0.00
8 = 8.69 + (-1.81) + (1.19) + -0.07 + 0.00
9 = 8.69 + (-1.81) + (1.19) + -0.07 + 1.00

Table 6.6: Sums of Squares for Two Factor Example

SSTOT = 82 + 82 + . . . + 92 = 1299
SSGM = 16(8.69)2 = 1208.26
SSA = 8(1.81)2 + 8(−1.81)2 = 52.42
SSB = 8(1.19)2 + 8(−1.19)2 = 22.66

SSAB = 4(−.06)2 + 4(.06)2 + 4(0.06)2 + 4(−0.07)2 = 0.0471
SSE = (−1.25)2 + . . . + (1.00)2 = 16.25
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In this example because of rounding we have approximate equality:

1299 ' 1208.26 + 52.42 + 22.66 + 0.0471 + 16.25 = 1299.64

The degrees of freedom associated with the different sums of squares are
equal to the following:

SS Degrees of Freedom Degrees of Freedom - Tomato Example
SSTOT N 16
SSGM 1 1
SSA (a-1) 1
SSB (b-1) 1

SSAB (a-1)(b-1) 1
SSE N - ab 12

Note that the degrees of freedom are additive in that degrees of freedom for
SSGM, SSA, SSB, SSAB, and SSE add to degrees of freedom for SSTOT.

N = 1 + (a− 1) + (b− 1) + (a− 1)(b− 1) + (N − ab)

or in this example,

16 = 1 + 1 + 1 + 1 + 12

Typically in computer calculations the grand mean is subtracted from each
value of the response y and this difference or deviation from the mean appears
on the left side of the decomposition. Then the relevant total sum of squares
is the “corrected” total sum of squares, which is the summing of the squares of
the deviations. The corrected total sum of squares would then equal

SSTOTC = SST − SSGM

Degrees of freedom associated with SST (corrected) = N − 1. In this exam-
ple, SST (corrected) = 1299− 1208.26 = 90.74 and df = N − 1 = 16− 1 = 15.
When correcting for the mean the sums of squares decomposition is

SSTOTC = SSA + SSB + SSAB + SSE

Mean squares are defined as in Chapter 4 by dividing sums of squares for
effects by their corresponding degrees of freedom. Thus for the tomato example,
MSA = 52.42/1 = 52.42, MSB = 22.66/1 = 22.66, MSAB = 0.0471/1 = 0.0471,
and MSE = 16.25/12 = 1.35.

6.5 F ratios and Hypothesis Testing

In this section we consider three hypothesis tests that can be conducted in a
two factor study: a test for interaction, for A main effects, and B main effects.
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The logic proceeds as in Chapter 4. For example, if there are truly no effects of
a factor then the size of the mean square for that effect (such as MSA,MSB, or
MSAB) based on the data should be roughly the same magnitude as the size of
mean squared error (MSE). If there truly are effects of a factor then the mean
square of that effect should be larger than mean squared error.

The expected values of the various mean squares can be shown to be

E[MSE] = σ2 (6.8)

E[MSA] = σ2 +
nb

∑a
i=1 α2

i

a− 1
(6.9)

E[MSB] = σ2 +
na

∑b
j=1 β2

j

b− 1
(6.10)

E[MSAB] = σ2 +
n

∑a
i=1

∑b
j=1(αβ)2ij

(a− 1)(b− 1)
(6.11)

Thus if there are no main effects for A, that is all αi are 0, then E[MSA] and
E[MSE] are both equal to σ2, and we would expect the observed values of MSA
and MSE to be about the same. If there are main effects of A, that is not all
of the αi are 0, then E[MSA] > E[MSE] and we would expected the observed
value of MSA to be larger than the observed value of MSE. Comparisons like this
form the basis for hypothesis testing in the two factor completely randomized
design. We first consider the hypothesis test for interaction between A and B
since the significance or lack thereof affects the interpretation of the test for A
and B main effects.

6.5.1 F test for AB interaction

The null and alternative hypotheses for the test of interaction between factors
A and B in general form are

Ho : αβij = 0 for each pair i, j

and

Ha : αβij 6= 0 for some pair i, j

The test statistic is

F =
MSAB

MSE
=

SSAB/(a− 1)(b− 1)
SSE/(N − ab)

where

SSAB = n

a∑

i=1

b∑

j=1

(α̂β)2ij = n

a∑

i=1

b∑

j=1

[yij. − (y... + α̂i + β̂j)]2
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and

SSE =
a∑

i=1

b∑

j=1

n∑

k=1

[eijk]2 =
a∑

i=1

b∑

j=1

n∑

k=1

[yijk − yij.]
2

The F statistic measures variation in the treatment means from what is expected
under the assumption of no interaction, relative to the variation within groups.

If the null hypothesis is true and the assumption of independent, normally
distributed errors with mean 0 and common standard deviation holds, the F
ratio above has the “F” distribution with ν1 = (a− 1)(b− 1) numerator degrees
of freedom and ν2 = (N − ab) denominator degrees of freedom.

At a significance level of α the null hypothesis would be rejected if the
observed value of the test statistic, Fo, is larger than Fα;(a−1)(b−1),N−ab, the
upper α probability point from the appropriate F distribution.

We will usually use a statistical package to obtain a P-value and use that to
make the decision. The null hypothesis is then rejected if the P − value ≤ α,
where P − value = P [F ≥ Fo].

6.5.2 F test for A main effects

The null and alternative hypotheses for the test of A main effects are

Ho : α1 = α2 = . . . = αa = 0

or equivalently in terms of A main effect or marginal means,

H0 : µ1· = µ2· = . . . = µa·

The alternative hypothesis is

Ha : not all α′is = 0

or equivalently,
Ha : not all µ′i·s are equal

The test statistic is

F =
MSA

MSE
=

SSA/(a− 1)
SSE/(N − ab)

where SSA = nb
∑a

i=1 α̂2
i = SSA = nb

∑a
i=1(yi·−y···)2 and SSE is as in the test

for interaction. Note that F measures variation in the Factor A level marginal
means (between group variation) relative to the variation within groups.

If the null hypothesis is true and the assumption of independent, normally
distributed errors with mean 0 and common standard deviation holds, the F
ratio above the“F” distribution with ν1 = (a− 1) numerator degrees of freedom
and ν2 = (N − ab) denominator degrees of freedom.

At a significance level of α the null hypothesis would be rejected if the
observed value of the test statistic, Fo, is larger than Fα;(a−1),N−ab, the upper
α probability point from the appropriate F distribution or equivalently if P −
value ≤ α, where P − value = P [F ≥ Fo].
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6.5.3 F test for B main effects

The null and alternative hypotheses for the test of B effects are

Ho : β1 = β2 = . . . = βb = 0

or equivalently in terms of B main effect or marginal means,

H0 : µ·1 = µ·2 = . . . = µ·b

The alternative hypothesis is

Ha : not all β′js = 0

or equivalently,
Ha : not all µ′·js are equal

The test statistic is

F =
MSB

MSE
=

SSB/(b− 1)
SSE/(N − ab)

where SSB = na
∑b

j=1 β̂2
j = na

∑b
j=1(y·j· − y···)2 and SSE is as in the test

for interaction. Note that F measures variation in the Factor B level marginal
means (between group variation) relative to the variation within groups.

If the null hypothesis is true and the assumption of independent, normally
distributed errors with mean 0 and common standard deviation holds, the F
ratio above the “F” distribution with ν1 = (b−1) numerator degrees of freedom
and ν2 = (N − ab) denominator degrees of freedom.

At a significance level of α the null hypothesis would be rejected if the
observed value of the test statistic, Fo, is larger than Fα;(b−1),N−ab, the upper
α probability point from the appropriate F distribution or equivalently if P −
value ≤ α, where P − value = P [F ≥ Fo].

6.5.4 Testing Strategy

Typically the F test for interaction is conducted first. If the F test for interaction
is not significant at some prescribed α level then the F test for each of factor
A and B main effect (marginal) means µi· and µ·j is conducted at prescribed
α levels. If the F test for factor A (or B) main effects is significant then a
multiple comparison procedure might be used to determine which of the main
effect (marginal) means are different.

If the F test for interaction is significant and the interactions are deemed to
be important then the conclusion is that differences in main effect (marginal)
means for levels of one factor are not representative of differences in those levels
across all levels of the other factor. Comparisons of treatment combination
means, µij , rather than main effect means are more appropriate. For example
treatment combination means involving levels of A are compared and this is
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Table 6.7: ANOVA Table for Tomato Example

Source of Variation Df SS MS F P-value

Fert 1 52.56 52.56 38.82 <.0001
Water 1 22.56 22.56 16.66 0.0015

Fert*Water 1 0.06 0.06 0.05 0.8335
Error 12 33.50 16.25 1.35

Total (Corrected) 15 91.44

done at each level of factor B. Or treatment combination means involving levels
of B are compared and this is done at each level of A. Examples are provided
in the following sections.

Some practitioners use a liberal significance level for the F test for interac-
tion, such as 0.10 or 0.15, instead of the usual 0.05 level. This increase in the
Type I error rate decreases the Type II error rate. The philosophy is that the
Type II error rate is more serious. The Type II error would be concluding no
interaction when there is interaction. A conclusion of no interaction would then
result in comparison of main effect (marginal) means for a factor when these
comparisons are not representative across all levels of the other factor. The
Type I error would perhaps not be regarded as serious. This would mean con-
cluding interaction and thus comparing treatment combination means when in
fact there is no interaction and one could have simplified results by comparing
main effect means. The 0.10 level will normally be used for testing interaction
in this text unless otherwise stated.

6.6 Examples

6.6.1 Tomato Weight Example

Table 6.7 gives an ANOVA table for the tomato example based on computer
software. Note that the numbers in this table differ slightly from those of Table
6.6 because of rounding used for that table. The interaction effect is not sig-
nificant at the α = 0.05 level with F = 0.05, P = 0.8335, providing no formal
evidence of the effects of fertilizer depending upon water (or the effects of water
depending upon fertilizer). There is evidence at α = 0.05 that both fertilizer
(F = 38.82, P < 0.0001) and water (F = 16.66, P = 0.0015) affect tomato
production.
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Table 6.8: Paper Towel Example Data

Liquid
Water Dishwashing Detergent Vegetable Oil

Paper Towel
Coronet 26 19 22

22 16 25
22 15 29

Kleenex 43 33 39
41 38 41
41 38 45

Scott 27 21 27
26 20 25
25 21 25

6.6.2 Paper Towel Example - No Interaction

A former student conducted an experiment to compare the amount of three
liquids absorbed by three brands of paper towels. The three liquids (Factor A)
were

• Water

• Dishwashing Detergent

• Vegetable oil

The three brands of paper towels were

• Coronet

• Kleenex

• Scott

Each liquid was tested with each brand three times for a total of N = 27 ob-
servations on amount of liquid absorbed. The testing was conducted as follows:
Fifty milliliters of each liquid was poured/measured into a graduated cylinder
and then poured into a container. The paper towel was then submerged in the
container. After 1 minute had passed, the paper towel was removed, letting
the excess liquid drip off the towel for 30 seconds. The remaining liquid in the
container was then poured back into the graduated cylinder. This remaining
amount was then subtracted from 50 to get the amount of liquid absorbed. This
was done 27 times, at each time choosing a liquid and brand to use. The amount
of liquid absorbed (mL) for the various liquid and brand combinations is given
in the Table 6.8.
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Figure 6.3: Plot of Amount of Liquid Absorbed versus Towel/Liquid
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Figure 6.3 is a plot of the amounts of liquid absorbed versus the treatment
combination of brand of towel and liquid. A few observations can be made
based on the plot. Kleenex appears to have been most absorbent regardless of
type of liquid used. The comparison of liquid types is similar across the brands,
with the amount of detergent absorbed being less than similar amounts of water
and oil. Thus there does not appear to be any evidence of interaction between
brand and liquid used.

Mean absorption for the nine treatments is given in Table 6.9 and an inter-
action plot is given in Figure 6.4.

Table 6.9: Means of Amount Absorbed (mL): Paper Towel Example

Liquid
Water Dishwashing Detergent Vegetable Oil

Paper Towel
Coronet 23.3 16.7 25.3
Kleenex 41.7 36.3 41.7
Scott 26.0 20.7 25.7
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Figure 6.4: Plot of Amount of Liquid Absorbed versus Towel/Liquid
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An interaction plot with Liquid on the horizontal axis and lines for the three
brand of paper towel is given in Figure 6.4. Note that the lines are approximately
parallel, indicating that the difference in amount absorbed by two paper towel
brands is about the same regardless of the liquid.

The linear model for the data is given by

yijk = µ·· + αi + βj + αβij + εijk (6.12)

with

i = 1, 2, 3 representing ith level (Coronet, Kleenex, Scott) of Paper Towel

j = 1, 2, 3 representing jth level (water, detergent, oil) of Liquid

k = 1, 2, 3 is an index on the response amount of liquid absorbed with a
treatment combination

yijk represents the kth observation on amount absorbed for towel i and liquid
j

µ·· = the true grand mean of amount absorbed

αi = the true main effect of the ith level of paper towel on amount absorbed

βj = the true main effect of the jth level of liquid on amount absorbed

αβij = the true interaction effect of the ith level of paper towel and jth level
of liquid on amount absorbed
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Table 6.10: ANOVA Table for Paper Towel Example

Source of Variation Df SS MS F P-value

Towel 2 1747.19 873.59 180.05 <.0001
Liquid 2 221.41 110.70 22.82 <.0001
Towel*Liquid 4 12.59 3.14 0.65 0.6350
Error 18 87.33 4.85

Total (Corrected) 26 2068.5

εijk = the effects of extraneous variables on the kth amount at the ith paper
towel and jth liquid

The ANOVA table for the Paper Towel example is given in Table 6.10.
There is no evidence of interaction between Towel Brand and Liquid at the
0.10 level of significance with F = 0.65, P = 0.6350. There is evidence at the
0.05 level of both brand effects (F = 180.05, P < .0001) and Liquid effects
(F = 22.82, P < .0001).

Since there is no evidence of interaction between brand and liquid, marginal
means of amount absorbed will be compared among the three brands using
Tukey-Kramer simultaneous confidence intervals. The marginal means of amount
absorbed for the Coronet, Kleenex, and Scott brands, are respectively, y1·· =
21.8, y2·· = 39.9, and y3·· = 24.1

For two levels i and i′ of Towel Brand, the general form of the interval for
µi· − µi′·· and simultaneous confidence level of 95% is

yi·· − yi′·· ±
q0.05;ν,a√

2

√
MSE

√
1
bn

+
1
bn

where yi· and yi′·· refer, respectively, to the marginal means of amount absorbed
for levels i and i′ of brand of towel. The denominator bn = (3)(3) in the
denominators refer to the number of observations used to calculate the marginal
means. The value of MSE is 4.85 with ν = 18 degrees of freedom. From Table
A.6 with ν = 18 and t = a = 3 the upper 0.05 probability point q0.05;18,3 is 3.61.

Thus the endpoints of the simultaneous 95% Tukey-Kramer confidence in-
tervals are

21.8− 39.9 ± 3.61√
2

√
4.85

√
1
9 + 1

9

21.8− 24.1 ± 3.61√
2

√
4.85

√
1
9 + 1

9

39.9− 24.1 ± 3.61√
2

√
4.85

√
1
9 + 1

9

or
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−18.1 ± 2.7
−2.3 ± 2.7
15.8 ± 2.7

Thus the three intervals are:

−20.8 ≤ µ1. − µ2. ≤ −15.4
−5.0 ≤ µ1. − µ3. ≤ 0.4
13.1 ≤ µ2. − µ3. ≤ 18.5

The Kleenex brand results in higher absorption than either of the other
two brands. The mean absorption for Kleenex is estimated to be between 15.4
and 20.8 milliliters higher than that for Coronet and between 13.1 and 18.5
milliliters higher than that for Scott. There is no evidence of a difference in
mean absorption between the Coronet and Scott brands. These conclusions are
based on an overall confidence level of 95%.

Since the F test for overall differences in liquids is significant, a set of simul-
taneous 95% Tukey-Kramer confidence intervals will be used to compare the
three liquids. The marginal means of amount absorbed for Water, Detergent,
and Oil, are, respectively, y·1· = 30.3, y·2· = 24.6, and y·3· = 30.9

The general form of the interval for µ·j − µ·j′ is

y·j· − y·j′· ±
q0.05;ν,b√

2

√
MSE

√
1
an

+
1
an

where y·j· and y·j′· refer, respectively, to the marginal means of amount
absorbed for levels j and j′ of the factor liquid. The denominator an = (3)(3)
in the denominators refer to the number of observations used to calculate the
marginal means. The value of MSE is 4.85 with ν = 18 degrees of freedom.
From Table A.6 with ν = 18 and t = b = 3 the upper 0.05 probability point
q0.05;18,3 is 3.61.

Thus the endpoints of the simultaneous 95% Tukey-Kramer confidence in-
tervals are

30.3− 24.6 ± 3.61√
2

√
4.85

√
1
9 + 1

9

30.3− 30.9 ± 3.61√
2

√
4.85

√
1
9 + 1

9

24.6− 30.9 ± 3.61√
2

√
4.85

√
1
9 + 1

9

or

−18.1 ± 2.7
−2.3 ± 2.7
15.8 ± 2.7

Thus the three intervals are:
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3.0 ≤ µ.1 − µ.2 ≤ 8.4
−3.3 ≤ µ.1 − µ.3 ≤ 2.1
−9.0 ≤ µ.2 − µ.3 ≤ −3.6

On average less detergent was absorbed than either water or oil. It is es-
timated that the mean amount of detergent absorbed is between 3.0 and 8.4
milliliters less than that of water and between 3.6 and 9.0 milliliters less than
than of oil. There was no significant difference between the mean amounts
of water and oil absorbed. These conclusions are made with an overall 95%
confidence level.

6.6.3 Example with Interaction

This example is taken from Littel, Stroup, and Freund [12]. An experiment was
conducted to compare three seed growth-promoting methods (A,B,C) for five
different varieties of turf grass (V1,V2,V3,V4,V5). Seeds from each variety and
method combination were planted in 6 pots. The resulting 90 pots were placed
in a growth chamber and after four weeks the dry matter was measured for each
pot. The resulting yields are given in Table 6.11.

A plot of the yields versus treatment combinations is given in Figure 6.5.
Note that seed growth-promoting method A appears to be the best regardless

of the variety. The comparison of methods B and C seems to depend upon the
variety. Also variability in yields appear not to depend much on treatment
combination.

Mean yield for the nine treatment combinations of method and variety along
with marginal means corresponding to levels of each factor are given in Ta-
ble 6.12. Note that the marginal mean yields and treatment mean yields for
method A are consistently higher than the corresponding values for Methods
B and C. The marginal and treatment mean yields for method B are all lower
than that for method C except for variety V5, indicating possible interaction.

An interaction plot is given in Figure 6.6
The interaction plot more clearly shows evidence of interaction between

method and variety as noted in Figure 6.5.
The linear model for the data is given by

yijk = µ·· + αi + βj + αβij + εijk (6.13)

where

i = 1(A), 2(B), 3(C) indexes the seed growth promoting method

j = 1(V 1), 2(V 2), 3(V 3), 4(V 4), 5(V 5) indexes the variety of turf grass

k = 1, 2, 3, 4, 5, 6 indexes the yield of dry matter for a particular combination
(i, j)
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Table 6.11: Yield Data

Variety
V1 V2 V3 V4 V5

Method
A 22.1 27.1 22.3 19.8 20.0

24.1 15.1 25.8 28.3 17.0
19.1 20.6 22.8 26.8 24.0
22.1 28.6 28.3 27.3 22.5
25.1 15.1 21.3 26.8 28.0
18.1 24.6 18.3 26.8 22.5

B 13.5 16.9 15.7 15.1 21.8
14.5 17.4 10.2 6.5 22.8
11.5 10.4 16.7 17.1 18.8
6.0 19.4 19.7 7.6 21.3
27.0 11.9 18.2 13.6 16.3
18.0 15.4 12.2 21.1 14.3

C 19.0 20.0 16.4 24.5 11.8
22.0 22.0 14.4 16.0 14.3
20.0 25.5 21.4 11.0 21.3
14.5 16.5 19.9 7.5 6.3
19.0 18.0 10.4 14.5 7.8
16.0 17.5 21.4 15.5 13.8

Table 6.12: Yield Means: Grasses Example

Variety
V1 V2 V3 V4 V5 Marginal Mean

Method
A 21.8 21.8 23.1 26.0 22.3 23.0
B 15.1 15.2 15.4 13.5 19.2 15.7
C 18.4 19.9 17.3 14.8 12.6 16.6

Marginal Mean 18.4 19.0 18.6 18.1 18.0
y... = 18.4
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Figure 6.5: Plot of Yield versus Method/Variety
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Figure 6.6: Interaction Plot Grass Data
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Table 6.13: ANOVA Table for Grasses Example

Source of Variation Df SS MS F P-value

Method 2 953.16 476.58 24.25 <.0001
Variety 4 11.38 2.85 0.14 <.0001
Method*Variety 8 374.49 46.81 2.38 0.0241
Error 75 1473.77 19.65

Total (Corrected) 89 2812.79

yijk represents the kth observation on yield of dry matter for method i and
variety j

µ·· = the true grand mean of yield of dry matter

αi = the true main effect of the ith method on yield

βj = the true main effect of the jth variety on yield

αβij = the true interaction effect of the ith level of method and jth variety
level on yield

εijk = the effects of extraneous variables on the kth yield at the ith method
and jth variety, such as variations in seeds, pot characteristics, etc.

The ANOVA table for the Grasses example is given in Table 6.13. There is
evidence of interaction at the 0.10 level of significance (F = 2.38, P − value =
0.0241) consistent with the interaction plot.

When there is interaction comparison of marginal means of levels of a factor
may be misleading since this would imply that the comparison is the same for the
levels of the other factor. The appropriate follow-up is a comparison of treatment
means rather than marginal means. Treatment means for the 3 methods could
be compared for each variety or treatment means for the 5 varieties could be
compared for each method. The former comparison will be carried out here
using the Tukey-Kramer method. Simultaneous 95% Tukey-Kramer confidence
intervals will be calculated for differences in population treatment means µij of
methods at each of the 5 levels of variety.

The Tukey-Kramer confidence intervals for differences in population treat-
ment mean yields for methods A (i = 1), B (i = 2), C (i = 3) when variety is
V 1(j = 1) , with overall confidence level 0.95 are

y11· − y21· ± q0.05;ν,t√
2

√
MSE

√
1
n + 1

n

y11· − y31· ± q0.05;ν,t√
2

√
MSE

√
1
n + 1

n

y21· − y31· ± q0.05;ν,t√
2

√
MSE

√
1
n + 1

n
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where q0.05;ν,t is the upper 0.05 probability point from the Studentized range
distribution. From the ANOVA table ν = 75 is the degrees of freedom associated
with MSE = 19.65. The value n = 6 is the number of observations contributing
to a method mean at a particular variety. Thus the standard error of the

difference between two method (sample) means is
√

2(19.65)
6 = 2.56. Table A.6

does not have a value for ν = 75 degrees of freedom associated with error;
we will use the conservative value of ν = 50. Thus with t = 3 levels for the
method factor at a particular variety V 1, Table A.6 gives q0.05;50,3 = 3.42 for
the upper 0.05 probability point from the Studentized range distribution. Thus
the multiplier on the standard error is 3.42√

2
= 2.42. The margin of error for a

difference in sample means is thus (2.42)(2.56) = 6.20. Thus, using means from
Table 6.12, the endpoints of the intervals for the differences µ11−µ21, µ11−µ31,
and µ21 − µ31 are:

(21.8− 15.1)± 6.20 (21.8− 18.4)± 6.20 (15.1− 18.4)± 6.20

The simultaneous 95% confidence intervals for the family of comparisons of
the three methods for variety V 1 are:

0.5 ≤ µ11 − µ21 ≤ 12.9
−2.8 ≤ µ11 − µ31 ≤ 9.6
−9.5 ≤ µ21 − µ31 ≤ 2.9

Thus for variety V 1(j = 1) only method A results in significantly higher yield
compared to method B.

The simultaneous 95% confidence intervals for the family of comparisons of
the three methods for variety V 2(j = 2) are:

0.4 ≤ µ12 − µ22 ≤ 12.8
−4.3 ≤ µ12 − µ32 ≤ 8.1
−10.9 ≤ µ22 − µ32 ≤ 1.5

Comparisons of the method means for variety V 2 are similar to those of variety
V 1.

The simultaneous 95% confidence intervals for the family of comparisons of
the three methods for variety V 3 are:

1.5 ≤ µ13 − µ23 ≤ 13.9
−0.4 ≤ µ13 − µ33 ≤ 12.0
−8.1 ≤ µ23 − µ33 ≤ 4.3

Comparisons of the method means for variety V 3 are similar to those of variety
V 1 and V 2.

The simultaneous 95% confidence intervals for the family of comparisons of
the three methods for variety V 4(j = 4) are:

6.3 ≤ µ14 − µ24 ≤ 18.7
5.0 ≤ µ14 − µ34 ≤ 17.4

−7.5 ≤ µ24 − µ34 ≤ 4.9
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For variety V 4, method A results in significantly higher yields when compared
to both methods B and C.

The simultaneous 95% confidence intervals for the family of comparisons of
the three methods for variety V 5(j = 5) are:

−3.1 ≤ µ15 − µ25 ≤ 9.3
3.5 ≤ µ15 − µ35 ≤ 15.9
0.4 ≤ µ25 − µ35 ≤ 12.8

For variety V 5 the mean yield for method A is not significantly higher than for
method B as it was for the other four varieties. Method A results in significantly
higher yield when compared to C, similar to variety V 4. Method B results in
significantly higher yield when compared to method C, unlike the insignificant
comparisons between these two methods for the other varieties.
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6.7 SAS Code for Chapter 6

6.7.1 Paper Towel Example

* Paper Towel Example;

* Input data;
data PaperTowel;

input Towel $ Liquid $ Treatment $ AmountAbsorbed;
datalines;
Coronet Water CW 26
Coronet Water CW 22
Coronet Water CW 22
Coronet Detergent CD 19
Coronet Detergent CD 16
Coronet Detergent CD 15
Coronet Oil CO 22
Coronet Oil CO 25
Coronet Oil CO 29
Kleenex Water KW 43
Kleenex Water KW 41
Kleenex Water KW 41
Kleenex Detergent KD 33
Kleenex Detergent KD 38
Kleenex Detergent KD 38
Kleenex Oil KO 39
Kleenex Oil KO 41
Kleenex Oil KO 45
Scott Water SW 27
Scott Water SW 26
Scott Water SW 25
Scott Detergent SD 21
Scott Detergent SD 20
Scott Detergent SD 21
Scott Oil SO 27
Scott Oil SO 25
Scott Oil SO 25
;
run;
* Calculate and print means for amount absorbed;
proc means data = PaperTowel;

class Towel Liquid;
var AmountAbsorbed;
output out = Summary mean = MeanAbsorbed;

run;
proc print data = Summary;
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run;

* Proc glm for obtaining ANOVA table and Tukey-Kramer pairwise comparisons;
proc glm data = PaperTowel;

class Towel Liquid;
model AmountAbsorbed = Towel Liquid Towel*Liquid;
lsmeans Towel Liquid / pdiff cl t adjust = tukey;

run;
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Problems for Chapter 6

6.1 The yield of tomato plants (pounds per plant) depends upon the type of
fertilizer used. Two important constituents of fertilizer are (A) potash
content (percent) and (B) nitrogen content (percent). At an agricultural
experiment station several fertilizer combinations are used. The yield is
measured for three tomato plants with each combination. The mean yield
at each combination is given below. (Saliva, 1990)

Nitrogen
5% 10% 15% 20%

Potash
10% 10.0 10.3 12.7 8.3
15% 8.3 12.3 16.0 12.7

Suppose that MSE is 3.625.

a. Determine the estimated main effects of Potash

b. Determine the estimated main effects of Nitrogen

c. Determine the estimated interaction effects of Potash and Nitrogen

d. Carry out an F test to determine if there are true interaction effects.

e. Carry out an F test to determine if there are true Potash main effects.

f. Carry out an F test to determine if there are true Nitrogen main
effects.

6.2 The author’s son used his Nerf gun to shoot at a target on a glass door.
The target wa a circle having roughly the same diameter of the Nerf bullet.
He shot the gun from three ranges:

• Short: 5 feet from the door

• Medium: 10 feet from the door

• Long: 15 feet from the door
He also shot the gun using both his dominant right hand and his left
hand. He started each shooting by holding the gun in an upright
position. He was then instructed to aim and then after two seconds
was instructed to shoot at the target. There were 5 replications of
each combination of shooting distance and hand assigned completely
at random through time. Thus this is a two-factor completely ran-
domized design.
Accuracy was measured by how far away (to the nearest 1/8 inch)
the closest edge of the bullet was from the closest edge of the target.
If the bullet touched the target at all, then the accuracy was 0. So
smaller values of accuracy here denote closer shots to the target.
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Left Hand Right Hand
Accuracy Time Order Accuracy Time Order

Shooting Distance
Short 0 3 3.375 1

1.500 7 0.375 10
0.000 13 2.125 16
0.625 15 0.250 24
2.000 19 0.500 29

Medium 3.500 5 1.000 2
3.250 9 4.875 18
0.125 17 1.000 20
3.250 21 3.250 23
2.125 26 4.625 28

Long 13.250 4 3.125 12
7.000 6 1.125 14
8.125 8 14.375 22
7.750 11 3.375 27
8.750 25 9.125 30

a. Construct an interaction plot putting HAND on the horizontal
axis. Describe what you see in the plot. Is there evidence of
interaction between hand used and distance.

b. Conduct a test of interaction between hand used and distance
using a significance level of 0.10.

i. If the interaction term is significant, use simultaneous 95%
Tukey-Kramer confidence intervals to make pairwise com-
parisons of the mean accuracies of the three distances when
using the left hand. Repeat this procedure for the right hand.

ii. If the interaction term is not significant, test for differences
in distance main effect means. Also test for differences in
hand main effect means. Make pairwise comparisons using
simultaneous 95% Tukey-Kramer confidence intervals where
appropriate.

6.3 Alissa Wunder did an experiment to study the effect of heat in a
microwave on the expansion of a marshmallow. Marshmallows were
placed at the bottom of a mug and the mug placed in a microwave
at one of two settings, medium and high. Three different brands of
marshmallows were also studied (Food Lion, Walmart, and Kraft Jet
Puff). The experiment was replicated four times at each combina-
tion of microwave setting and brand for a total of 24 marshmallow
roastings. Marshmallows were tested one at a time with the particu-
lar setting and brand being randomly selected. Thus the experiment
is a two factor completely randomized design. The data from the
experiment is given in the following table.
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Time Order Brand Level Amount of Time(seconds)
2 Food Lion Medium 16
8 37
14 15
19 16
1 Food Lion High 19
11 18
18 18
23 23
3 Jet Puff Medium 39
10 38
17 39
20 37
6 Jet Puff High 16
9 17
15 18
21 17
4 WalMart Medium 15
12 44
16 44
22 43
5 WalMart High 16
7 19
13 22
24 20

a. Construct a plot of amount of time versus combination of brand
and microwave level. Draw conclusions based on the plot.

b. Give a model for the data and describe the terms of the model
in context.

c. Use a statistical program to obtain an ANOVA table with P-
values.
i. What is the estimate of the variance of the error terms?
ii. If the interaction term is significant at the 0.10 level, use

simultaneous 95% Tukey-Kramer confidence intervals at each
level of microwave to make pairwise comparisons of the mean
times of the store brands.

iii. If the interaction term is not significant at the 0.10 level of
significance perform the F test for differences in main ef-
fect mean amount of time across brands. Also perform the
F test for differences in main effect mean amount of time
across microwave level. Make pairwise comparisons using
simultaneous 95% Tukey-Kramer confidence intervals where
appropriate.

6.4 Annie Hambrick and Kristen Haug in 2004 compared the melting
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times of different brands of butter. The brands used were Land
O’Lake, Great Value (Walmart), and Cabot. They were also in-
terested in comparing melting times for different heat source and
thought that perhaps heat source would have an effect on the com-
parison of the brands. So another factor, heat source, was studied:
burner on a stove or toaster oven. The stove burner and toaster oven
were turned on at the start of the experiment and remained on dur-
ing the entire time of the experiment. The heat settings for the two
sources were set so that in theory roughly the same temperature was
produced. A replication involved the selection of a brand at random
and then the selection of a heat source. One tablespoon of the se-
lected brand of butter was then put in a sauce pan if the stove was
used or put on a foil covered tray if the toaster oven was selected.
The sauce pan was put on the burner for two minutes before placing
the butter in it. The saucepan was washed between replications with
soap and hot water to prevent the pan from cooling down completely.
In the event that the saucepan cooled down, it was left on the burner
for two minutes before moving on to the next replication. The tray
remained in the toaster oven the entire experiment - only the piece
of foil with the butter was removed. The amounts of time to butter
meltdown are given in the following table.

Time Order Brand Method Amount of Time(seconds)
1 Land-O-Lakes Stove 173
2 Cabot Stove 97
3 Great Value Stove 150
4 Land-O-Lakes Stove 125
5 Great Value Stove 154
6 Land-O-Lakes Toaster Oven 166
7 Land-O-Lakes Toaster Oven 179
8 Great Value Stove 157
9 Land-O-Lakes Stove 158
10 Great Value Toaster Oven 206
11 Cabot Stove 110
12 Great Value Toaster Oven 195
13 Cabot Toaster Oven 177
14 Cabot Toaster Oven 197
15 Land-O-Lakes Toaster Oven 203
16 Cabot Toaster Oven 183
17 Cabot Stove 126
18 Great Value Toaster Oven 205

a. Construct a plot of amount of time versus combination of brand
and heat source. Is there evidence of a brand effect? heat source
effect?
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b. Give a model for the data and describe the terms of the model
in context.

c. Conduct a test of interaction between heat source and brand
using a significance level of 0.10.
i. If the interaction is significant, use simultaneous 95% Tukey-

Kramer confidence intervals to make pairwise comparisons
of the levels of brands only for the oven heat. Repeat this
procedure when heat source is the stove. Draw conclusions.

ii. If the interaction term is not significant, then use the F test
to test for differences in sources of heat. Use the F test
to test for differences in main effect means across brands.
Make appropriate pairwise comparisons using Tukey-Kramer
simultaneous confidence intervals.

6.5 Consider the following incomplete ANOVA table for a two factor
completely randomized design.

Source of Variation Df SS MS F

A 3 310
B 2
A*B 80
Error 28 400

Total (Corrected) 35 890

a. How many levels of A are there? How many levels of B?
b. What is the total number of observations on the response vari-

able?
c. At a significance level of α = 0.05 is the interaction significant?

Use a critical F value from Table A.4.
d. At a significance level of α = 0.05 are the A main effects signifi-

cant? Use a critical F value from Table A.4 to make a decision.
e. At a significance level of α = 0.05 are the B main effects signifi-

cant? use a critical F value from Table A.4 to make a decision.
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Chapter 7

Blocking and the
Randomized Complete
Block Design

7.1 Blocking Designs Compared to Completely
Randomized Designs

Recall from Chapter 1 that there are three ways that researchers “control” for
the potentially biasing effects of extraneous variables.

a. Randomization

b. Blocking

c. Direct Control

Randomization means assigning the treatments to the experimental units
at random so as to balance out the effects of extraneous variables among the
treatment groups. It is important to note that the effects of extraneous variables
balanced out by randomization are not eliminated altogether. In fact for small
group sizes randomization may not work well at all. Any designs which employ
only randomization are called completely randomized designs.

Direct control means that we only use experimental units which have con-
stant values with regard to some extraneous variable. For example, if gender
is an extraneous variable, then we might only use females in the study. In this
form of control the effects of the extraneous variable are eliminated altogether
but of course, the scope of the conclusions are limited.

Blocking is a form of control whereby experimental units are “blocked” or
grouped into homogeneous sets and treatments are then assigned at random
within each block. By grouping the units into sets, we can in the analysis
remove the effects of the blocking variables from experimental error and thus
make for a more precise comparison of treatments. More precisely, the purpose
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of blocking is to reduce the standard deviation, σ, of experimental error. In
theory blocking will eliminate altogether the effects of an extraneous variable–
in practice the effect may not be eliminated altogether, but reduced to a certain
extent.

As an example of blocking suppose that a researcher wants to compare four
brands of tires for treadwear by having the tires put on cars and driven. Suppose
that there are four cars available with thus 16 tire positions. One possible design,
the completely randomized design, randomly assigns 16 of the tires, 4 of
each brand, to the 16 tire positions on the four cars in a completely randomized
fashion. The resulting assignment could turn out as follows:

Left Front Right Front Left Rear Right Rear
Car 1 A C A A
Car 2 C B A B
Car 3 D C B D
Car 4 C B D D

To emphasize: this is the result of assigning the brands completely at ran-
dom to the 16 tire positions, that is a completely randomized design.

Intuitively, the completely randomized design is not a very good design for
this experiment. It is possible, like in this design, that three tires of the same
brand get put on the same car (car 1, brand A) and if car is a significant
extraneous variable, then the resulting comparison between brands would be
biased in favor or disfavor of brand A. Numerically, the mean treadwear for
Brand A might be smaller/larger than the mean treadwear for the other brands,
but it may be due to the effects of car/driver 1.

A more intuitively appealing design is a block design. The 16 tire positions
are naturally grouped by car. Thus use car as a block and assign the four brands
within each block. Note that there is still randomization possible. The
brands can be randomly assigned to the 4 tire positions within each car. The
purpose of the randomization within each car is to balance out the effects of
other extraneous variables such as position effects.

Blocking is a restricted form of randomization. This is different
than the completely randomized design where there are no restric-
tions on the randomization. Determining the kind of randomization can aid
in determining the kind of design.

7.2 Types of Blocking

Recall in Chapter 3 that we learned how to analyze block designs with only two
treatments using the paired samples t test. We also learned about the different
types of blocking. Listed again below are the different types reflecting the fact
that in this chapter there may be more than two treatments of interest.
Types of Blocking
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a. Group/sort subjects/objects into blocks, each block containing t subjects/objects.
This would include natural groupings such as twins or litters of animals,
tire positions on a car, etc.

b. Reuse each subject/object in different time slots, number of time slots
equal to the number of treatments.

c. Physically split large chunks of material such as a batch of milk, plot of
land, etc. into parts, the number of parts equal to the number of treat-
ments.

In all cases above there is some grouping, whether it is of persons, time slots,
or parts of batches of some substance.

It is assumed in this chapter that the number of experimental units within
a block is equal to the number of treatments. The design is then called a
randomized complete block design. The word complete refers to the fact
that all treatments are used in a block. This is not always the case. Then we
would have an incomplete block design.

7.2.1 Examples of Type A Blocking

a. The tire brand example of the last section is an example of this type of
blocking. This is a natural grouping–the blocks of 4 tire positions come
naturally by car. Other examples of this type of blocking would be where
litters of animals are used as blocks. Each animal in a litter gets a treatment
(assigned at random) and several litters are used.

b. (Johnson Sui) Two methods of memorizing difficult material are being
tested to determine whether one produces better retention. Nine pairs of
students are included in the study. The students in each pair are matched
according to IQ and academic background and then assigned to the two
methods at random. A memorization test is given to all the students, and
the following scores are obtained.

Student Pair
Method A 90 86 72 65 44 52 46 38 43
Method B 85 87 70 62 44 53 53 42 46

Each pair of students forms a block.

7.2.2 Examples of Type B Blocking

a. To compare three drugs A, B, and C, for their effectiveness in relieving an
allergy, each of 10 subjects receives all three drugs in a random order in
different time periods. Time slots/periods are the experimental units.
The blocking/grouping here is of time slots by person and then random-
ization is undertaken within each grouping.
One version of the completely randomized version of this study would be
where the treatments are assigned to the 30 time slots at random. Thus
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in theory one person could get drug A for all three of his/her time slots.
Of course this would not make sense, just as it would not make sense to
randomly assign brands to the 16 wheel positions on four cars.
An alternative version of the completely randomized design, but that does
not reuse subjects is as follows: thirty subjects are assigned completely
at random, ten getting drug A, ten different subjects getting drug B, and
ten different subjects getting drug C. Experimental units are persons
here, not time slots. Thus any differences in persons would be a part
of experimental error and thus may not be a very good design, that is we
may have imprecise comparisons of the drugs.

b. Before and After Studies. A popular type of block design which reuses
subjects is the before and after study. A person is measured on the
response variable before a treatment is given, a treatment is given, and
then the person is measured again after.
An example of this comes from Moore and McCabe ([15], page 560). A
bank wonders whether eliminating the annual fee on its credit card cus-
tomers will increase the amount that the customers charge. A random
sample of 100 customers is selected and told that they would not have to
pay the fee this year. The amounts that they charged last year (before
elimination of fee) and the amounts charged this year (after elimi-
nation of the fee) are compared. This is a block design whereby each
customer is used/measured twice. Each subject provides two time slots,
two consecutive years. The factor is place in time of the years, “before”
and “after,” which are not assigned to years.

c. It is claimed that an industrial safety program is effective in reducing the
loss of working hours due to factor accidents. The following data are col-
lected concerning the weekly loss of working hours due to accidents in six
plants both before and after the safety program is instituted.

Plant
1 2 3 4 5 6

Before 12 29 16 37 28 15
After 10 28 17 35 25 16

This is a block design whereby each plant/set of employees is used/measured
twice. Each plant provides two time slots, two different week periods. The
factor is point in time of the weeks, “before” and “after,” which are not
assigned to weeks.

d. Suppose that 50 high school students agree to take the SAT test twice,
once before a special prep course advertised to improve your score, and
then again after taking the prep course. The two tests are different ver-
sions. Each student serves as a block of two time periods/occassions. The
response variable is SAT score. The factor of interest is place in time for
the two periods in which the tests are taken, “before” and “after,” which
are not assigned to the periods.
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Note that the above described before and after studies are similar to the
drug example in that time slots are experimental units. However in the
drug example the treatments/conditions of drug A, B, and C are randomly
assigned to time slots. This is to balance out any time effects for the
measurements on A, B, and C. Some of the A measurements are taken 1st,
some are taken 2nd, some 3rd, etc.
In the before and after study, a comparison is made of before time slot
measurements and after time slot measurements. However, there is one
big difference. The conditions before and after are not assigned (at ran-
dom) to the time slots, like drugs are. They are inherent characteristics
of the time slots in which the measurements are taken. Thus there is no
balancing out of time effects among the before measurements and the after
measurements. All of the before measurements are taken 1st in time, all
of the after measurements are taken 2nd in time. Thus if there are any
extraneous variables which are time related they will be confounded with
the before and after measurements.
In the bank study, any effects on amount of money spent related to time,
would be confounded with the effects of the no fee option. For example,
when the “after no fee option” amounts were recorded, perhaps the econ-
omy was more prosperous than when the “before no fee option” amounts
were recorded.
In the SAT study, perhaps when students took the test a 2nd time, they
may have done better, because they had more experience (practice effect)
with this kind of test than when they took it the first time.

7.2.3 Type C or Splitting Material Blocking

a. In agricultural studies blocks may represent different parts of fields getting
different amounts of moisture which is associated with growth of plants. A
block would correspond to a part of field or plot which is split into subplots
and the subplots would have about the same amount of moisture. For
example, there might be 5 plots with each plot being split into 3 subplots.
The subplots within each of the 5 plots have about the same moisture. The
treatments, which might be 3 types of fertilizer, are applied within each
plot to the 3 subplots.

b. The splitting may be splitting of batches of material, such as milk, cloth,
chemical mixture, etc.
(Johnson & Sui,[9]). A food scientist wants to study whether quality dif-
ferences exist between yogurt made from skim milk with and without the
pre-culture of a particular type of bacteria, called Psychotrops(PC). Sam-
ples of skim milk are procured from seven dairy farms. One half of the
milk sampled from each farm is inoculated with PC, and the other half
is not. After yogurt is made with these milk samples, the firmness of the
curd is measured, and those measurements are given below.
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Dairy Farm
A B C D E F F

With PC 68 75 62 86 52 46 72
Without PC 61 69 64 76 52 38 68

A block corresponds to a pair of milk samples from a farm. The two sam-
ples arose as a result of splitting a larger portion of milk. The blocking
eliminates the effects of different farms from the comparisons of the firm-
ness with PC and without PC.

7.3 Model and Analysis for the Randomized Com-
plete Block Design

7.3.1 Block Design Analysis as Analysis for Two Factor
Study

Think of the blocking factor as one of the two factors, say A, in a two factor
study. If there are a levels of the blocking factor A and b levels of the factor
of interest B, then let µij be the true mean of the response variable at the iith

level of the blocking factor A and jth level of factor B.
Then the model is

yij = µij + εij

= µ·· + ρi + τj + (ρτ)ij + εij (7.1)

where

• µ·· represents the true grand mean

• ρi (i = 1, ..., a) represents the true effect of ith level of the blocking factor

• τj (j = 1, ..., b) represents the jth level of the factor of interest

• (ρτij) represents the interaction between the ith level of the blocking factor
and the jth level of the factor of interest, and

• εij represents as usual the effects of extraneous variables on the observation
of Y at the ij combination of the blocking factor and factor of interest.

Note that the subscript k has been dropped because there is only one ob-
servation at the ith level of the blocking factor and jth level of the factor of
interest. Note also the difference in notation this model uses compared to the
two factor model of Chapter 6. The symbol ρ is being used instead of α for
the effect of the blocking factor. Also the symbol τ is being used instead of the
symbol β for the factor of interest. Otherwise the model is the same as that in
Chapter 6.

Let us think about estimating parameters in this model. We may proceed
as in Chapter 6. Letting
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εij = yij − µij

it is natural to estimate εijk with yij − yij· where yij. is the sample mean at the
ith level of the blocking factor and jth level of the factor of interest. However
there is only one observation at the ith level of the blocking factor and jth level
of A. Thus yij· would be the same as yij and the estimate of the error term
would be 0. Obviously this will not give a legitimate estimate of error and
hence of MSE. The problem is that there is not enough data “to go around”
and estimate all of the parameters in the model.

Note that if we assume that there is no interaction between blocks and
treatments, then the model simplifies to

yij = µ·· + ρi + τj + εij

If we solve this equation for εij we get

εij = yij − (µ·· + ρi + τj)

This suggests estimating the error term εij with

eij = yij − (y·· + ρ̂i + τ̂j)

The right side is how we estimated in Chapter 6 the interaction effect of the
ith level of one factor and the jth level of the other factor (with yij replaced
with yij·). So to estimate error in the block design with only one replication per
block/treatment combination we use a value that served as interaction effect
in Chapter 6. This is legitimate assuming there is no true interaction between
block and treatment.

To illustrate the ideas consider the following example taken from Kutner ,
Nachtsheim, Neter, and Li [11].

Example 7.1 An accounting firm, prior to introducing in the firm widespread
training in statistical sampling for auditing, tested three training methods:

1. study at home with programmed training materials

2. training sessions at local offices conducted by local staff

3. training sessions in Chicago conducted by national staff

Thirty auditors were grouped into 10 blocks of 3, according to time elapsed
since college graduation, and the auditors in each block were randomly assigned
to the 3 training methods. Block 1 consists of auditors graduated most recently,
..., block 10 consists of those graduated most distantly. At the end of the training,
each auditor was asked to analyze a complex case involving statistical applica-
tion; a proficiency measure based on this analysis was obtained for each auditor.
The results are given in Table 7.1
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Table 7.1: Auditor Proficiency Measures

Training Method
Block 1 2 3
1 73 81 92
2 76 79 89
3 75 76 87
4 74 77 90
5 76 71 88
6 73 75 85
7 68 72 88
8 64 71 82
9 65 73 81
10 62 69 78

Figure 7.1: Plot of Proficiency Measure versus Block by Treatment
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Figure 7.1 provides a plot of the proficiency measures versus Block by Method.
Note that Method 3 results in the highest measures regardless of the amount of
time elapsed since college graduation. Also there is no evidence of interaction
between block and method.

Let us find the estimate of the error associated with the proficiency measure,
y11 = 73, for block 1, training method 1.

The grand mean proficiency measure is y·· = 77.0. The mean proficiency for
block 1 is y1· = 82 and the mean proficiency for training method 1 is y·1 = 70.6.
Thus block 1 effect is ρ̂1 = 82 − 77 = 5 and the training method 1 effect is
τ̂1 = 70.6− 77 = −6.4. Hence we have that the estimate of error, e11, for 77 is

e11 = 73− (77 + 5 + (−6.4)) = −2.6.

Hence we can decompose y11 = 73 in the following manner:

y11 = 73 = 77 + 5 + (−6.4) + (−2.6).

Similarly we can do this for the other 29 proficiency measures. Table 7.2
provides the complete decomposition.

If we square the effects in the various columns and add we get the following
sums of squares:

• SSTOT with degrees of freedom = ab

• SSGM with 1 degree of freedom

• SSBL(Blocks) with degrees of freedom = a− 1, number of blocks minus 1

• SSTR(Treatments) with degrees of freedom = b− 1, number of treatments
minus 1

• SSE with degrees of freedom = (a− 1)(b− 1).

Note that degrees of freedom associated with the errors is the same as that
used for interaction in Chapter 6. We will use a statistical program to obtain
these sums of squares and mean squares. Table 7.3 gives the ANOVA table for
the auditor example. Note in the table that total sum of squares corrected for
the grand mean is given instead of total sum of squares.

There is evidence of a difference in training method. There is also evidence
of a difference in blocks but this is not unexpected since the blocking variable
was included to control for differences in experience.

Pairwise comparisons can be made using one of the methods discussed in
Chapter 5. The Tukey-Kramer method of multiple comparison is used here.
Tukey-Kramer adjusted P-values and simultaneous 95% confidence intervals are
in given in Table 7.4. All pairwise comparisons of means are significant at the
0.05 experimentwise level of significance.

The model upon which the inferences is based assumes that there is no
interaction between block and method, that is the effect of method does not
depend upon the number of years since graduation. One way of checking this
assumption is as in Chapter 6, to plot scores versus block and check to see if
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Table 7.2: Decomposition Table - Auditor Data

i j yij = y·· + ρ̂i + τ̂j + eij

1 1 73 = 77 + 5 + (-6.4) + (-2.6)
1 2 81 = 77 + 5 + (-2.6) + 1.6
1 3 92 = 77 + 5 + 9.0 + 1.0
2 1 76 = 77 + 4.3 + (-6.4) + 1.1
2 2 79 = 77 + 4.3 + (-2.6) + 0.3
2 3 89 = 77 + 4.3 + 9.0 + (-1.3)
3 1 75 = 77 + 2.3 + (-6.4) + 2.1
3 2 76 = 77 + 2.3 + (-2.6) + (-0.7)
3 3 87 = 77 + 2.3 + 9.0 + (-1.3)
4 1 74 = 77 + 3.3 + (-6.4) + 0.1
4 2 77 = 77 + 3.3 + (-2.6) + (-0.7)
4 3 90 = 77 + 3.3 + 9.0 + 0.7
5 1 76 = 77 + 1.3 + (-6.4) + 4.1
5 2 71 = 77 + 1.3 + (-2.6) + (-4.7)
5 3 88 = 77 + 1.3 + 9.0 + 0.7
6 1 73 = 77 + 0.7 + (-6.4) + 1.7
6 2 75 = 77 + 0.7 + (-2.6) + (-0.1)
6 3 85 = 77 + 0.7 + 9.0 + (-1.7)
7 1 68 = 77 + (-1) + (-6.4) + (-1.6)
7 2 72 = 77 + (-1) + (-2.6) + (-1.4)
7 3 88 = 77 + (-1) + 9.0 + 3.0
8 1 64 = 77 + (-4.7) + (-6.4) + (-1.9)
8 2 71 = 77 + (-4.7) + (-2.6) + 1.3
8 3 82 = 77 + (-4.7) + (9.0 + 0.7
9 1 65 = 77 + (-4) + (-6.4) + (-1.6)
9 2 73 = 77 + (-4) + (-2.6) + 2.6
9 3 81 = 77 + (-4) + (9.0) + (-1.0)
10 1 62 = 77 + (-7.3) + (-6.4) + (-1.3)
10 2 69 = 77 + (-7.3) + (-2.6) + 1.9
10 3 78 = 77 + (-7.3) + 9.0 + (-0.7)

Table 7.3: ANOVA Table for Auditor Example

Source of Variation Df SS MS F P-value

Method 2 1287.2 643.6 114.2 <.0001
Block 9 465.3 51.7 9.17 <.0001
Error 18 101.5 5.6

Total (Corrected) 29 1854.0
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Table 7.4: Tukey Pairwise Comparisons of Methods

Method Method Mean Difference Std.Error DF t Value P-value LCL UCL

1 2 -3.89 1.06 18 -3.58 0.0058 -6.51 -1.09
1 3 -15.40 1.06 18 -14.50 <.0001 -18.11 -12.69
2 3 -11.60 1.06 18 -10.92 <.0001 -14.31 -8.89

the graphs representing the different treatments are roughly parallel. Figure 7.1
indicates that the assumption of no interaction between block and method is
reasonable for the auditor example.

7.3.2 F test for Treatment Effect in a Block Design

The null and alternative hypotheses for the test of treatment effects for b treat-
ments are

Ho : τ1 = τ2 = . . . = τb = 0

or equivalently,

Ho : µ·1 = µ·2 = . . . = µ·b

The alternative hypothesis is

Ha : not all τj
′s = 0

or equivalently,
Ha : not all µ.j

′s are equal

The test statistic is

F =
MSTR

MSE
=

SSTR/(b− 1)
SSE/(a− 1)(b− 1))

where

SSTR = a

b∑

j=1

τ̂2
j = a

b∑

j=1

(y.j − y..)
2

and

SSE =
a∑

i=1

b∑

j=1

[eij ]2 =
a∑

i=1

b∑

j=1

[yij − (y.. + ρ̂i + τ̂j)]2
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If the null hypothesis is true and the assumption of independent, normally
distributed errors with mean 0 and common standard variances holds, then
MSTR/MSE has the “F” distribution with ν1 = (b− 1) numerator degrees of
freedom and ν2 = (a− 1)(b− 1) denominator degrees of freedom.

At a significance level of α the null hypothesis would be rejected if the
observed value of the test statistic, Fo, is larger than Fα;(b−1),(a−1)(b−1), the
upper α probability point from the appropriate F distribution or equivalently if
P − value ≤ α, where P − value = P [F ≥ Fo]. Probability points for α = 0.05
and α = 0.01 are given in Tables A.7 and A.8, respectively. P-values can only
be approximated using Table A.7 or A.8. More precise P-values can be obtained
using statistical computing software.

A test of block effects is also available although it is not usually of main
interest. It is expected that there are block effects since the purpose of blocking
is reduce experimental error associated with the presumed relationship between
the blocking factor and the response.

The null and alternative hypotheses for the test of block effects for the a
blocks are

Ho : ρ1 = ρ2 = . . . = ρa = 0

or equivalently,

Ho : µ1· = µ2· = . . . = µa·

The alternative hypothesis is

Ha : not all ρi
′s = 0

or equivalently,
Ha : not all ρi·′s are equal

The test statistic is

F =
MSBL

MSE
=

SSBL/(a− 1)
SSE/(a− 1)(b− 1))

where

SSBL = b

a∑

i=1

ρ̂2
i = b

a∑

i=1

(y·i − y..)
2

and

SSE =
a∑

i=1

b∑

j=1

[eij ]2 =
a∑

i=1

b∑

j=1

[yij − (y.. + ρ̂i + τ̂j)]2

If the null hypothesis is true and the assumption of independent, normally
distributed errors with mean 0 and common standard variances holds, then
MSBL/MSE has the “F” distribution with ν1 = (a− 1) numerator degrees of
freedom and ν2 = (a− 1)(b− 1) denominator degrees of freedom.
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At a significance level of α the null hypothesis would be rejected if the
observed value of the test statistic, Fo, is larger than Fα;(a−1),(a−1)(b−1), the
upper α probability point from the appropriate F distribution or equivalently if
P − value ≤ α, where P − value = P [F ≥ Fo]. Probability points for α = 0.05
and α = 0.01 are given in Tables A.7 and A.8, respectively. P-values can only
be approximated using Table A.7 or A.8. More precise P-values can be obtained
using statistical computing software.

The expected values of the various mean squares can be shown to be

E[MSE] = σ2 (7.2)

E[MSBL] = σ2 +
b
∑a

i=1 ρ2
i

a− 1
(7.3)

E[MSTR] = σ2 +
a

∑b
j=1 τ2

j

b− 1
(7.4)

These are the same expected mean squares as those in Chapter 6 under the
assumption that there is no interaction between the two factors A and B and
that the number of replications is 1 for every treatment combination.

7.3.3 Pairwise Comparisons Using the Tukey-Kramer Pro-
cedure

The general form of endpoints for the Tukey-Kramer interval for the difference
of two treatment means µ·j − µ·j′ , adapted from Chapter 6, is

y·j − y·j′ ±
qα;ν,b√

2

√
MSE

√
1
a

+
1
a

where y·j and y·j′ refer, respectively, to the marginal means of y for levels j and
j′ of the factor of interest B. The number of levels of the blocking factor a in the
denominators refer to the number of observations used to calculate the marginal
means. The degrees of freedom ν refers to degrees of freedom associated with
MSE. The set of intervals have an experiment-wise confidence level of 1−α. The
percentile qα;ν,b can be found in Table A.5 or A.6 with t in the table equalling
the number of levels, b, of the factor of interest.

7.4 More on Blocks and Analysis of Block De-
sign

Consider again the model for the block design given earlier:

yij = µ + ρi + τj + εijk

The following items are noted:
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a. ρi measures the effect of the ith level of the blocking factor of interest. In
this example the block corresponding to a set of 3 individuals who finished
school about the same number of years ago. So the block effect is the effect
of the length of time corresponding to the particular 3 individuals. τj mea-
sures the jth level of the treatment factor of interest. Here this is the effect
of the particular method of training employed. The εijs measure as in
other models the effects of extraneous variables associated with the exper-
imental units. In the auditor example the experimental unit corresponds
to an individual in the group of three. If the experiment were performed
again a different individual from the 3 in the block may be assigned to a
method.

b. It is assumed in our model that the εij are independent normal random
variables with mean 0 and standard deviation σ.

c. The model assumes no interaction between the blocking factor and the fac-
tor of interest. Thus this condition needs to be checked. If this assumption
if not reasonable then a transformation of the data may be helpful.

d. The F test for treatments compares the sample treatment means averaged
over levels of the blocks which is appropriate only if there is no interaction.

7.5 Paired Samples t test Revisited

Recall from Chapter 3 that when there are two treatments and observations are
paired (blocks of size 2) then we can use the paired samples t test to compare the
two treatments. Differences between the response values for the two treatments
are calculated within each block and then a single sample t test is performed on
the differences (See Section 3.2). It will be illustrated in this section that a two-
sided comparison of two treatments using the paired samples t test is equivalent
to the F ratio obtained from an analysis of variance of a block design. An
example follows.

The equivalence will be illustrated with the word recall example from Chap-
ter 7. In section 3.2 the paired samples t test was used to compare the numbers
of words recalled by students after studying two lists of words. One list con-
sisted of 25 concrete words and the other list 25 abstract words. The mean of
the differences in numbers of words recalled was d = 0.05 with sd = 3.45. The
observed value of the t test statistic was 0.11 and P − value = 0.9910 based on
df = 59. Thus there was no evidence that recall of these words depended upon
list.

In the context of this chapter student is the blocking factor and list (A or
B) is the factor of interest. The response variable is number of words recalled.
An ANOVA table for this example is given in Table 7.5.

Note that the P-value for the effect of list, 0.9110 is identical to the P-value
obtained from the paired samples t test. What is not obvious is the relation
between the values of the t statistic and the F statistic. It can be shown that
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Table 7.5: ANOVA Table for Word Recall Example

Source of Variation Df SS MS F P-value

List 1 0.075 0.075 0.01 0.9110
Student 59 1044.425 17.702 2.97 <.0001
Error 59 351.425 5.956

Total (Corrected) 119 1395.925

the square of the t statistic is equal to the F ratio. Note here that 0.112 = 0.01.
This equivalence only holds for the two sided test.

7.6 Two Blocking Factors – Latin Square Design

Consider the earlier example involving the comparison of the four brands of tires
using the 16 tire positions of 4 cars. Suppose car is regarded as the blocking vari-
able and the 4 brands are assigned completely at random to the 4 tire positions
within each car. An example of a resulting randomization is the following:

Left Front Right Front Left Rear Right Rear
Car 1 A C B D
Car 2 C B A D
Car 3 A B D C
Car 4 A D C B

With the above design the effect of wheel position is part of experimental error.
When randomly assigning tire brands within each car, it is possible that brand
A gets put mostly on the Left Front wheel. This might bias the comparison
between brands if location is an extraneous variable.

An alternative design in this experiment would be a block design which
consists of two blocking factors: car and wheel position. In this design all four
brands are used for each car and simultaneously all four brands are used at each
wheel position as in the following diagram.

Left Front Right Front Left Rear Right Rear
Car 1 A B C D
Car 2 B C D A
Car 3 C D A B
Car 4 D A B C

Since each wheel position is exposed to all four brands we will be able to
estimate in an unbiased fashion the true effects of wheel position and remove
this effect from experimental error.
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The “Latin” Square design given above is called the standard Latin Square
Design. The letters A, B, C, ... used to denote the treatments are written in
the first blocking row and then the remaining rows are obtained by shifting the
letters to the left once.

Randomization of treatments within the row blocking variable and within
the column blocking variables is achieved as follows:

a. Start with the standard Latin Square Design

b. Randomly permute/arrange the rows: For example after randomly per-
muting the rows of the standard Latin Square design we may have the
following:

Left Front Right Front Left Rear Right Rear
Car 1 D A B C
Car 2 B C D A
Car 3 A B C D
Car 4 C D A B

Note that the first row of the square was the old fourth row and so on.

c. Randomly permute/arrange the columns of this square For example

Left Front Right Front Left Rear Right Rear
Car 1 B C A D
Car 2 D A C B
Car 3 C D B A
Car 4 A B D C

Note that the first column is the old third column and so on.

d. Now randomly assign the treatments to the letters. For example suppose
the actual tire brands are Firestone, Goodyear, Goodrich, and UniRoyal.
Put these four names on slips of paper and then pull one out at a time.
The first one gets assigned to the letter A, the 2nd to the letter B, and so
on.

The general properties of the Latin Square Design are as follows:

a. There are two blocking factors, in general a row blocking factor and a
column blocking factor.

b. The number of levels of the row blocking factor is equal to the number
of levels of the column blocking factor, which is equal to the number of
treatments.

c. Latin Square Designs can be repeated with additional experimental units
to obtain more replications of the treatments.
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7.6.1 Another Example

Cobb ([3], page 247) describes the following experiment. A study compares
recall of words for different learning/recall environments. The subjects in the
study are 4 members of a diving club. The treatments are dry/dry, dry/wet,
wet/dry, and wet/wet. For example, dry/wet means the word list was studied
while the driver was on land and was recalled when the diver was in the water.

This experiment could be carried out using a randomized complete block
design with the one blocking factor being subject. Each subject receives all
four treatments using different word list for the treatments. The word lists are
randomly assigned to the four treatments to ensure that the treatments are not
always assigned to the same word list and to ensure that the effects of word list
are random. The treatment/word list is randomly assigned to time slots so that
effects of time period is random. In this design the effects of word list is part of
experimental error.

The experiment could also be conducted as a Latin Square design. Not only
does each person get all four treatments but each list is exposed to all four
treatments in the following manner.

List 1 List 2 List 3 List 4
Diver 1 dry/dry dry/wet wet/dry wet/wet
Diver 2 dry/wet wet/dry wet/wet dry/dry
Diver 3 wet/dry wet/wet dry/dry dry/wet
Diver 4 wet/wet dry/dry dry/wet wet/dry

The above design is a standard Latin Square Design. An alternative design can
be obtained by the previously described randomization process. With the Latin
Square design, there is a balance in that each list is used with all treatments
and thus comparison of list averages would be unbiased estimates of list effect.
Thus we can remove list effect from experimental error.
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Problems for Chapter 7

7.1 (Cobb [3], page 300). Interruptions in breathing are particularly common
among premature infants. In the past, hospitals have kept babies on ordi-
nary bassinet mattresses, but someone thought the babies might do better
on waterbeds because of their gentle rocking motion. To study the effect
of waterbeds on breathing, investigators attached an alarm to each of 8
premature babies; the alarm would sound whenever the baby’s breathing
stopped for more than 20 seconds. Each baby was monitored for two six-
hour periods; during one (randomly chosen) period, the baby slept on a
waterbed; during the other, the control period, the baby slept on a regular
basinet mattress. The researchers recorded the number of times the alarm
went off, and they measured the length of time the baby was asleep. The
following numbers give the number of interruptions per hour of sleep.

Waterbed 0.89 0.77 0.00 0.65 0.88 1.36 1.22 0.30
Control 1.36 1.66 0.11 1.44 1.63 1.52 1.53 0.48

a. The above design is a block design. What are the experimental units?
What are the blocks?

b. Explain how the above experiment could have been conducted using a
completely randomized design.

7.2 In order to check on possible laboratory bias in the reported ash content
of coal, 10 samples of coal were split in half and then sent at random to
each of 10 laboratories. The laboratories reported the following ash content
data:

Sample Lab 1 Lab 2
1 5.47 5.13
2 5.31 5.46
3 5.46 5.54
4 5.55 5.54
5 5.93 6.00
6 5.97 5.99
7 6.32 6.43
8 6.09 6.13
9 5.87 5.87
10 5.58 5.60

a. What type of blocking is this? What are the blocks?
b. What are the experimental units?
c. Explain what the randomization would have been in a completely ran-

domized design.

7.3 In a study conducted by the Department of Health & Physical Education
at the Virginia Polytechnic Institute and State University in 1983, 3 diets
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were assigned for a period of 3 days to each of 6 subjects in a randomized
complete block design. The subjects were assigned the following 3 diets in
a random order:

Diet 1: mixed fat and carbohydrates
Diet 2: high fat
Diet 3: high carbohydrates

At the end of the 3 day period each subject was put on a treadmill and
the time to exhaustion, in seconds, was measured. The following data were
recorded:

Diet
Subject 1 2 3

1 84 91 122
2 35 48 53
3 91 71 110
4 57 45 71
5 56 61 91
6 45 61 122

a. What is the response variable? What are the treatments? What are
the experimental units?

b. What is the blocking factor and what extraneous variable is the block-
ing intended to control?

c. Explain how the above experiment could be carried out using a com-
pletely randomized design.

7.4 An accounting firm, prior to introducing in the firm widespread training
in statistical sampling for auditing, tested three training methods:

1. study at home with programmed training materials

2. training sessions at local offices conducted by local staff

3. training sessions in Chicago conducted by national staff

Thirty auditors were grouped into 10 blocks of 3, according to time elapsed
since college graduation, and the auditors in each block were randomly
assigned to the 3 training methods. Block 1 consists of auditors graduated
most recently, . . . , block 10 consists of those graduated most distantly.
At the end of the training, each auditor was asked to analyze a complex
case involving statistical applications; a proficiency measure based on this
analysis was obtained for each auditor. The results were:
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Training Method
Block 1 2 3

1 73 81 92
2 76 79 89
3 75 76 87
4 74 77 90
5 76 71 88
6 73 75 85
7 68 72 88
8 64 71 82
9 65 73 81
10 62 69 78

a. What is the reason for using the blocking variable “time elapsed since
college graduation”? What type of blocking is this?

b. What are the experimental units?
c. What are some extraneous variables that are being controlled by the

randomization in each block?
7.5 As a class project students wanted to determine if color (or the chemicals

associated with the colors) were related to the burning rate of candles.
Eight inch candles of four colors: blue, tan, purple, and white were used.
The response variable was the amount of time (in minutes) that it took
a candle to burn down 3 inches from the top. Four candles, one of each
color, were burned on each day and this was repeated over 7 days. On
a particular day the one candle of each color was randomly selected from
a pool of available candles. The order in which the candles were lit was
random and the candles were placed in random positions on a table. The
burning times (to the nearest minute) are given in the following table:

Color of Candle
Replication/Day Tan Blue Purple White

1 201 217 184 167
2 213 206 158 227
3 183 116 273 273
4 300 174 277 271
5 299 190 228 237
6 196 159 199 208
7 259 227 243 262

a. This is a block design. What are the blocks.
b. What are the experimental units?
c. What are some extraneous variables that are being controlled by the

randomization in each block?
d. Using the same number of observations explain how this experiment

would be carried out in a completely randomized design.
e. Give a model for the data and describe the terms in the model in

context.
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f. Construct an analysis of variable table. Use it to determine if there are
significant differences in burn time. If there are significant differences
use Tukey’s multiple comparison procedure to rank the colors.
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Chapter 8

Checking Assumptions of
Error Terms

8.1 Assumptions

In the models that we have considered there has always been an error term
ε representing the effects of extraneous variables which have not been explic-
itly accounted for in the design. For example in the model for the one factor
completely randomized design,

yij = µi + εij

= µ + αi + εij (8.1)

where εij = yij − µi is the deviation of the jth observation from the ith

treatment mean and represents the effects of extraneous variables.
The validity of the P-values associated with the F tests and testing of con-

trasts depends on the errors satisfying certain statistical assumptions. The
assumptions are given below in order in which they should be assessed.

• The errors are statistically independent.

• The error random variables have the same variance/standard deviation

• The errors are values of normal random variables

While yij is observed the error εij is not actually observed since it depends
upon the mean of yij , µi. So how do we check the assumptions of the errors if
we don’t actually observe them. We do this by estimating the errors and then
using the estimates of the errors to check the assumptions.

The estimates of the errors depend upon the model for the data.

159
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8.1.1 Residuals for One Factor Completely Randomized
Model

For the one factor completely randomized design the error is

εij = yij − µi

The obvious estimate of εij is obtained by substituting for µi, the estimate
yi., and obtaining the estimate of the error, eij , called the residual, that is

eij = yij − yi·

Note that eij is not the same as εij . The estimated error eij can be calculated
– the true error εij cannot. Since yi. can be thought of as a prediction for the
mean of treatment level i we can think of the estimate of the error as

eij = yij − yi·
= observed− predicted (8.2)

8.1.2 Residuals for Two Factor Completely Randomized
Design

The means model for the two factor completely randomized design is from Chap-
ter 6:

yijk = µij + εijk (8.3)

and thus the true error is

εijk = yij − µij (8.4)

Estimating µij , the population treatment mean, with the sample treatment
mean or predicted Y , yij. then the estimate eijk of εijk is

eijk = yij − yij· (8.5)

A residual for the two factor completely randomized model is the difference
between an observed value of the response and the mean of the response in the
respective treatment group.
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8.1.3 Residuals for One Factor Block Design

The model for the one factor block design with only one replication per combi-
nation of block and treatment is from Chapter 7,

yij = µ·· + ρi + τj + εij

If we solve this equation for εij we get

εij = yij − (µ·· + ρi + τj)

This suggests estimating the error term εij with

eij = observed− predicted

eij = yij − (y·· + ρ̂i + τ̂j) (8.6)

where ρ̂i = yi· − y·· and τ̂j = y·j − y··.

8.2 Checking for Independence

The εij ’s are independent if the value of one tells you nothing about the value
of another error. The most likely cause of lack of independence or dependence
are experimental units close in time or space.

If an experiment is conducted through time or arranged in some spatial pat-
tern, then a plot of the estimated errors against time order or spatial arrange-
ment will indicate whether or not the errors are independent or dependent.
If the errors are independent then in this plot the estimated errors should be
randomly scattered about 0 with no discernible pattern.

Example 8.1 This example is taken from Dean and Voss ([5], page 27). The
purpose of the study was to compare the life times of four different kinds of
batteries:

• Battery Type 1: alkaline, name brand

• Battery Type 2: alkaline, store brand

• Battery Type 3: heavy duty, name brand

• Battery Type 4: heavy duty, store brand

There were 4 replications per treatment. The experimental units were time
slots with one battery of each kind being tested in a random order.

The data with the time order and the residuals are given in Table 8.1:

Note from the table that a battery of Type 1 was tested first, a battery of
type 2 was tested next, and so on.

The sample means and standard deviations are given in Table 8.2.
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Table 8.1: Lifetime Data

Battery Type Lifetime(minutes) Time Order Residual
1 602 1 39.5
2 863 2 58.25
1 529 3 -33.5
4 235 4 -10.75
1 534 5 -28.5
1 585 6 22.5
2 743 7 -61.75
3 232 8 6.5
4 282 9 36.25
2 773 10 -31.75
2 840 11 35.25
3 255 12 29.5
4 238 13 -7.75
3 200 14 -25.5
4 228 15 -17.75
3 215 16 -10.5

Table 8.2: Means and Standard deviations for Lifetime Data

Battery Type Mean Standard Deviation
1 562.50 36.52
2 804.75 58.25
3 225.50 23.61
4 245.75 24.53
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Figure 8.1: Scatterplot of Lifetime Residuals versus Time Order

The overall F test for the effect of battery type on lifetime was significant
at the 0.05 level with F = 217.53, P < 0.0001.

The residual corresponding to the first observation would be 602− 562.50 =
39.5. The other residuals are in Table 8.1.

A plot of the residuals versus time order is given in the Figure 8.1 Note that
the residuals appear to be randomly scattered about 0 providing no evidence of
dependence.

Example 8.2 The experiment (Dean and Voss [5], page 62)) involved an in-
dividual blowing up different colored balloons in a random order to compare
inflation times. The colors of the balloons used were pink, yellow, orange, and
blue. The purpose of the experiment was to see if color affected the amount of
time required to blow up the balloons.

The inflation times with the time orders are given in Table 8.3

The sample means and standard deviations for the inflation times are given
in Table 8.4.

The overall F test for treatment means is significant (F = 3.85, P = 0.0200)
at the 0.05 level of significance indicating a difference in mean inflation time
across the colors.

A plot of the residuals for inflation times versus time order of the observations
is given in Figure 8.2

Note the negative linear relationship between the residuals and time order
of the testing with residuals generally being positive for the early trials and
negative for the later trials. Thus the inflation times were higher than predicted
for the early trials and lower than predicted for the later trials regardless of
color, indicating that the experimenter took less time to inflate the balloons as
time progressed. One possible solution to this problem is to take account of
order in the statistical model. In theory we could expand our model to include
not only color effects but time order as well. The resulting model is called an
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Table 8.3: Inflation Times Data

Time Order Color Inflation Time (secs)
1 pink 22.4
2 orange 24.6
3 pink 20.3
4 blue 19.8
5 blue 19.8
6 yellow 22.2
7 yellow 28.5
8 yellow 25.7
9 orange 20.2
10 pink 19.6
11 yellow 28.8
12 blue 24.0
13 blue 17.1
14 blue 19.3
15 orange 24.2
16 pink 15.8
17 yellow 18.3
18 pink 17.5
19 blue 18.7
20 orange 22.9
21 pink 16.3
22 blue 14.0
23 blue 16.6
24 yellow 18.1
25 yellow 18.9
26 blue 16.0
27 yellow 20.1
28 orange 22.5
29 orange 16.0
30 pink 19.3
31 pink 15.9
32 orange 20.3

Table 8.4: Means and Standard deviations for Balloon Inflation Time Data

Balloon Color Mean Standard Deviation
Blue 18.4 2.9

Orange 21.5 3.0
Pink 18.4 2.4

Yellow 22.6 4.5
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Figure 8.2: Scatterplot of Inflation Time Residuals versus Time Order

analysis of covariance model. This approach and other approaches to handling
dependent errors will not be considered in this text.

Note how important the randomization was in this example. While there is
a problem, the problem could have been even bigger. If the experimenter had
not randomized the order of the colors and blown up balloons by color group,
such as first all pink, followed by all orange, then yellow, then blue, then any
color effects would have been confounded with order effects.

Example 8.3 This example uses the data from the two factor study in Prob-
lem 6.2 in Chapter 6. The factors are Shooting Distance from a target (Short,
Medium, Long) and Hand used to fire a Nerf bullet from a gun. The response
variable is accuracy defined as the absolute distance from a target (to the nearest
1/8 inch).

The accuracies along with the time order, residuals, and predicted accuracies
are provided in Table 8.5.

A plot of the accuracies versus the combination of distance and hand is given
in Figure 8.3

Treatment means and standard deviations for accuracy are provided in Ta-
ble 8.6.

Notice that the predicted accuracies in Table 8.5 are just the treatment
means as noted earlier. A residual is just the difference between an accuracy
and a predicted accuracy or treatment mean. For example the residual of 2.050
associated with the accuracy of 3.375 at time order 1 in the Short,Right group
is 3.375 minus the Short,Right mean of 1.325.

Figure 8.4 provides a plot of the residuals versus time order. Note that
there is no evidence of a relationship of the residuals with time and thus the
assumption of independent errors appears to be satisfied. The plot does indicate
one accuracy being slightly outlying.
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Table 8.5: Nerf Gun Data

Distance Hand Accuracy TimeOrder Predicted Residual
Short Left 0.000 3 0.825 -0.825
Short Left 1.500 7 0.825 0.675
Short Left 0.000 13 0.825 -0.825
Short Left 0.625 15 0.825 -0.200
Short Left 2.000 19 0.825 1.175
Short Right 3.375 1 1.325 2.050
Short Right 0.375 10 1.325 -0.950
Short Right 2.125 16 1.325 0.800
Short Right 0.250 24 1.325 -1.075
Short Right 0.500 29 1.325 -0.825

Medium Left 3.500 5 2.450 1.050
Medium Left 3.250 9 2.450 0.800
Medium Left 0.125 17 2.450 -2.325
Medium Left 3.250 21 2.450 0.800
Medium Left 2.125 26 2.450 -0.325
Medium Right 1.000 2 2.950 -1.950
Medium Right 4.875 18 2.950 1.925
Medium Right 1.000 20 2.950 -1.950
Medium Right 3.250 23 2.950 0.300
Medium Right 4.625 28 2.950 1.675

Long Left 13.250 4 8.975 4.275
Long Left 7.000 6 8.975 -1.975
Long Left 8.125 8 8.975 -0.850
Long Left 7.750 11 8.975 -1.225
Long Left 8.750 25 8.975 -0.225
Long Right 3.125 12 6.225 -3.100
Long Right 1.125 14 6.225 -5.100
Long Right 14.375 22 6.225 8.150
Long Right 3.375 27 6.225 -2.850
Long Right 9.125 30 6.225 2.900

Figure 8.3: Plot of Accuracy versus Treatment
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Table 8.6: Nerf Gun Data Means and Standard Deviations

Distance Hand n Mean Standard Deviation
Short Left 5 0.825 0.900
Short Right 5 1.325 1.377

Medium Left 5 2.450 1.405
Medium Right 5 2.950 1.885

Long Left 5 8.975 2.472
Long Right 5 6.225 5.445

Figure 8.4: Plot of Nerf Gun Residuals versus Time Order
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8.3 Assessing the Assumption of Homogeneous
Error Variances

It is assumed in the methods of analysis of variance that the variances of the
error terms are identical, in particular, equal to some common value, σ2. This
condition is called homogeneity of error variances. Thus we need to check to
make sure this assumption holds true, at least approximately. The methods are
somewhat robust to deviations from this assumption especially when treatment
group sizes are identical. Violation of this assumption is called heterogeneity
of error variance.

8.3.1 Methods for Checking the Assumption of Homo-
geneity of Error Variance

1. Compare standard deviations of the observations on the response variable
for the different treatment groups. A rule of thumb is that the largest
standard deviation should be no more than roughly 3 times the smallest
standard deviation.

2. Plot the values of the response variable versus the treatments. The vertical
spread in the points for the different treatments should be about the same.
Recall that in a two-factor factorial treatment structure the treatments are
combinations of the levels of the two factors.

3. Plot the residuals or estimated errors from the fitted model against pre-
dicted values and treatments.

8.3.2 Checking Homogeneity of Variance for the Battery
Example

Recall the battery example from Example 8.1 and the means and standard
deviations from Table 8.2. A plot of the lifetimes versus battery types is given
in Figure 8.5. Note that the vertical spread of the points corresponding to the
lifetimes is similar for the four battery types.

The largest standard deviation is 56.14 and the smallest is 23.6. Thus the
ratio of the largest to the smallest is 56.14/23.6 = 2.38 < 3.

A plot of the residuals from the model fit against the predicted lifetimes is
given in Figure 8.6.

Note the evidence of slightly greater variability of the residuals for the largest
predicted lifetime. Predicted lifetimes for this model are just treatment means
of the lifetimes. The largest predicted lifetime corresponds to the battery type
with the largest mean, which is battery type 2.

A plot of the residuals from the model fit against the treatments (battery
types) is given in Figure 8.7. In this example and for the one factor model the
plot of the residuals versus treatment is just the residual versus predicted plot
with the vertical columns of points in perhaps a different order. Here again
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Figure 8.5: Scatterplot of Lifetimes versus Battery Type

Figure 8.6: Scatterplot of Residuals versus Predicted Lifetimes
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Figure 8.7: Scatterplot of Residuals versus Battery Type

we see that the residuals corresponding to battery type 2 having slightly more
spread than the other batter types.

The slightly differing spreads among the lifetimes or residuals is of no prac-
tical concern. We will look at another example shortly where the spreads are
quite different.

8.3.3 Checking Homogeneity of Variance for the Paper
Towel Example

Recall the paper towel example from Chapter 6. There were two factors of
interest in a completely randomized design. One factor was brand of paper towel
with three levels: Coronet, Kleenex, and Scott. The other factor of interest was
Liquid with three levels: Water, Dishwashing detergent, and Vegetable Oil.
There were 3 replications of each of the 9 treatment combinations of Brand and
Liquid. A scatterplot of the response variable amount absorbed (mL) was given
in Figure 6.3. Variation does not appear to differ much among the treatments;
however there are only 3 replications per treatment combination.

The means and standard deviations for amount absorbed are given for the
treatment combinations in Table 8.7.

The ratio of the largest to the smallest standard deviation is 3.05/0.58 =
5.25, slightly above our rule of thumb value of 3. Let’s also look at a plot of the
residuals versus predicted values and check to see if there is any evidence of a
trend in spread with increasing predicted amount absorbed.

Figure 8.8 gives a plot of residuals from the fit of the complete two factor
model versus predicted amount absorbed based on that model. For this model
predicted amount absorbed is just the mean amount absorbed for a treatment
combination of brand of paper towel and type of liquid. Note that there is
no discernible trend in spread as predicted amount increases. Since the stan-
dard deviation ratio was not much larger than 3 (which could have occurred by
chance) and since the residual plot showed no patterns, we will assume that the
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Table 8.7: Means and Standard Deviations for Amount of Liquid Absorbed

Towel Liquid Mean Standard Deviation
Coronet Dishwashing Liquid 16.67 2.08
Coronet Vegetable Oil 25.33 3.51
Coronet Water 23.33 2.31
Kleenex Dishwashing Liquid 36.33 2.89
Kleenex Vegetable Oil 41.67 3.06
Kleenex Water 41.67 1.15
Scott Dishwashing Liquid 20.67 0.58
Scott Vegetable Oil 25.67 1.15
Scott Water 26.00 1.00

Figure 8.8: Scatterplot of Residuals versus Predicted Amount Liquid Absorbed
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Table 8.8: Lifetimes of a Resin Under Temperature Stress

Temperature (C)
175 194 213 231 250
110 46 34 14 18
81 51 35 17 7
100 26 24 15 12
83 58 20 14 10
71 46 22 16 12
91 41 19 19 11
76 35 18 15
79 46 24

Figure 8.9: Plot of Resin Lifetime versus Temperature

homogeneity assumption holds approximately.

8.3.4 Checking Homogeneity of Variance Data - Resin Ex-
ample

This example is adapted from Oehlert ([16], page 32). The data given in Ta-
ble 8.8 represents lifetime in hours of a resin which is used to encapsulate gold-
aluminum bonds in integrated circuits when the resin was stressed at different
temperatures.

A plot of the resin lifetimes versus temperature is given in Figure 8.9.
Note that not only the average lifetime but also variability in lifetime is

affected by temperature violating the homogeneity of variance assumption.
Table 8.9 gives the means and standard deviations of the resin lifetimes at

the different temperatures.
The ratio of the largest to the smallest standard deviation is 13.1/1.8 = 7.3

quite larger than the rule of thumb value of 3.
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Table 8.9: Times to Failure: Means and Standard Deviations

Temperature (C)
175 194 213 231 250

Mean 86.4 43.6 24.5 15.7 11.7
StDev 13.1 9.8 6.5 1.8 3.6

Table 8.10: ANOVA Table for Resin Lifetime Data

Source of Variation Df SS MS F P-value

Temperatures 4 28066.8 7016.7 99.42 <.0001
Error 32 2258.5 70.6

Total (Corrected) 36 30325.3

An ANOVA table for the data is given in Table 8.10. There is strong evidence
of a difference in lifetimes among the temperatures.

Figure 8.10 gives the residual plot of residuals versus predicted lifetimes.
Note the tendency for the residuals to become more variable as predicted values,
here temperature means, increase, creating a funneling effect. Again there is
evidence that the error variances are not constant across temperatures.

Figure 8.10: Resin Lifetime Data: Residuals versus Predicted
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Figure 8.11: Plot of Nerf Gun Residuals versus Treatment

8.3.5 Checking Homogeneity of Variance for the Nerf Gun
Example

A plot of the accuracies versus treatment was given in Section 8.2. Variation
appears to increase with distance regardless of the hand.

The means and standard deviations for amount absorbed are given for the
treatment combinations in Table 8.6. The ratio of the largest to the smallest
standard deviation is 5.445/0.900 = 6.05, slightly above our rule of thumb value
of 3.00. Let’s also look at a plot of the residuals versus the treatments and also
residuals versus predicted values and check to see if there is any evidence of a
trend in spread with increasing predicted accuracy.

Figure 8.11 is a plot of the residuals versus the combination of distance and
hand. This plot reflects what was seen in the scatterplot, some evidence of
greater variation in accuracies for the long distance.

Figure 8.12 is a plot of the residuals versus the predicted accuracies (treat-
ment means). Note that there is a tendency for the variation in the residuals
to increase with increasing predicted accuracy. So there is some evidence of
heterogeneity in the error variances.

8.3.6 Checking Homogeneity of Variance for a Block De-
sign Example

This example refers to the auditor example of Chapter 7 (Example 7.1, Section
7.3). The residuals are given in Table 7.2 in Chapter 7.. Since there is only
one replication per combination of block and method then a plot of proficiency
measure versus treatment (combination of block and method) would not be
informative for checking variation in estimated residuals across treatments. Al-
ternative plots are the plotting of residuals against levels of the blocking factor
and against levels of the treatment factor, here method of training. Figures
8.13 and 8.14 provide these plots.

Figure 8.15 provides a plot of the residuals versus predicted measures.
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Figure 8.12: Plot of Nerf Gun Residuals versus Predicted Accuracies

Figure 8.13: Plot of Auditor Example Residuals versus Block



176

Figure 8.14: Plot of Auditor Example Residuals versus Method

Figure 8.15: Plot of Auditor Example Residuals versus Predicted Measure
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There is no evidence of extreme deviations from the assumption of homoge-
neous error variances. There does appear to be one mildly outlying measure.

8.4 Assessing the Assumption of Normality

Recall that if the assumption of constant error variance appears to be satisfied
then the analyst should check the assumption of normality of the error terms.
There are two graphical procedures that data analysts use to check the assump-
tion of the normality of the errors. A histogram or stem and leaf plot of the
residuals can be viewed to check for an overall bell shaped distribution. While
a histogram is a good start it is not sensitive to departures in the tails of the
distributions and needs a relatively large sample size to give a good idea of the
true shape of the distribution. Another tool that analysts use is the normal
quantile-quantile or Q-Q plot.

Suppose that the residuals are ordered and represented as r1, r2, ..., rn where
n is the total number of residuals being investigated and ri represents the ith

smallest residual. Associated with each ri is zi, the “expected value” of the ith

smallest value in a sample of size n from a standard normal or z distribution.
For example if n = 28 and i = 14 then z14 would refer to the expected 14th
smallest z-score in a sample of n = 28 z or standard normal scores, which you
would expect to be about 0, since the 14th smallest z-score in 28 is about half-
way through all of the 28 z-scores in the sample. Similarly, if i = 7 then the
z7 would refer to the 7th smallest value z-score in a sample of 28. Or z7 would
refer to that z-score for which about 7/28 = 1/4 = 0.25 of z-scores are smaller.
One could go to a standard normal table, such as Table A.1 and use for z7 the
0.25 quantile from that distribution (z score with upper 0.75 area in Table A.1).
Statistical programs will calculate the zi so we do not have to manually do these.
Also most programs use a slightly different formula than what we used, i/n, to
define the appropriate z quantile.

A normal quantile-quantile (Q-Q) plot is a plotting of the pairs (ri, zi) in a
Cartesian coordinate system. Thus a normal Q-Q plot is just a special kind of
scatterplot. If the errors are truly normally distributed with the same variance
then the normal probability plot should be roughly linear. If the errors are not
normally distributed then the plot should exhibit some type of curvature.

Some examples of typical Q-Q plots is given in the following figures.
Figure 8.16 and Figure 8.17 gives a typical histogram and normal Q-Q plot

when the error terms are truly normally distributed. Note the linear relationship
between the residuals and the expected standard normal quantiles.

Figure 8.18 and Figure 8.19 give a typical histogram and normal Q-Q Plot
when the error terms have a “heavy tailed” distribution, that is the tails of the
distribution are more spread out than that for a normal distribution.

Figure 8.20 and Figure 8.21 give a typical histogram and and normal Q-Q
Plot when the error terms have a symmetric “light tailed” distribution, that is
the tails of the distribution are less spread out than that for a normal distribu-
tion.
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Figure 8.16: Residual Histogram: Normal Distribution

Figure 8.17: Residual QQPlot: Normal Distribution

Figure 8.18: Residual Histogram: Heavy Tail Distribution
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Figure 8.19: Residual QQPlot: Heavy Tail Distribution

Figure 8.20: Residual Histogram: Light Tail Distribution

Figure 8.21: Residual Q-Q Plot: Light Tail Distribution
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Figure 8.22: Residual Histogram: Right Tail Distribution

Figure 8.23: Residual Q- Q Plot: Right Tail Distribution

Figure 8.22 and Figure 8.23 give a typical histogram and normal Q-Q Plot
when the error terms have an asymmetric “right skewed” distribution, that is
the right tail of the distribution is more spread out than the left tail.

Figure 8.24 and Figure 8.25 give a typical histogram and normal Q-Q Plot
when the error terms have an asymmetric “left skewed” distribution, that is the
left tail of the distribution is more spread out than the right tail.

8.4.1 Checking Normality of the Errors for the Battery
Example

Figures 8.26 and 8.27 provides a histogram and Q-Q plot of the residuals for
the battery lifetime data, respectively.

There are no major deviations from normality and so the assumption of
normality of the model errors appears to be satisfied approximately. Thus all
three assumptions appear to hold approximately for this data. See Example 8.1
for the check on independence and Section 8.3.2 for the check on homogeneity
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Figure 8.24: Residual Histogram: Left Tail Distribution

Figure 8.25: Residual Q-Q Plot: Left Tail Distribution

Figure 8.26: Histogram of Residuals for Battery Lifetime Data
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Figure 8.27: QQPlot of Residuals for Battery Lifetime Data

of error variances.

8.4.2 Checking Normality of the Errors for the Paper Towel
Example

Figures 8.28 and 8.29 provides a histogram and QQplot of the residuals for
the paper towel absorption data, respectively.

There are no major deviations from normality and so the assumption of
normality of the model errors appears to be satisfied approximately. The as-
sumption of homogeneity of error variances was checked earlier (see Section
8.3.3).

8.4.3 Checking Normality of the Errors for the Auditor
Example

Figures 8.30 and 8.31 provide a histogram and Q-Q plot of the residuals for
the auditor proficiency data, respectively. See Section 8.3.6.

There are no major deviations from normality and so the assumption of
normality of the model errors appears to be satisfied approximately. Thus the
assumptions of homogeneity of error variances and normality appear to be hold
approximately for this data.
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Figure 8.28: Histogram of Residuals for Paper Towel Absorption Data

Figure 8.29: QQPlot of Residuals for Paper Towel Absorption Data
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Figure 8.30: Histogram of Residuals for Auditor Proficiency Data

Figure 8.31: QQPlot of Residuals for Auditor Proficiency Data
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Problems for Chapter 8

8.1 Below is a plot of residuals versus time order for the melting butter example
of Exercise 6.4. Do you think that the errors are independent? Explain.

8.2 An incense burning experiment was run in Fall of 2008 by David Gately to
study the effects of fan status (off, 2 feet from incense, 4 feet from incense)
and flavor of incense stick (vanilla, cinnamon) on the amount of time (to
the nearest minute) it took the stick of incense to burn out. The data are
reported in the following table. The experimental design was completely
random with experimental units being time slots. The following table gives
the burn times and the time slots at which these burn times were obtained.
The residuals and predicted values are left blank.

Fan Status Flavor Burning Time TimeOrder Predicted Residual
On2 Vanilla 15 5
On2 Vanilla 16 11
On2 Vanilla 13 18
On2 Cinnamon 14 2
On2 Cinnamon 17 8
On2 Cinnamon 16 14
On4 Vanilla 19 6
On4 Vanilla 21 15
On4 Vanilla 18 17
On4 Cinnamon 21 1
On4 Cinnamon 20 3
On4 Cinnamon 20 12
Off Vanilla 27 4
Off Vanilla 29 7
Off Vanilla 25 10
Off Cinnamon 26 9
Off Cinnamon 28 13
Off Cinnamon 28 16
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a. Calculate the residuals and predicted values associated with each of
the observations and fill in the blanks. Residual plots based on these
residuals are provided in parts (b) - (g).

b. Consider the following plot of burn times versus treatment. Can this
plot be used to check any of the assumptions about the error terms?
Explain in the context of this data.

c. Consider the following residual plot. What assumption is this plot
used to check? Comment on the assumption for this data.

d. Consider the following residual plot. What assumption is this plot
used to check? Comment on the assumption for this data.
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e. Consider the following residual plot. What assumption is this plot
used to check? Comment on the assumption for this data.

f. Consider the following residual plot. What assumption is this plot
used to check? Comment on the assumption for this data.
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g. Consider the following residual plot. What assumption is this plot
used to check? Comment on the assumption for this data.



Chapter 9

Split Plot Designs

The simplest of the split plot designs is a two factor design. We have studied the
completely randomized two factor design in Chapter 6. In that design there was
only one kind of experimental unit. All treatment combinations were assigned
completely at random to the same kind of experimental unit. For example in
the agricultural example of Chapter 6 all six combinations of type of fertilizer
and watering regimen were applied to the same kind of experimental unit, a
small plot of land. In some experiments, for reasons to be explored later, the
levels of one factor A are applied to one type of experimental unit and the levels
of B are applied to subunits of the units assigned to A. For example, suppose in
an educational experiment whole classes of students receive one of three types of
teaching method (factor A). Suppose within each class the students are divided
into two groups with each group receiving a level of another factor B: usage
of library or not. The treatment structure is factorial – all combinations of
A and B are used. But the levels of A are applied/assigned to one type of
experimental unit, the whole class, and the levels of B are applied to another
type of experimental unit, subgroup of a class. This is an example of a split
plot design. In a completely randomized design for this study there would only
be one type of unit, say classes, and the combinations of teaching method and
library usage or not would be assigned to classes.

In the split plot design the levels of A are assigned to larger “whole units”
and the levels of B are assigned to smaller “subunits” of the whole units. In
the education experiment above the whole units are the classes of students and
the groups of students within each class are the “subunits.” In an agricultural
experiment the whole units are often large plots of land and the subunits are
subdivisions of the large plot, or split plots. Hence the name split plot design.

9.1 Arrangement of Whole Units

The levels of A can be assigned to the whole units in a completely randomized
design or the whole units might be blocked and the levels of A assigned to

189
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the whole units within each block. Regardless of the treatment design for A,
completely randomized or block, the levels of B are assigned completely at
random to the split units within each whole unit.

9.1.1 Whole Units Arranged Completely at Random

The education example described earlier is an example of this situation. Suppose
that there are 9 classes available and the three teaching methods (factor A) are
assigned completely at random to the 9 classes with 3 classes being assigned
to each of the 3 methods. The whole units are the classes. Within each of the
classes 2 groups of students are formed. These groups within each of the classes
form the subunits of the experiment. Then the two levels of factor B (library
usage or not) are assigned at random to the two subgroups within each class.
Note that each whole unit (a class) is also a block of split units (2 subgroups in
the class).

9.1.2 Whole Units Arranged in Blocks

Suppose in an agricultural experiment two factors are being studied, irrigation
method (factor A) with two levels, and type of fertilizer (factor B) with three
levels. Suppose that 10 large plots are blocked into 5 blocks each with 2 plots.
The arranging of the large plots is carried out so that the two large plots within
each block are similar with regard to soil composition. The two levels of irri-
gation are assigned completely at random to the two plots (whole units) within
each block. Thus the whole units in this experiment are arranged in blocks of
two. Each plot within a block is divided into three subplots. The three fertiliz-
ers are assigned at random to the three subplots within each whole plot. The
response variable might be yield of the same crop planted on all 5 x 6 = 30
subplots.

This example gives one reason why the split plot design is used. Sometimes
larger units are simply required for the levels of one factor A and smaller units
can be used for the levels of the other factor B. Here irrigation method would
require large plots of land because of the equipment while type of fertilizer can
be applied to smaller plots.

9.2 Analysis of Split Plot Design - Whole Units
in a Completely Randomized Design

9.2.1 The Model

The model for the split plot design where the whole units are arranged in a
completely randomized design is:

yijk = µ + αi + εw
k(i) + βj + αβij + εs

ijk (9.1)
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where i = 1, ..., a, with a being the number of levels of factor A, j = 1, ..., b, with
b being the number of levels of factor B, k = 1, ..., n, with n being the number
of whole units assigned to each level of factor A, and

• Yijk is the observation on the response variable at the ith level of the factor
A, kth whole unit receiving or “nested” within the ith level of A, getting
jth level of the factor B.

• µ is the grand mean of the response variable averaged over a population of
subjects, all levels of factor A, and all levels of factor B.

• αi is the true effect of the ith level of the factor A on the response variable

• εw
k(i) is the error term for the the kth whole unit nested within the ith level

of the factor A, representing the effect of extraneous variables associated
with the whole unit.

• βj is the true effect of the jth level of the factor B on the response variable.

• αβij is the true interaction effect on the response variable of the ith level
of A and the jth level of B

• εs
ijk is the error term for the split unit associated with the ith level of A,

kth whole unit nested under the ith level of A, and the jth level of B,
representing the effect of extraneous variables with this split unit.

Note that there are two error terms in the model because there are two types
of experimental units, the whole unit and the split unit. The whole unit error,
denoted by εw

k(i), represents differences in the whole units getting assigned to
the levels of A. The split unit error, denoted by εs

ijk, represents differences in
the split units assigned to the levels of B.

The model assumes that the whole unit errors are independent normal ran-
dom variables each with mean 0 and common variance σ2

w and that the split unit
errors are independent normal random variables each with mean 0 and common
variance σ2

s . It is also assumed that a whole unit error is independent of a split
unit error.

The model assumes that the design is balanced. That is there is the same
number of observations, n, at each treatment combination of the levels of factor
A and B.

While the errors are all independent of one another the model does hypoth-
esize that the observations on Y for the split units within each whole unit are
correlated since those observations have a common factor, that being a common
whole unit.

9.2.2 The ANOVA Table

The ANOVA table is derived in a manner similar to how the ANOVA table is
derived in other designs. The observed responses can be partitioned into parts
representing the grand mean, the effect of the particular level of factor A, the
error associated with the whole unit, the effect of the particular level of factor
B, the interaction effect, and the error associated with the split unit. The sum
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Table 9.1: ANOVA Table for Two Factor Split Plot Design - Whole Units in
Completely Randomized Design

Source of Variation df SS MS F EMS
A a - 1 SSA MSA MSA/MSEw σ2

s + aσ2
w + Q1

Errorw a(n− 1) SSEw MSEw σ2
s + aσ2

w

B b - 1 SSB MSB MSB/MSEs σ2
s + Q2

A*B (a− 1)(b− 1) SSAB MSAB MSAB/MSEs σ2
s + Q3

Errors a(b− 1)(n− 1) SSEs MSEs σ2
s

of squares of the deviations of the observed responses from the grand mean can
be partitioned into sums describing variability in the effects of A, whole unit
effects (errors), effects of B, interaction effects, and split unit effects (error).

SSTOTC = SSA + SSEw + SSB + SSAB + SSEs

The ANOVA table is given in Table 9.1
In Table 9.1 the sums of squares for the various effects are given without

formulas. We will rely on the computer to calculate these. Also the values Q1,
Q2, and Q3 in the EMS column are, respectively, functions of the A effects,
B effects, and AB effects, which are zero if the corresponding effect is 0. The
column EMS gives the expected or population average mean squares.

Let us consider testing for A effects. Under the null hypothesis, the expected
mean square for A would be identical to the expected mean square for the
whole plot error. Thus under the null hypothesis we would expect the ratio
MSA/MSEw to be approximately 1. If the alternative hypothesis is true,
then the expected mean square for A would be larger than MSEw. In this
case we would expect the ratio MSA/MSEw to be larger than 1. The test
statistic for testing for A effects is the F ratio MSA/MSEw. Assuming the
model assumptions hold then the ratio MSA/MSEw has an F distribution
with numerator degrees of freedom ν1 = a − 1 and denominator degrees of
freedom ν2 = a(n − 1). We will rely on the computer to calculate the F ratio
and obtain a P value for hypothesis testing.

Similarly test for B main effects and AB interaction can be tested using F
ratios. Note however that the denominator mean square error is MSEs, unlike
that for the test for A effects, for which the denominator is MSEw. Thus the
form of the ratio for the F statistic depends upon the effect being tested.

9.2.3 An Example of a Split Plot Study

Example 9.1 As a class project John Szarka and Zamda Lumbi in 2004 were
interested in investigating the effects of type of flour (white, wheat, bread) and
length of time in oven (5, 10, 15 minutes) on the change in height of dough after
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Table 9.2: Change in Height of Dough (mm) for Baking Experiment

Baking Time (Min)

Type of Flour 5 10 15
Roll

White 1 44 46 47
2 42 46 48
3 42 43 43

Wheat 1 40 40 42
2 40 41 41
3 40 41 41

Bread 1 43 44 46
2 43 44 45
3 41 43 43

baking. Three rolls of dough were made from each type of flour for a total of
nine rolls. Each roll was made using the same ingredients except for the type of
flour. Each roll was divided into 3 equal parts and the 3 parts put into an oven.
One part was baked at 5 minutes, another part at 10 minutes, and another for
15 minutes. Thus one run of the oven involved one roll (3 parts). The type of
flour used for a particular roll and run of the oven was selected at random. The
3 parts of the roll were assigned at random to locations in the oven and time
of baking. At the end of the 5, 10, and 15 minute periods, the appropriate rolls
were taken out of the oven and measured for height change.

The data are given in Table 9.2

This is an example of a split plot design. Type of flour is the whole unit/plot
factor, A. The whole plot experimental unit is a roll at a particular baking
period. The design structure for the whole units is completely randomized.
The types of flour are assigned completely at random to the rolls baked at a
particular baking period.

The split unit/plot factor, B, is the amount of time that a section is baked.
The split plot experimental unit is the part of the dough which we will call
“biscuit.” The biscuits are arranged by roll so roll, the whole unit, also serves
as a block.

The model for this data is:

yijk = µ + αi + εw
k(i) + βj + αβij + εs

ijk (9.2)

with i = 1(white), 2(wheat), a = 3(bread) indexing type of flour, j = 1(5min), 2(10min), b =
3(15min) indexing baking time, and k = 1, 2, n = 3 indexing the roll made with
a particular flour, and
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• Yijk is the observation on height change, in millimeters, at the ith level of
flour type, kth roll nested within the ith level of flour type, and jth level of
baking time.

• µ is the grand mean of height change averaged over a population of rolls,
all levels of flour type, and all levels of baking time.

• αi is the true effect of the ith level of the flour type on height change.

• εw
k(i) is the error term for the the kth roll nested within the ith level of the

flour type, representing the effect of extraneous variables associated with
the roll, such as differences in amount of kneading, ingredients, etc.

• βj is the true effect of the jth level of baking time on height change of
bread

• αβij is the true interaction effect on height change of the ith level of flour
type and the jth level of baking time.

• εs
ijk is the error term for the split unit, here biscuit, associated with the ith

level of flour type, kth roll nested under the ith level of flour type, and the
jth level of baking time, representing the effect of extraneous variables for
this unit, such as slight variations in baking time, variations in temperature
of oven, within roll variations such as differences due to uneven mixing of
ingredients.

The model assumes that the “roll” errors, εw
k(i), are independent normal

random variables each with mean 0 and common variance σ2
w and that the

“biscuit” errors, εs
ijk, are independent normal random variables each with mean

0 and common variance σ2
s . It is also assumed that a “roll” error is independent

of a “biscuit” error.
While the errors are all independent of one another the model hypothesizes

that the observations on height change for the three biscuits of a particular roll
are correlated since those observations have a common factor, that being the
common roll and a common run of the oven.

A plot of change in height versus type of flour and baking time is given in
Figure 9.1. Type of flour appears to have an effect with bread and white flour
resulting in greater increases in height. As expected increases in baking time
are associated with increases in height change.

Height change treatment, marginal, and grand means are provided in Ta-
ble 9.3.

An interaction plot is given in Figure 9.2. There is no evidence of interaction
between type of flour and baking time.

The ANOVA table for the baking experiment is given in Table 9.4. Note
that there is no evidence of interaction between type of flour and baking time
(F = 1.17, P − value = 0.3701) at the 0.10 level. However both the effects of
type of flour and baking time are significant at the 0.05 level.

Tukey-Kramer confidence intervals are used to make pairwise comparisons
of the different types of flour and and different baking times.
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Figure 9.1: Plot of Height Increase versus Flour/Baking Time

Table 9.3: Height Change Means: Grasses Example

Baking Time
5 10 15 yi..

Flour Type
White 42.7 45.0 46.0 44.6
Wheat 40.0 40.7 41.3 40.7
Bread 42.3 43.7 44.7 43.6

y.j. 41.7 43.1 44.0
y... = 42.9

Table 9.4: ANOVA Table for Baking Experiment

Source of Variation df SS MS F P-value
Flour 2 73.41 36.70 9.53 0.0137
Error (Roll(Flour)) 6 23.11 3.85
Baking Time 2 24.96 12.48 16.85 0.0003
Flour*BakeTime 4 3.48 0.87 1.17 0.3701
Error (Piece) 12 8.89 0.74



196

Figure 9.2: InteractionPlot

The Tukey-Kramer confidence intervals with overall confidence level 1 − α
for the levels of the whole plot factor A are

yi·· − yi′·· ±
qα;ν,t√

2

√
MSEw

√
1
bn

+
1
bn

where
√

MSEw

√
1
bn + 1

bn is the standard error of yi·· − yi′·· and qα;ν,t is the
upper α probability point from the Studentized range distribution. Here ν
refers to degrees of freedom associated with MSEw, whole plot mean squared
error and t = a, the number of levels of the whole plot factor A, type of flour.

For the comparisons involving types of flour the appropriate MSE is mean
squared error for the Roll effect MSEw = 3.85. The value bn = (3)(3) = 9 in
the denominator is the number of observations contributing to a flour mean.
Thus the standard error of the difference between two flour (sample) means is√

2(3.85)
9 = 0.92. Table A.6 with ν = 6 degrees of freedom associated with Roll

error and t = a = 3 levels for the flour factor gives q0.05;6,3 = 4.34 for overall
95% confidence. Thus the multiplier on the standard error is 4.34√

2
= 3.1. Thus

the endpoints for the intervals for µ3·−µ2·, µ1·−µ2·, and µ1·−µ3·, respectively,
are:

(43.6− 40.7)± (3.1)(0.92) (44.6− 40.7)± (3.1)(0.92) (44.6− 43.6)± (3.1)(0.92)

Thus the Tukey-Kramer simultaneous 95% confidence intervals are:

0.1 ≤ µ3. − µ2. ≤ 5.7
1.1 ≤ µ1. − µ2. ≤ 6.7

−1.8 ≤ µ1. − µ3. ≤ 3.8
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The mean change in height for the Bread and White flours are greater than
the mean change in height for the Wheat flour. There is not enough evidence of
a difference in mean height change between the White and Bread flours. These
conclusions are supported by an overall 95% confidence level.

The Tukey-Kramer confidence intervals with overall confidence level 1 − α
for the levels of the split plot factor B are

y·j· − y·j′· ±
qα;ν,t√

2

√
MSEs

√
1
an

+
1
an

where
√

MSEs

√
1

an + 1
an is the standard error of y·j· − y·j′· and qα;ν,t is the

upper α probability point from the Studentized range distribution. Here ν refers
to the degrees of freedom associated with MSEs, split plot mean squared error
and t = b refers to the number of levels of factor B.

For the comparisons involving the three baking times the appropriate MSE
is mean squared error for the split plots MSEs = 0.74. The value (a)(n) =
(3)(3) = 9 is the number of observations contributing to a baking time mean.
Thus the standard error of the difference between two baking time means is√

2(0.74)
9 = 0.41. Table A.6 with ν = 12 degrees of freedom associated with the

split plot error and t = b = 3 levels for the baking time factor gives q0.05;12,3 =
3.77. Thus the multiplier on the standard error is 3.77√

2
= 2.67. Thus the

endpoints for the intervals for µ·2 − µ·1, µ·3 − µ·1, and µ·3 − µ·2 comparing the
baking times 5 and 10, 5 and 15, and 10 and 15 minutes are:

(43.1− 41.7)± (2.67)(0.41) (44.0− 41.7)± (2.67)(0.41) (44.0− 43.1)± (2.67)(0.41)

The Tukey-Kramer simultaneous 95% confidence intervals are:

0.3 ≤ µ.2 − µ.1 ≤ 2.5
1.2 ≤ µ.3 − µ.1 ≤ 3.4

−0.2 ≤ µ.3 − µ.2 ≤ 2.0

Thus mean height change is greater at both the 10 and 15 minute baking
times when compared to the 5 minute baking time. There is not enough evidence
of a difference in mean height change at the 10 and 15 minute baking times.

A check is made of the assumptions of normality and homogeneous error
variances associated with the split plot errors. Figure 9.3 gives a histogram
of the split plot residuals from the model. Normality appears to be satisfied
approximately.

Figure 9.4 gives a scatterplot of the split plot residuals versus the predicted
height changes for the fitted model. There appears to be no patterns and thus
the assumptions of homogeneity of error variance appears to be satisfied ap-
proximately.
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Figure 9.3: Histogram of Split Plot Residuals: Baking Experiment

Figure 9.4: Plot of Split Plot Residuals versus Predicted Change: Baking Ex-
periment
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9.3 Analysis of Split Plot Design - Whole Units
Arranged in a Block Design

9.3.1 The Model

The model for the split plot design where the whole units are arranged in blocks
is:

yijk = µ + αi + ρk + εw
ik + βj + αβij + εs

ijk (9.3)

where i = 1, ..., a, with a being the number of levels of factor A, j = 1, ..., b,
with b being the number of levels of factor B, and k = 1, ..., n, with n being the
number of blocks of the whole units, and

• Yijk is the observation on the response variable at the ith level of the factor
A, kth block of whole units, and jth level of the factor B.

• µ is the grand mean of the response variable averaged over a population of
subjects, all levels of factor A, and all levels of factor B.

• αi is the true effect of the ith level of the factor A on the response variable

• ρk is the true effect of the kth level of the blocking factor

• εw
ik is the error term for the whole unit assigned to factor level i in block

k representing the effect of extraneous variables associated with the whole
unit.

• βj is the true effect of the jth level of the factor B on the response variable

• αβij is the true interaction effect on the response variable of the ith level
of A and the jth level of B

• εs
ijk is the error term for the split unit receiving the jth level of factor B in

the whole unit receiving level i of factor A in the kth block, representing
the effects of extraneous variables associated with that split unit.

The model assumes that the whole unit errors are independent normal ran-
dom variables each with mean 0 and common variance σ2

w and that the split unit
errors are independent normal random variables each with mean 0 and common
variance σ2

s . It is also assumed that a whole unit error is independent of a split
unit error.

9.3.2 The ANOVA Table

The ANOVA table for the split plot design where the whole units are arranged
in blocks is given in Table 9.5. The sums of squares for the various effects are
given without formulas. Computer programs will be used to calculate these.
Also the values Q1, Q2, and Q3 are, respectively, functions of the A effects, B
effects, and interaction effects, which are zero if the effect is 0.

Note again for this design that the mean squared error associated with the
whole plots is the appropriate denominator for testing for factor A effects. The
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Table 9.5: ANOVA Table: Split Plot Design - Whole Units Blocked

Source of Variation df SS MS F EMS
Blocks r - 1 SSBlocks MSBlocks

A a - 1 SSA MSA MSA/MSEw σ2
s + aσ2

w + Q1

Errorw (a− 1)(r − 1) SSEw MSEw σ2
s + aσ2

w

B b - 1 SSB MSB MSB/MSEs σ2
s + Q2

A*B (a− 1)(b− 1) SSAB MSAB MSAB/MSEs σ2
s + Q3

Errors a(r − 1)(b− 1) SSEs MSEs σ2
s

Table 9.6: Quality Data for Chocolate Cake Experiment

Recipe

Replication/Block R1 R2 R3
Temp 175 195 215 175 195 215 175 195 215

1 28 31 41 31 29 40 21 31 33
2 24 27 30 21 24 37 26 27 35
3 26 32 37 21 28 27 21 25 31

appropriate F ratio for testing for B and interaction effects uses mean squared
error associated with the split units in the denominator. Again we will obtain
F ratios and P-values using the computer.

9.3.3 Example

Example 9.2 This example is based on an experiment described in Cochran
and Cox [4]. The original study was undertaken to investigate the effects of
three chocolate cake recipes and 6 baking temperatures on the various quality
characteristics of the cakes. The three recipes will simply be referred to R1,
R2, and R3. There were 6 temperatures used in the original experiment but we
will use only three here, namely 175, 195, and 215 degrees Fahrenheit. There
were three replications of the experiment with replications serving as blocks. So
a block here refers to a time frame. At each replication a recipe was selected
at random and then enough cake batter was prepared for three cakes. After
making a particular batch the batch was split into three equal parts and each
part assigned at random to one of the three oven temperatures. There were
three ovens available for the experiment. The data is provided in Table 9.6. The
response variable is a quality characteristic with higher values indicating greater
quality.
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This is an example of a split plot design where the whole units are arranged
in blocks. A block corresponds to a replication in which a set of three time slots
are available to make three cake batter batches. The whole unit is a batch of
cake batter prepared at a particular time slot. The whole plot factor, A, is recipe
(R1,R2, and R3) whose levels are assigned at random to the three whole units
for a replication. Whole units are blocked according to replication. The split
units are the three portions of a batch of cake batter prepared at a particular
large time slot. The three portions are assigned to the three ovens/temperatures.
Temperature of oven is the split plot factor, B. The whole units (batches of cake)
are blocked by replication. Each whole unit (batch of cake) within a replication
serves as a block of three split units (portions of batch).

The model for the split plot design in this example is:

yijk = µ + αi + ρk + εw
ik + βj + αβij + εs

ijk (9.4)

with i = 1(R1), 2(R2), a = 3(R3) indexing recipe, j = 1(175), 2(195), b = 3(215)
indexing temperature, and k = 1, 2, n = 3 indexing replication.

• Yijk is the observation on the quality characteristic at the ith level of recipe,
kth replication, and jth temperature

• µ is the grand mean of the quality characteristic averaged over a population
of cakes, all levels of recipe, and all levels of temperature.

• αi is the true effect of the ith level of recipe on quality
• ρk is the true effect of the kth replication
• εw

ik is the error term for the batch of cake batter assigned to recipe i in
replication k representing the effect of extraneous variables associated with
the cake batch.

• βj is the true effect of the jth level of temperature on quality
• αβij is the true interaction effect on the quality of the ith level of recipe

and the jth level of temperature
• εs

ijk is the error term for the portion of cake batter batch receiving the
jth level of temperature in the kth replication for recipe i, representing the
effects of extraneous variables associated with the portion. These include
within batch variations and variations in ovens.

The model assumes that the batch errors are independent normal random
variables each with mean 0 and common variance σ2

w and that the portion
errors are independent normal random variables each with mean 0 and common
variance σ2

s . It is also assumed that a batch error is independent of a portion
error.

A plot of quality versus recipe and oven temperature is given in Figure 9.5
Recipe does not appear to have an effect on quality. Oven temperature appears
to affect the quality.

Quality treatment, marginal, and grand means are provided in Table 9.7.
An interaction plot is given in Figure 9.6. There is no strong evidence of

interaction between recipe and baking temperature.
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Figure 9.5: Scatterplot of Quality Versus Recipe/Temperature

Table 9.7: Quality Means: Chocolate Cake Example

Baking Temperature (j)
175(1) 195(2) 215(3) yi..

Recipe (i)
R1 (1) 26.0 30.0 36.0 30.7
R2 (2) 24.3 27.0 34.7 28.7
R3 (3) 22.7 27.7 33.0 27.8

y.j. 24.3 28.2 34.6
y... = 29.0

Table 9.8: ANOVA Table: Recipe and Temperature Baking Experiment

Source of Variation df SS MS F P-value
Blocks 2 93.85 46.93
Recipe 2 39.41 19.70 0.82 0.5038
Errorw 4 96.37 24.09
Temp 2 479.19 239.59 26.03 < 0.0001
Recipe*Temp 4 5.70 1.43 0.15 0.9571
Errors 12 110.44 9.20
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Figure 9.6: Interaction Plot

The ANOVA table for this example is is given in Table 9.8. Note that there
is no evidence of interaction between recipe and temperature (F = 0.15, P −
value = 0.9571). The effects of recipe are not significant (F = 0.82, P −value =
0.5038) while the effects of temperature are significant (F = 26.03, P − value <
0.0001).

Since the recipe effects are not significant pairwise comparisons of the marginal
means would normally not be undertaken. However to illustrate the the appro-
priate mean square error to do Tukey-Kramer comparisons, comparisons of the
recipes as well as the temperatures will be calculated.

The Tukey-Kramer confidence intervals with overall confidence level 1 − α
for the levels of the whole plot factor A are as before:

yi·· − yi′·· ±
qα;ν,t√

2

√
MSEw

√
1
bn

+
1
bn

where
√

MSEw

√
1
bn + 1

bn is the standard error of yi·· − yi′·· and qα;ν,t is the
upper α probability point from the Studentized range distribution. Here ν
refers to the degrees of freedom associated with whole plot mean squared error,
MSEw and t = a, the number of levels of the whole plot factor A.

For the comparisons involving recipes the appropriate MSE is mean squared
error for whole unit, here MSEw = 24.09. The value bn = (3)(3)9 is the number
of observations contributing to a recipe mean. Thus the standard error of the

difference between two recipe (sample) means is
√

2(24.09)
9 = 2.31. Table A.6

with ν = 4 degrees of freedom associated with whole unit error and t = a = 3
levels for the recipe factor gives q0.05;4,3 = 5.04. Thus the multiplier on the
standard error is 5.04√

2
= 3.56. Thus the endpoints for the intervals for the
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differences µ1. − µ2., µ1. − µ3., and µ2. − µ3. for the comparisons of recipes R1
and R2, R1 and R3, and R2 and R3 are:

2.0± (3.56)(2.31) 2.9± (3.56)(2.31) 0.9± (3.56)(2.31)

Thus the simultaneous 95% Tukey-Kramer confidence intervals are:

−6.2 ≤ µ1. − µ2. ≤ 10.2
−5.3 ≤ µ1. − µ3. ≤ 11.1
−7.3 ≤ µ2. − µ3. ≤ 9.1

All three intervals contain zero and thus the comparisons are consistent with
the results from the F test.

The Tukey-Kramer confidence intervals with overall confidence level 1 − α
for the levels of the split plot factor B, here temperature, are

y·j· − y·j′· ±
qα;ν,t√

2

√
MSEs

√
1
an

+
1
an

where
√

MSEs

√
1

an + 1
an is the standard error of y·j· − y·j′· and qα;ν,t is the

upper α probability point from the Studentized range distribution. Here ν refers
to the degrees of freedom associated with split plot mean squared error, MSEs

and t = b, the number of levels of the split plot factor B.
For the comparisons involving the three oven temperatures the appropriate

MSE is mean squared error for the split units (cake batter batch portion),
MSEs = 9.20. The value an = (3)(3) = 9 is the number of observations
contributing to a temperature mean. Thus the standard error of the difference

between two temperature means is
√

2(9.20)
9 = 1.43. Table A.6 with ν = 12

degrees of freedom associated with the split plot error and t = b = 3 levels
for the temperature factor gives q0.05;12,3 = 3.77. Thus the multiplier on the
standard error is 3.77√

2
= 3.67. Thus the endpoints for the intervals for differences

in temperatures µ·2 − µ·1, µ·3 − µ·1, and µ·3 − µ·2 comparing the temperatures
175 and 195, 175 and 215, and 195 and 215 are:

(28.2− 24.3)± (2.67)(1.43) (34.6− 24.3)± (2.67)(1.43) (34.6− 28.2)± (2.67)(1.43)

The Tukey-Kramer simultaneous 95% confidence intervals are:

0.08 ≤ µ·2 − µ·1 ≤ 6.6
6.5 ≤ µ·3 − µ·1 ≤ 14.1
2.6 ≤ µ·3 − µ·2 ≤ 10.2

All pairwise comparisons of mean quality are significant.
A check is made of the assumptions of normality and homogeneous error

variances associated with the split plot errors. Figure 9.7 gives a histogram
of the split plot residuals from the model. Normality appears to be satisfied
approximately.

Figure 9.8 gives a plot of the split plot residuals versus the predicted quality
for the fitted model. There appears to be no patterns and thus the assumptions
of homogeneity of error variance appears to be satisfied approximately.
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Figure 9.7: Histogram of Residuals from Cake Experiment

Figure 9.8: Scatterplot of Residuals versus Predicted for Cake Baking Experi-
ment
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9.4 SAS Code

9.4.1 Example 9.1

* SAS Code for Example 9.1;

* Input data;
data bake;

input Flour $ Roll $ BakeTime Treatment $ HeightChange;
datalines;
White 1 5 White5 44
White 1 10 White10 46
White 1 15 White15 47
White 2 5 White5 42
White 2 10 White10 46
White 2 15 White15 48
White 3 5 White5 42
White 3 10 White10 43
White 3 15 White15 43
Wheat 1 5 Wheat5 40
Wheat 1 10 Wheat10 40
Wheat 1 15 Wheat15 42
Wheat 2 5 Wheat5 40
Wheat 2 10 Wheat10 41
Wheat 2 15 Wheat15 41
Wheat 3 5 Wheat5 40
Wheat 3 10 Wheat10 41
Wheat 3 15 Wheat15 41
Bread 1 5 Bread5 43
Bread 1 10 Bread10 44
Bread 1 15 Bread15 46
Bread 2 5 Bread5 43
Bread 2 10 Bread10 44
Bread 2 15 Bread15 45
Bread 3 5 Bread5 41
Bread 3 10 Bread10 43
Bread 3 15 Bread15 43
;
run;

* Calculate and print means of height change;
proc means data = Bake;

class Flour BakeTime;
var HeightChange;
output out = Summary mean = MeanHeightChange;
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run;
proc print data = Summary;
run;

* Compute ANOVA table and construct Tukey-Kramer pairwise comparisons;
proc glm data = bake;

title1;
class Flour Roll BakeTime;
model HeightChange = Flour Roll(Flour) BakeTime Flour*Baketime;
random Roll(Flour) / test;
lsmeans Flour / pdiff tdiff adjust = tukey e = Roll(Flour);
lsmeans BakeTime / pdiff tdiff adjust = tukey;

run;

9.4.2 Example 9.2

* SAS Code for Example 9.2;

* Input data;
data Cake;

input Block Recipe $ Temperature Treatment $ Quality;
datalines;
1 R1 175 R1_175 28
1 R1 195 R1_195 31
1 R1 215 R1_215 41
1 R2 175 R2_175 31
1 R2 195 R2_195 29
1 R2 215 R2_215 40
1 R3 175 R3_175 21
1 R3 195 R3_195 31
1 R3 215 R3_215 33
2 R1 175 R1_175 24
2 R1 195 R1_195 27
2 R1 215 R1_215 30
2 R2 175 R2_175 21
2 R2 195 R2_195 24
2 R2 215 R2_215 37
2 R3 175 R3_175 26
2 R3 195 R3_195 27
2 R3 215 R3_215 35
3 R1 175 R1_175 26
3 R1 195 R1_195 32
3 R1 215 R1_215 37
3 R2 175 R2_175 21
3 R2 195 R2_195 28
3 R2 215 R2_215 27
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3 R3 175 R3_175 21
3 R3 195 R3_195 25
3 R3 215 R3_215 31
;
run;

* Calculate and print quality means;
proc means data = Cake;

class Recipe Temperature;
var Quality;
output out = Summary mean = MeanQuality;

run;
proc print data = Summary;
run;

* Calculate ANOVA table and results of Tukey-Kramer pairwise comparisons;
proc glm data = Cake;

class Block Recipe Temperature;
model Quality = Block Recipe Block*Recipe Temperature Recipe*Temperature;
random Block*Recipe / test;
lsmeans Recipe / pdiff tdiff adjust = tukey e = Block*Recipe;
lsmeans Temperature / pdiff tdiff adjust = tukey;

run;
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Problems for Chapter 9

9.1 A researcher was interested in comparing the growths of three strains of
petunias (A,B,C) grown at different temperatures. The plants were to be
grown in growth chambers where temperature could be controlled. Nine
growth chambers altogether were used, three chambers at each of 70, 75,
and 80 degrees. Within each growth chamber three saplings, one of each
strain, were assigned at random to three pots and locations within the
growth chamber. The saplings were grown in the chambers for one month.
At the end of the month the growth in inches was recorded. This is an
example of a split plot experiment.

a. What is the whole plot factor? What is the whole plot experimental
unit? Give some extraneous variables that contribute to whole plot
experimental error.

b. Are the whole plot experimental units arranged in a completely ran-
domized design or a block design? Explain.

c. What is the split plot factor? What is the split plot experimental
unit? Give some extraneous variables that contribute to split plot
experimental error.

d. Give a model for this experiment and describe the terms in the model
including the error terms.

9.2 An experiment was conducted to investigate the effects of background mu-
sic and font color in memorizing a list of words. Three kinds of music were
investigated: classical, reggae, and jazz. Three font colors were used in
the list: red, blue, and black. There was a total of nine testing sessions
with three subjects tested at a particular session. The type of music to be
played at a session was selected at random with three sessions used for each
of the types of music. At a particular session three subjects were assigned
to study the same list of 50 words except that subjects had a different font
color. After studying the list for 1 minute the subjects were then asked to
recall and write down the words that he/she could remember. The score on
this memorization test was the fraction of the 50 words that were correctly
remembered.
This is an example of a split plot experiment.

a. What is the whole plot factor? What is the whole plot experimental
unit? Give some extraneous variables that contribute to whole plot
experimental error.

b. Are the whole plot experimental units arranged in a completely ran-
domized design or a block design? Explain.

c. What is the split plot factor? What is the split plot experimental
unit? Give some extraneous variables that contribute to split plot
experimental error.
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d. Give a model for this experiment and describe the terms in the model
including the error terms.

9.3 As a class project Casey Gundersen in 2004 investigated the effects of oven
temperature and type of ice cube on the amount of time for the ice cube to
melt. The experiment was carried out using nine oven sessions. The tem-
perature used for a particular oven session was randomly selected from one
of 250, 300, 350 degrees Fahrenheit, with three sessions per temperature.
At each session three ice cubes about of equal size were put into the oven,
one per Pyrex bowl. One ice cube was made from bottle water, one from
tap water, and one from bottle water with salt. The response variable was
the amount of time in seconds that it took for a cube to melt. This is an
example of a split plot experiment. The data are given in the following
table.

Ice Type

Oven Temp Tap Bottle Salt
Run

250 1 753 707 525
2 786 728 648
3 650 658 596

300 1 546 528 567
2 629 598 485
3 665 612 628

350 1 563 602 484
2 642 521 443
3 608 498 438

a. What is the whole plot factor? What is the whole plot experimental
unit? Give some extraneous variables that contribute to whole plot
experimental error.

b. Are the whole plot experimental units arranged in a completely ran-
domized design or a block design? Explain.

c. What is the split plot factor? What is the split plot experimental
unit? Give some extraneous variables that contribute to split plot
experimental error.

d. Give a model for this experiment and describe the terms in the model
including the error terms.
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e. Use a statistical computing program to obtain an ANOVA table for
the data.

f. Is there evidence of interaction between oven temperature and ice
type? Use a 0.10 level of significant.

g. From part (f) there is no evidence of interaction between oven temper-
ature and ice type. Thus test for oven temperature and ice type main
effects. Use a significance level of 0.05 for each type. Make appropri-
ate pairwise comparisons using the Tukey-Kramer multiple comparison
procedure with an overall confidence level of 0.95.

h. Check the assumptions of normality and homogeneity of split plot error
variance with appropriate plots. Comment.

9.4 Milliken and Johnson [14], page 297 describe an experiment in which a
field is divided into two blocks, each with four plots. Each of four fertilizers
(F1, F2, F3, F4) is randomly assigned to one of the plots within each block.
Each plot is split into two smaller plots. Each smaller plot within the plot is
randomly assigned to one of two wheat varieties (W1,W2). The response
variable is yield (lbs) of the variety of wheat. This is an example of a split
plot experiment. The yields are given in the following table.

Block F1 F2 F3 F4
W1 W2 W1 W2 W1 W2 W1 W2

1 35.4 37.9 36.7 38.2 34.8 36.4 39.5 40.0
2 41.6 40.3 42.7 41.6 43.6 42.8 44.5 47.6

a. What is the whole plot factor? What is the whole plot experimental
unit?

b. Are the whole plot experimental units arranged in a completely ran-
domized design or a block design? Explain.

c. What is the split plot factor? What is the split plot experimental unit?
d. Give a model for this experiment and describe the terms in the model

including the error terms.
e. Use a statistical computing program to obtain an ANOVA table for

the data.
f. Is there evidence of interaction between fertilizer and wheat variety?

Use a 0.10 level of significance.
g. From part(f) there was no statistical evidence of interaction between

fertilizer and wheat variety. Thus test for fertilizer and wheat vari-
ety main effects. Use a significance level of 0.05. Make appropriate
pairwise comparisons using the Tukey-Kramer multiple comparison
procedure with an overall confidence level of 0.95.
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Table A.1: Standard Normal Right Tail Probabilities

Table entries are areas under standard normal curve to the right of z

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.00 .5000 .4960 .4920 .4880 .4840 .4801 .4761 .4721 .4681 .4641
0.10 .4602 .4562 .4522 .4483 .4443 .4404 .4364 .4325 .4286 .4247
0.20 .4207 .4168 .4129 .4090 .4052 .4013 .3974 .3936 .3897 .3859
0.30 .3821 .3783 .3745 .3707 .3669 .3632 .3594 .3557 .3520 .3483
0.40 .3446 .3409 .3372 .3336 .3300 .3264 .3228 .3192 .3156 .3121
0.50 .3085 .3050 .3015 .2981 .2946 .2912 .2877 .2843 .2810 .2776
0.60 .2743 .2709 .2676 .2643 .2611 .2578 .2546 .2514 .2483 .2451
0.70 .2420 .2389 .2358 .2327 .2296 .2266 .2236 .2206 .2177 .2148
0.80 .2119 .2090 .2061 .2033 .2005 .1977 .1949 .1922 .1894 .1867
0.90 .1841 .1814 .1788 .1762 .1736 .1711 .1685 .1660 .1635 .1611
1.00 .1587 .1562 .1539 .1515 .1492 .1469 .1446 .1423 .1401 .1379
1.10 .1357 .1335 .1314 .1292 .1271 .1251 .1230 .1210 .1190 .1170
1.20 .1151 .1131 .1112 .1093 .1075 .1056 .1038 .1020 .1003 .0985
1.30 .0968 .0951 .0934 .0918 .0901 .0885 .0869 .0853 .0838 .0823
1.40 .0808 .0793 .0778 .0764 .0749 .0735 .0721 .0708 .0694 .0681
1.50 .0668 .0655 .0643 .0630 .0618 .0606 .0594 .0582 .0571 .0559
1.60 .0548 .0537 .0526 .0516 .0505 .0495 .0485 .0475 .0465 .0455
1.70 .0446 .0436 .0427 .0418 .0409 .0401 .0392 .0384 .0375 .0367
1.80 .0359 .0351 .0344 .0336 .0329 .0322 .0314 .0307 .0301 .0294
1.90 .0287 .0281 .0274 .0268 .0262 .0256 .0250 .0244 .0239 .0233
2.00 .0228 .0222 .0217 .0212 .0207 .0202 .0197 .0192 .0188 .0183
2.10 .0179 .0174 .0170 .0166 .0162 .0158 .0154 .0150 .0146 .0143
2.20 .0139 .0136 .0132 .0129 .0125 .0122 .0119 .0116 .0113 .0110
2.30 .0107 .0104 .0102 .0099 .0096 .0094 .0091 .0089 .0087 .0084
2.40 .0082 .0080 .0078 .0075 .0073 .0071 .0069 .0068 .0066 .0064
2.50 .0062 .0060 .0059 .0057 .0055 .0054 .0052 .0051 .0049 .0048
2.60 .0047 .0045 .0044 .0043 .0041 .0040 .0039 .0038 .0037 .0036
2.70 .0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026
2.80 .0026 .0025 .0024 .0023 .0023 .0022 .0021 .0021 .0020 .0019
2.90 .0019 .0018 .0018 .0017 .0016 .0016 .0015 .0015 .0014 .0014
3.00 .0013 .0013 .0013 .0012 .0012 .0011 .0011 .0011 .0010 .0010
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Table A.2: Upper α probability points for the Student t distribution

Table entries are tα;ν , where P [t > tα;ν ] = α

α

ν 0.40 0.25 0.10 0.05 0.025 0.01 0.005 0.0005

1 .325 1.000 3.078 6.314 12.706 31.820 63.657 636.619
2 .289 .816 1.886 2.920 4.303 6.965 9.925 31.599
3 .277 .765 1.638 2.353 3.182 4.541 5.841 12.924
4 .271 .741 1.533 2.132 2.776 3.747 4.604 8.610
5 .267 .727 1.476 2.015 2.571 3.365 4.032 6.869
6 .265 .718 1.440 1.943 2.447 3.143 3.707 5.959
7 .263 .711 1.415 1.895 2.365 2.998 3.500 5.408
8 .262 .706 1.397 1.860 2.306 2.896 3.355 5.041
9 .261 .703 1.383 1.833 2.262 2.821 3.250 4.781
10 .260 .700 1.372 1.812 2.228 2.764 3.169 4.587
11 .260 .697 1.363 1.796 2.201 2.718 3.106 4.437
12 .259 .695 1.356 1.782 2.179 2.681 3.054 4.318
13 .259 .694 1.350 1.771 2.160 2.650 3.012 4.221
14 .258 .692 1.345 1.761 2.145 2.624 2.977 4.140
15 .258 .691 1.341 1.753 2.131 2.602 2.947 4.073
16 .258 .690 1.337 1.746 2.120 2.583 2.921 4.015
17 .257 .689 1.333 1.740 2.110 2.567 2.898 3.965
18 .257 .688 1.330 1.734 2.101 2.552 2.878 3.922
19 .257 .688 1.328 1.729 2.093 2.540 2.861 3.883
20 .257 .687 1.325 1.725 2.086 2.528 2.845 3.850
21 .257 .686 1.323 1.721 2.080 2.518 2.831 3.819
22 .256 .686 1.321 1.717 2.074 2.508 2.819 3.792
23 .256 .685 1.319 1.714 2.069 2.500 2.807 3.768
24 .256 .685 1.318 1.711 2.064 2.492 2.797 3.745
25 .256 .684 1.316 1.708 2.060 2.485 2.787 3.725
26 .256 .684 1.315 1.706 2.056 2.479 2.779 3.707
27 .256 .684 1.314 1.703 2.052 2.473 2.771 3.690
28 .256 .683 1.313 1.701 2.048 2.467 2.763 3.674
29 .256 .683 1.311 1.699 2.045 2.462 2.756 3.659
30 .256 .683 1.310 1.697 2.042 2.457 2.750 3.646
40 .255 .681 1.303 1.683 2.021 2.423 2.704 3.551
60 .254 .678 1.296 1.671 2.000 2.390 2.660 3.460
120 .254 .677 1.289 1.658 1.980 2.358 2.617 3.373
∞ .253 .674 1.282 1.645 1.960 2.326 2.576 3.291
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Table A.3: Upper 0.05/2m Bonferroni probability point for the Student t dis-
tribution

Table entries are t0.05/2m;ν , where P [t > t0.05/2m;ν ] = 0.05/2m

ν\m 2 3 4 5 6 7 8 9 10 15

1 25.4 38.2 50.9 63.7 76.4 89.1 101. 115. 127. 191.
2 6.21 7.65 8.86 9.92 10.9 11.8 12.6 13.4 14.1 17.3
3 4.18 4.86 5.39 5.84 6.23 6.58 6.90 7.18 7.45 8.58
4 3.50 3.96 4.31 4.60 4.85 5.07 5.26 5.44 5.60 6.25
5 3.16 3.53 3.81 4.03 4.22 4.38 4.53 4.66 4.77 5.25
6 2.97 3.29 3.52 3.71 3.86 4.00 4.12 4.22 4.32 4.70
7 2.84 3.13 3.34 3.50 3.64 3.75 3.86 3.95 4.03 4.36
8 2.75 3.02 3.21 3.36 3.48 3.58 3.68 3.76 3.83 4.12
9 2.69 2.93 3.11 3.25 3.36 3.46 3.55 3.62 3.69 3.95
10 2.63 2.87 3.04 3.17 3.28 3.37 3.45 3.52 3.58 3.83
11 2.59 2.82 2.98 3.11 3.21 3.29 3.37 3.44 3.50 3.73
12 2.56 2.78 2.93 3.05 3.15 3.24 3.31 3.37 3.43 3.65
13 2.53 2.75 2.90 3.01 3.11 3.19 3.26 3.32 3.37 3.58
14 2.51 2.72 2.86 2.98 3.07 3.15 3.21 3.27 3.33 3.53
15 2.49 2.69 2.84 2.95 3.04 3.11 3.18 3.22 3.29 3.48
16 2.47 2.67 2.81 2.92 3.01 3.08 3.15 3.20 3.25 3.44
17 2.46 2.65 2.79 2.90 2.98 3.06 3.12 3.17 3.22 3.41
18 2.45 2.64 2.77 2.88 2.96 3.03 3.09 3.15 3.20 3.38
19 2.43 2.63 2.76 2.86 2.94 3.01 3.07 3.13 3.17 3.35
20 2.42 2.61 2.74 2.85 2.93 3.00 3.06 3.11 3.15 3.33
21 2.41 2.60 2.73 2.83 2.91 2.98 3.04 3.09 3.14 3.31
22 2.41 2.59 2.72 2.82 2.90 2.97 3.02 3.07 3.12 3.29
23 2.40 2.58 2.71 2.81 2.89 2.95 3.01 3.06 3.10 3.27
24 2.39 2.57 2.70 2.80 2.88 2.94 3.00 3.05 3.09 3.26
25 2.38 2.57 2.69 2.79 2.86 2.93 2.99 3.03 3.08 3.24
26 2.38 2.56 2.68 2.78 2.86 2.92 2.98 3.02 3.07 3.23
27 2.37 2.55 2.68 2.77 2.85 2.91 2.97 3.01 3.06 3.22
28 2.37 2.55 2.67 2.76 2.84 2.90 2.96 3.00 3.05 3.21
29 2.36 2.54 2.66 2.76 2.83 2.89 2.95 3.00 3.04 3.20
30 2.36 2.54 2.66 2.75 2.82 2.89 2.94 2.99 3.03 3.19
40 2.33 2.50 2.62 2.70 2.78 2.84 2.89 2.93 2.97 3.12
60 2.30 2.46 2.58 2.66 2.73 2.79 2.83 2.88 2.91 3.06
120 2.27 2.43 2.54 2.62 2.68 2.74 2.78 2.82 2.86 3.00
∞ 2.24 2.39 2.50 2.58 2.64 2.69 2.73 2.77 2.81 2.94
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Table A.4: Upper 0.01/2m Bonferroni probability point for the Student t dis-
tribution

Table entries are t0.01/2m;ν , where P [t > t0.01/2m;ν ] = 0.01/2m

ν\m 2 3 4 5 6 7 8 9 10 15

1 127. 191. 255. 318. 382. 446. 509. 573. 624. 955.
2 14.1 17.3 20.0 22.3 24.5 26.4 28.3 30.0 31.6 38.7
3 7.45 8.58 9.46 10.2 10.9 11.4 12.0 12.5 12.9 14.8
4 5.60 6.25 6.76 7.17 7.53 7.84 8.12 8.38 8.61 9.57
5 4.77 5.25 5.60 5.89 6.14 6.35 6.54 6.71 6.87 7.50
6 4.32 4.70 4.98 5.21 5.40 5.56 5.71 5.84 5.96 6.43
7 4.03 4.36 4.59 4.79 4.94 5.08 5.20 5.31 5.41 5.80
8 3.83 4.12 4.33 4.50 4.64 4.76 4.86 4.96 5.04 5.37
9 3.69 3.95 4.15 4.30 4.42 4.53 4.62 4.71 4.78 5.08
10 3.58 3.83 4.00 4.14 4.26 4.36 4.44 4.52 4.59 4.85
11 3.50 3.73 3.89 4.02 4.13 4.22 4.30 4.37 4.44 4.68
12 3.43 3.65 3.81 3.93 4.03 4.12 4.19 4.26 4.32 4.55
13 3.37 3.58 3.73 3.85 3.95 4.03 4.10 4.16 4.22 4.44
14 3.33 3.53 3.67 3.79 3.88 3.96 4.03 4.09 4.14 4.35
15 3.29 3.48 3.62 3.73 3.82 3.90 3.96 4.02 4.07 4.27
16 3.25 3.44 3.58 3.69 3.77 3.85 3.91 3.96 4.01 4.21
17 3.22 3.41 3.54 3.65 3.73 3.80 3.86 3.92 3.97 4.15
18 3.20 3.38 3.51 3.61 3.69 3.76 3.82 3.87 3.92 4.10
19 3.17 3.35 3.48 3.58 3.66 3.73 3.79 3.84 3.88 4.06
20 3.15 3.33 3.46 3.55 3.63 3.70 3.75 3.80 3.85 4.02
21 3.14 3.31 3.43 3.53 3.60 3.67 3.73 3.78 3.82 3.99
22 3.12 3.29 3.41 3.50 3.58 3.64 3.70 3.75 3.79 3.96
23 3.10 3.27 3.39 3.48 3.56 3.62 3.68 3.72 3.77 3.93
24 3.09 3.26 3.38 3.47 3.54 3.60 3.66 3.70 3.75 3.91
25 3.08 3.24 3.36 3.45 3.52 3.58 3.64 3.68 3.73 3.88
26 3.07 3.23 3.35 3.43 3.51 3.57 3.62 3.67 3.71 3.86
27 3.06 3.22 3.33 3.42 3.49 3.55 3.60 3.65 3.69 3.84
28 3.05 3.21 3.32 3.41 3.48 3.54 3.59 3.63 3.67 3.83
29 3.04 3.20 3.31 3.40 3.47 3.52 3.58 3.62 3.66 3.81
30 3.03 3.19 3.30 3.39 3.45 3.51 3.56 3.61 3.65 3.80
40 2.97 3.12 3.23 3.31 3.37 3.43 3.47 3.51 3.55 3.69
60 2.91 3.06 3.16 3.23 3.29 3.34 3.39 3.43 3.46 3.59
120 2.86 3.00 3.09 3.16 3.22 3.26 3.31 3.34 3.37 3.49
∞ 2.81 2.94 3.02 3.09 3.14 3.19 3.23 3.26 3.29 3.40
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Table A.5: Upper α = 0.01 probability point for the Studentized Range Distri-
bution

Table entries are q0.01;ν,t, where P [q > q0.01;ν,t] = 0.01

ν\t 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 14.0 19.0 22.3 24.7 26.6 28.2 29.5 30.7 31.7 32.6 33.4 34.1 34.8 35.4
3 8.26 10.6 12.2 13.3 14.2 15.0 15.6 16.2 16.7 17.1 17.5 17.9 18.2 18.5
4 6.51 8.12 9.17 9.96 10.6 11.1 11.5 11.9 12.3 12.6 12.8 13.1 13.3 13.5
5 5.70 6.98 7.81 8.42 8.91 9.32 9.67 9.97 10.2 10.5 10.7 10.9 11.1 11.2
6 5.24 6.33 7.03 7.56 7.97 8.32 8.61 8.87 9.10 9.30 9.48 9.65 9.81 9.95
7 4.95 5.92 6.54 7.01 7.37 7.68 7.94 8.17 8.37 8.55 8.71 8.86 9.00 9.12
8 4.74 5.64 6.20 6.63 6.96 7.24 7.47 7.68 7.86 8.03 8.18 8.31 8.44 8.55
9 4.60 5.43 5.96 6.35 6.66 6.91 7.13 7.33 7.50 7.65 7.78 7.91 8.03 8.13
10 4.48 5.27 5.77 6.14 6.43 6.67 6.88 7.05 7.21 7.36 7.49 7.60 7.71 7.81
11 4.39 5.15 5.62 5.97 6.25 6.48 6.67 6.84 6.99 7.13 7.25 7.36 7.46 7.56
12 4.32 5.05 5.50 5.84 6.10 6.32 6.51 6.67 6.81 6.94 7.06 7.17 7.26 7.36
13 4.26 4.96 5.40 5.73 5.98 6.19 6.37 6.53 6.67 6.79 6.90 7.01 7.10 7.19
14 4.21 4.89 5.32 5.63 5.88 6.08 6.26 6.41 6.54 6.66 6.77 6.87 6.96 7.05
15 4.17 4.84 5.25 5.56 5.80 5.99 6.16 6.31 6.44 6.55 6.66 6.76 6.84 6.93
16 4.13 4.79 5.19 5.49 5.72 5.92 6.08 6.22 6.35 6.46 6.56 6.66 6.74 6.82
17 4.10 4.74 5.14 5.43 5.66 5.85 6.01 6.15 6.27 6.38 6.48 6.57 6.66 6.73
18 4.07 4.70 5.09 5.38 5.60 5.79 5.94 6.08 6.20 6.31 6.41 6.50 6.58 6.65
19 4.05 4.67 5.05 5.33 5.55 5.73 5.89 6.02 6.14 6.25 6.34 6.43 6.51 6.58
20 4.02 4.64 5.02 5.29 5.51 5.69 5.84 5.97 6.09 6.19 6.28 6.37 6.45 6.52
21 4.00 4.61 4.99 5.26 5.47 5.65 5.79 5.92 6.04 6.14 6.23 6.32 6.39 6.47
22 3.99 4.59 4.96 5.22 5.43 5.61 5.75 5.88 5.99 6.09 6.19 6.27 6.35 6.42
23 3.97 4.57 4.93 5.19 5.40 5.57 5.72 5.84 5.95 6.05 6.14 6.23 6.30 6.37
24 3.96 4.55 4.91 5.17 5.37 5.54 5.68 5.81 5.92 6.02 6.11 6.19 6.26 6.33
25 3.94 4.53 4.88 5.14 5.35 5.51 5.65 5.78 5.89 5.98 6.07 6.15 6.22 6.29
26 3.93 4.51 4.87 5.12 5.32 5.49 5.63 5.75 5.89 5.95 6.04 6.12 6.19 6.26
27 3.92 4.49 4.85 5.10 5.30 5.46 5.60 5.72 5.83 5.92 6.01 6.09 6.16 6.22
28 3.91 4.48 4.83 5.08 5.28 5.44 5.58 5.70 5.80 5.90 5.98 6.06 6.13 6.19
29 3.90 4.47 4.81 5.06 5.26 5.42 5.56 5.67 5.78 5.87 5.96 6.03 6.10 6.17
30 3.89 4.45 4.80 5.05 5.24 5.40 5.54 5.65 5.76 5.85 5.93 6.01 6.08 6.14
35 3.85 4.40 4.74 4.98 5.17 5.32 5.45 5.57 5.67 5.75 5.84 5.91 5.98 6.04
40 3.82 4.37 4.70 4.93 5.11 5.26 5.39 5.50 5.60 5.69 5.76 5.83 5.90 5.96
45 3.80 4.34 4.66 4.89 5.07 5.22 5.34 5.45 5.55 5.63 5.71 5.78 5.84 5.90
50 3.79 4.32 4.63 4.86 5.04 5.19 5.31 5.41 5.51 5.59 5.67 5.73 5.80 5.85
100 3.71 4.22 4.52 4.73 4.90 5.03 5.14 5.24 5.33 5.40 5.47 5.54 5.59 5.65
∞ 3.64 4.12 4.40 4.60 4.76 4.88 4.99 5.08 5.16 5.23 5.29 5.35 5.40 5.45
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Table A.6: Upper α = 0.05 probability point for the Studentized Range Distri-
bution

Table entries are q0.05;ν,t, where P [q > q0.05;ν,t] = 0.05

ν\t 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 6.08 8.33 9.80 10.9 11.7 12.4 13.0 13.5 14.0 14.4 14.8 15.1 15.4 15.6
3 4.50 5.91 6.82 7.50 8.04 8.48 8.85 9.18 9.46 9.72 9.95 10.2 10.4 10.5
4 3.93 5.04 5.76 6.29 6.71 7.05 7.35 7.60 7.83 8.03 8.21 8.37 8.52 8.66
5 3.64 4.60 5.22 5.67 6.03 6.33 6.58 6.80 6.99 7.17 7.32 7.47 7.60 7.72
6 3.46 4.34 4.90 5.30 5.63 5.90 6.12 6.32 6.49 6.65 6.79 6.92 7.03 7.14
7 3.34 4.16 4.68 5.06 5.36 5.61 5.82 6.00 6.16 6.30 6.43 6.55 6.66 6.76
8 3.26 4.04 4.53 4.89 5.17 5.40 5.60 5.77 5.92 6.05 6.18 6.29 6.39 6.48
9 3.20 3.95 4.41 4.76 5.02 5.24 5.43 5.59 5.74 5.87 5.98 6.09 6.19 6.28
10 3.15 3.88 4.33 4.65 4.91 5.12 5.30 5.46 5.60 5.72 5.83 5.93 6.03 6.11
11 3.11 3.82 4.26 4.57 4.82 5.03 5.20 5.35 5.49 5.61 5.71 5.81 5.90 5.98
12 3.08 3.77 4.20 4.51 4.75 4.95 5.12 5.27 5.39 5.51 5.61 5.71 5.80 5.88
13 3.06 3.73 4.15 4.45 4.69 4.88 5.05 5.19 5.32 5.43 5.53 5.63 5.71 5.79
14 3.03 3.70 4.11 4.41 4.64 4.83 4.99 5.13 5.25 5.36 5.46 5.55 5.64 5.71
15 3.01 3.67 4.08 4.37 4.59 4.78 4.94 5.08 5.20 5.31 5.40 5.49 5.57 5.65
16 3.00 3.65 4.05 4.33 4.56 4.74 4.90 5.03 5.15 5.26 5.35 5.44 5.52 5.59
17 2.98 3.63 4.02 4.30 4.52 4.70 4.86 4.99 5.11 5.21 5.31 5.39 5.47 5.54
18 2.97 3.61 4.00 4.28 4.49 4.67 4.82 4.96 5.07 5.17 5.27 5.35 5.43 5.50
19 2.96 3.59 3.98 4.25 4.47 4.65 4.79 4.92 5.04 5.14 5.23 5.31 5.39 5.46
20 2.95 3.58 3.96 4.23 4.45 4.62 4.77 4.90 5.01 5.11 5.20 5.28 5.36 5.43
21 2.94 3.56 3.94 4.21 4.42 4.60 4.74 4.87 4.98 5.08 5.17 5.25 5.33 5.40
22 2.93 3.55 3.93 4.20 4.41 4.58 4.72 4.85 4.96 5.06 5.14 5.23 5.30 5.37
23 2.93 3.54 3.91 4.18 4.39 4.56 4.70 4.83 4.94 5.03 5.12 5.20 5.27 5.34
24 2.92 3.53 3.90 4.17 4.37 4.54 4.68 4.81 4.92 5.01 5.10 5.18 5.25 5.32
25 2.91 3.52 3.89 4.15 4.36 4.53 4.67 4.79 4.90 4.99 5.08 5.16 5.23 5.30
26 2.91 3.51 3.88 4.14 4.35 4.51 4.65 4.77 4.88 4.98 5.06 5.14 5.21 5.28
27 2.90 3.51 3.87 4.13 4.33 4.50 4.64 4.76 4.86 4.96 5.04 5.12 5.19 5.28
28 2.90 3.50 3.86 4.12 4.32 4.49 4.62 4.74 4.85 4.94 5.03 5.11 5.18 5.24
29 2.89 3.49 3.85 4.11 4.31 4.47 4.61 4.73 4.84 4.93 5.01 5.09 5.18 5.23
30 2.89 3.49 3.85 4.10 4.30 4.46 4.60 4.72 4.82 4.92 5.00 5.08 5.15 5.21
35 2.87 3.46 3.81 4.07 4.26 4.42 4.56 4.67 4.77 4.86 4.95 5.02 5.09 5.15
40 2.86 3.44 3.79 4.04 4.23 4.39 4.52 4.63 4.73 4.82 4.90 4.98 5.04 5.11
45 2.85 3.43 3.77 4.02 4.21 4.36 4.49 4.61 4.70 4.79 4.87 4.94 5.01 5.07
50 2.84 3.42 3.76 4.00 4.19 4.34 4.47 4.58 4.68 4.77 4.85 4.92 4.98 5.04
100 2.81 3.36 3.70 3.93 4.11 4.26 4.38 4.48 4.58 4.66 4.73 4.80 4.86 4.92
∞ 2.77 3.31 3.63 3.86 4.03 4.17 4.29 4.39 4.47 4.55 4.62 4.68 4.74 4.80
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Table A.7: Upper α probability point for the F distribution: α = 0.05

Table entries are F0.05;ν1,ν2 , where P [F > F0.05;ν1,ν2 ] = 0.05

ν
\ν1
2 1 2 3 4 5 6 7 8 9 10 12 15 20 25 30 40

1 161 200 216 225 230 234 237 239 241 242 244 246 248 249 250 251
2 18.6 19.0 19.2 19.2 19.3 19.3 19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.5 19.5 19.5
3 10.1 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.74 8.70 8.66 8.63 8.62 8.59
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.91 5.86 5.80 5.77 5.75 5.72
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.68 4.62 4.56 4.52 4.50 4.46
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.00 3.94 3.87 3.83 3.81 3.77
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.57 3.51 3.44 3.40 3.38 3.34
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.28 3.22 3.15 3.11 3.08 3.04
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.07 3.01 2.94 2.89 2.86 2.83
10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.91 2.85 2.77 2.73 2.70 2.66
11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.79 2.72 2.65 2.60 2.57 2.53
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.69 2.62 2.54 2.50 2.47 2.43
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67 2.60 2.53 2.46 2.41 2.38 2.43
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 2.53 2.46 2.39 2.34 2.31 2.27
15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.48 2.40 2.33 2.28 2.25 2.20
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.42 2.35 2.28 2.23 2.19 2.15
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45 2.38 2.31 2.23 2.18 2.15 2.10
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.34 2.27 2.19 2.14 2.11 2.06
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38 2.31 2.23 2.16 2.11 2.07 2.03
20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.28 2.20 2.12 2.07 2.04 1.99
21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32 2.25 2.18 2.10 2.05 2.01 1.96
22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30 2.23 2.15 2.07 2.02 1.98 1.94
23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27 2.20 2.13 2.05 2.00 1.96 1.19
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25 2.18 2.11 2.03 1.97 1.94 1.89
25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24 2.16 2.09 2.01 1.96 1.92 1.87
26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22 2.15 2.07 1.99 1.94 1.90 1.85
27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 2.20 2.13 2.06 1.97 1.92 1.88 1.84
28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19 2.12 2.04 1.96 1.91 1.87 1.82
29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22 2.18 2.10 2.03 1.94 1.89 1.85 1.81
30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.09 2.01 1.93 1.88 1.84 1.79
40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 2.00 1.92 1.84 1.78 1.74 1.69
60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 1.92 1.84 1.75 1.69 1.65 1.59
100 3.94 3.09 2.70 2.46 2.31 2.19 2.10 2.03 1.97 1.93 1.85 1.77 1.68 1.62 1.57 1.52
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Table A.8: Upper α probability point for the F distribution: α = 0.01

Table entries are F0.01;ν1,ν2 , where P [F > F0.01;ν1,ν2 ] = 0.01

ν
\ν1
2 1 2 3 4 5 6 7 8 9 10 12 15 20 25 30 40

1 4052 4999 5403 5625 5764 5859 5928 5981 6022 6056 6106 6157 6209 6240 6261 6287
2 98.5 99.0 99.2 99.2 99.3 99.3 99.4 99.4 99.4 99.4 99.4 99.4 99.4 99.5 99.5 99.5
3 34.1 30.8 29.5 28.7 28.2 27.9 27.7 27.5 27.4 27.2 27.0 26.9 26.7 26.6 26.5 26.4
4 21.2 18.0 16.7 16.0 15.5 15.2 15.0 14.8 14.7 14.6 14.4 14.2 14.0 13.9 13.8 13.8
5 16.3 13.3 12.1 11.4 11.0 10.7 10.5 10.3 10.2 10.0 9.89 9.72 9.55 9.45 9.38 9.29
6 13.8 10.9 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.72 7.56 7.40 7.30 7.23 7.14
7 12.2 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62 6.47 6.31 6.16 6.06 5.99 5.91
8 11.3 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81 5.67 5.52 5.36 5.26 5.20 5.12
9 10.6 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26 5.11 4.96 4.81 4.71 4.65 4.57
10 10.0 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85 4.71 4.56 4.41 4.31 4.25 4.17
11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.79 4.63 4.54 4.40 4.25 4.10 4.01 3.94 3.86
12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30 4.16 4.01 3.86 3.76 3.70 3.62
13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 4.10 3.96 3.82 3.66 3.57 3.51 3.43
14 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03 3.94 3.80 3.66 3.51 3.41 3.35 3.27
15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 3.67 3.52 3.37 3.28 3.21 3.13
16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69 3.55 3.41 3.26 3.16 3.10 3.02
17 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68 3.59 3.46 3.31 3.16 3.07 3.00 2.92
18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 3.51 3.37 3.23 3.08 2.98 2.92 2.84
19 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43 3.30 3.15 3.00 2.91 2.84 2.76
20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37 3.23 3.09 2.94 2.84 2.78 2.69
21 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40 3.31 3.17 3.03 2.88 2.79 2.72 2.64
22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.35 3.26 3.12 2.98 2.83 2.73 2.58
23 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30 3.21 3.07 2.93 2.78 2.69 2.62 2.54
24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 3.17 3.03 2.89 2.74 2.64 2.58 2.49
25 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 3.22 3.13 2.99 2.85 2.70 2.60 2.54 2.45
26 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18 3.09 2.96 2.81 2.66 2.57 2.50 2.42
27 7.68 5.49 4.60 4.11 3.78 3.56 3.39 3.26 3.15 3.06 2.93 2.78 2.63 2.54 2.47 2.38
28 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12 3.03 2.90 2.75 2.60 2.51 2.44 2.35
29 7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.09 3.00 2.87 2.73 2.57 2.48 2.41 2.33
30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98 2.84 2.70 2.55 2.45 2.39 2.30
40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80 2.66 2.52 2.37 2.27 2.20 2.11
60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63 2.50 2.35 2.20 2.10 2.03 1.94
100 6.90 4.82 3.98 3.51 3.21 2.99 2.82 2.69 2.59 2.50 2.37 2.22 2.07 1.97 1.89 1.80
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Appendix B

Solutions to Exercises

B.1 Chapter 1

1. a. experiment
b. treatment factor is “arthroscopic surgery or sham surgery” and re-

sponse variable is speed of walking after surgery
c. control for the placebo effect, the effect of responding positively just

because a patient receives any kind of treatment

2. a. conditions are “recirculated air” and “fresh air”-observed.
b. response variable is categorical - having cold or not a week after flight
c. Possible reasons are:

i. traveling is stressful which may increase the chances of catching a
cold.

ii. close contact with individuals in aircraft

3. a. The group of children that does not receive the massage should also
receive some kind of attention from their parents. In this way both
groups are getting attention

4. a. factor of “interest” is “body piercing or not”; response variable is cat-
egorical: smokes or not

b. observational study – the conditions “have body piercings”, “not have
body piercings” are observed, not assigned

c. No, we cannot conclude this, because the two groups of females, one
with body piercings and the other without body piercings, may differ
in other ways that may be conducive to sexual activity

5. a. treatments are “injection of bone marrow cells” and “injection of reg-
ular blood”

b. response variables are:
i. results of test comparing blood pressure in ankle and arm
ii. differences in oxygen inside and outside tissue
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c. while the two treatments are being compared on the two legs of the
same person, thus controlling for extraneous variables associated with
different persons, the randomization within a person is to balance out
the effects of extraneous variables associated with the two legs, such
as prior differences in circulation between the two legs.

d. Yes, a block is a pair of legs on a subject. The two treatments can
be compared within the same person and the results for the different
persons pooled to form a conclusion

6. a. factor of interest is “derived strength or comfort from religion or “not
derived strength or comfort from religion”; response variable is length
of life

b. observational study, since the conditons are observed, not assigned to
subjects

c. i. diet, perhaps people who derive strength from religion eat healthier
ii. life style, perhaps people who derive strength from religion do not

smoke as much or drink alcohol as much

7. Since there are two different methods of memorizing difficult material,
the subjects could be blocked into pairs so that within each pair the two
subjects are similar with regard to characteristics that might be related to
memorization ability such academic ability

8. a. there are 4 treatments: the blowing up of the balloons of the four
colors

b. the treatments will be assigned to different time slots–thus the exper-
imental units are time slots

c. randomization would be used by randomly assigning the treatments to
the time slots. The purpose would be to balance out any effects due
to time on the amount of time to blow up the balloons

d. there is direct control of peoples’ different abilities to blow up balloons
by having the balloons all blown up by the same person
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B.2 Chapter 2

2.1 y = 1.25, s = 0.2, sy = s√
n

= 0.2√
48

= 0.03

Sample standard deviation s = 1.25 measures variation of weight gains
of individual pigs in the sample around the sample mean y = 0.2. The
standard error sy = 0.03 gives a crude measure of the error associated
with y = 1.25, treating y as an estimate of the populatin mean weight
gain.

2.2 a. The sample mean y has a normal distribution with mean µy = µ = 50
and standard deviation σy = σ√

n
= 5√

16
= 1.25

b. Standard normal distribution
c. t distribution with ν = 15 degrees of freedom

2.3 a. 1.711
b. 0.80

2.4 a. Sample mean y = 32.6, midpoint of interval
b. 95% error margin = 1/2 width of interval = 7.8/2 = 3.9
c. standard error = s√

121
= 3.9/2.045 = 1.91

d. We are 95% confident that the population mean number of hours stud-
ied per week is between 28.7 and 36.5 hours.

e. Yes, different set of n = 30 students would result in a different mean
and standard deviation and thus a different interval

2.5 y = 244.3, s = 12.4, t = 1.21, P − value = 0.2508 > 0.05, No reason
to believe true mean differs from stated. There is about a 25% chance of
obtaining a sample mean as far from the hypothesize null population mean
of 240 as the observed value of 244.3 due to sampling.
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B.3 Chapter 3

3.1 a. Type of fertilizer. Total amount of tomatoes from a plant
b. Experimental units = plant/plot combination
c. Completely randomized design. Types of fertilizer assigned completely

at random to plant/plot combination. Plants/plots were not grouped
in any way prior to randomization

d. Fertility of soil in plots - fertilizers randomly assigned to plots Natural
variability of plants - fertilizers randomly assigned to plants

3.2 a. Candles (one scented and one unscented) are paired/grouped by the
day on which they are burned.

b. Type of candle to (scented or unscented); burning time of candle
c. d = 25, sd = 58.2, t = 1.36, df = 9, From software two sided P −

value = 0.2075 > 0.05 No evidence of a difference in mean burning
times between the two types of candles.

3.3 a. Paired design - reusing. Subjects are used before and after being put
on diet.

b. Completely randomized. Treatments “told applicant attracted to in-
terviewer” and “not told applicant attracted” were assigned completely
at random to sixty male students

c. Paired design - sorting/grouping. Letters are paired according to the
destination/city.

3.4 a. Time of Period (before or after) of measurement of mental ability
b. Two time periods when measurements taken for each patient
c. No. ‘Before’ and ‘After’ are inherent characteristics of time periods.
d. Since the conditions ‘Before’, ‘After’ are not assigned at random then

differences in measurements taken before and after might be con-
founded with other time effects.

3.5 a. Route taken
b. Travel time (hrs)
c. Driving habits of drivers.
d. Independent samples t test. Variances not assumed to be equal. nA =

5, yA = 17.7, sA = 5.9; nB = 5, yB = 22.0, sB = 5.6; df = 7.98, t =
−1.10, P = 0.3047 > 0.05. Not enough evidence of a difference in
driving times between two routes.

e. Have each driver use both routes A and B in a random order.

3.6 a. Paired samples design - reusing. Corresponding to each squirrel are
two time periods, one when FT twigs are given and one when NFT
twigs are given.

b. One sided test with d = 2.84, sd = 2.34, t = 2.72, df = 4, P − value =
0.0266 < 0.05. There is evidence that squirrels eat more of the FT
twigs than the NFT twigs.
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3.7 a. The plots of the stands of slash pines are paired according to location.
b. One sided test. d = 13, sd = 127.2, t = 0.32, df = 9, P − value =

0.3770 > 0.05. There is not enough evidence that ‘improved’ trees
have a greater mean inner bark volume than ‘unimproved’ trees.

3.8 a. i. Lower lip forces for females lower on average than males; spread
of lower lip forces for females smaller than spread for males

ii. Yes, t = -3.98, df = 24.9, P-value = 0.0005
iii. males and females are different groups which are not block in any

way.
b. comparison of male upper lip forces with female upper lip forces, com-

parison of male lower lip forces with male upper lip forces
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B.4 Chapter 4

4.1 a.

yij = y·· + Ai + eij

Drug A 20 = 24.67 + -2.67 + -2
22 = 24.67 + -2.67 + 0
25 = 24.67 + -2.67 + 3
24 = 24.67 + -2.67 + 2
19 = 24.67 + -2.67 + -3

Drug B 21 = 24.67 + 0.33 + -4
26 = 24.67 + 0.33 + 1
26 = 24.67 + 0.33 + 1
27 = 24.67 + 0.33 + 2
25 = 24.67 + 0.33 + 0

Drug C 30 = 24.67 + 2.33 + 3
24 = 24.67 + 2.33 + -3
26 = 24.67 + 2.33 + -1
25 = 24.67 + 2.33 + -2
30 = 24.67 + 2.33 + 3

yij − y·· = Ai + eij

Drug A -4.67 = -2.67 + -2
-2.67 = -2.67 + 0
0.33 = -2.67 + 3
-0.67 = -2.67 + 2
-5.67 = -2.67 + -3

Drug B -3.67 = 0.33 + -4
1.33 = 0.33 + 1
1.33 = 0.33 + 1
2.33 = 0.33 + 2
0.33 = 0.33 + 0

Drug C 5.33 = 2.33 + 3
-0.67 = 2.33 + -3
1.33 = 2.33 + -1
0.33 = 2.33 + -2
5.33 = 2.33 + 3

b.

Source of Variation Df SS MS F P-value

Grand Mean 1 9126.67
Drug 2 63.33 31.67 4.75 0.0302
Error 12 80.00 6.67

Total 15 9270
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Source of Variation Df SS MS F P-value

Drug 2 63.33 31.67 4.75 0.0302
Error 12 80.00 6.67

Total (Corrected) 14 143.33
c. Yes, F = 4.75 > 3.89

4.2 a.

Source of Variation Df SS MS F P-value

Grand Mean 1 1728
Treatments 4 85 21.25 5.06 < 0.01
Error 25 105 4.2

Total 30 1918
b. 5 treatments
c. 6 replications per treatment
d. Yes, since P < 0.01.

4.3 F = 0.157
0.136 = 1.15 with numerator df = 2 and denominator df = 9. P =

0.3578, not significant at the 0.05 level of significance.

4.4 a. Type of drink
b. Treatments are Cocal cola, Orange Juice, Water
c. Experimental units are cup/ice combination.
d. Ice cube size, amount of liquid, rate of pouring.
e. yij = µ· + αi + εij where

– i is an index on type of drink with i = 1(Coca cola), i = 2(OJ),
i = 3(Water)

– yij is the jth observation on amount of time for the ith type of
drink

– µ· = true grand mean amount of time averaged over all types of
drink

– αi is the true effect of the ith type of drink on melting time yij

– εij is the effect of extraneous variables on melting time yij .
f. i. Ho : α1 = α2 = α3 = 0

Ha : not all α′is = 0
ii. F = 790.5

3.87 = 102.2, P < 0.0001. There is evidence of a difference
in melting times among the three types of beverages.

iii. The true errors εij are independent, normally distributed each with
mean of 0 and common standard deviation σ.
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4.5 a. Means are 43.1, 89.4, 68.0, and 40.5, respectively for Brands A,B,C,and
D. Standard deviations are 3.0, 2.2, 2.2, and 2.4, respectively, for
brands A,B,C,D. Yes.

b.
Source of Variation Df SS MS F P-value

Brand 3 15953.47 5317.82 866.12 P < 0.0001
Error 36 221.03 6.14

Total (Corrected) 39 16174.5
Estimate of common variance is MSE = 6.14

c. Yes, P < 0.0001 < 0.05.
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B.5 Chapter 5

5.1 a. m = 10
b. t0.01/2 = 2.787 for ν = 25, ME = 9.7, CLe ≥ 0.9
c. 3.73, 12.9
d. 5.14, 12.6
e. Bonferroni, Unadjusted t procedure.

5.2 a. 6.6 < µ2 − µ1 < 15.4, significant, 13.2 < µ2 − µ3 < 22.0, significant,
6.6 < µ1 − µ3 < 11.0, significant

b. 99% percent confident that all 3 intervals from part(a) are simultane-
ously correct.

c. narrower

5.3 t0.05/2;ν=20 = 2.086, q∗/
√

2 = 2.95/
√

2 = 2.086
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B.6 Chapter 6

6.1 a. α̂1 = −1, α̂2 = 1
b. β̂1 = −2.175, β̂2 = −0.025, β̂3 = 3.025, β̂4 = −.825
c. α̂β11 = 1.85, α̂β21 = −1.85 α̂β12 = 0, α̂β22 = 0 α̂β13 = −0.65,

α̂β23 = 0.65 α̂β14 = −1.2, α̂β24 = 1.2
d. MSAB = 11.175

3 = 3.725, F = 3.725
3.625 = 1.03, 1.03 < F0.05;3,16 = 3.24,

No evidence of interaction
e. SSPotash = 24, MSPotash = 24

1 = 24, F = 24
3.625 = 6.62, 6.62 >

F.05;1,16 = 4.49, Evidence of Potash effects
f. SSNitrogen = 87.375, MSNitrogen = 87.375

3 = 29.125, F = 29.125
3.625 =

8.03, 8.03 > F.05,3,16 = 3.24, Evidence of Nitrogen Effects

6.2 a. Differences in accuracy between levels of distance don’t depend much
on hand.

b. Test of interaction between hand and distance not significant at the
0.10 level (F = 1.20, P − value = 0.3184, ν1 = 2, ν2 = 24
Test of Distance Effects significant at 0.05 level F = 15.74, P−value <
0.0001, ν1 = 2, ν2 = 24. For i = 1 (long), i = 2 (short), and i = 3
(short), y1· = 7.60, y2· = 2.70, y3· = 1.08,

1.88 ≤ µ1. − µ2. ≤ 7.92
3.50 ≤ µ1. − µ3. ≤ 9.55

−1.40 ≤ µ2. − µ3. ≤ 4.65

Test of Hand effects not significant at 0.05 level F = 0.35, P −value =
0.5607, ν1 = 1, ν2 = 24.

6.3 a. There is more variation in times when setting is medium as compared
to when setting is high. There appears to be no differences in brands
when setting is high - perhaps there are differences in brands when
setting is medium but this may depend on outliers. Caution should
be exercised in drawing conclusions because of possible outliers and
variation not being same across treatments.
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b. yijk = µ·· + αi + βj + αβij + εijk where

– i is an index on type of brand with i = 1(Food Lion), i = 2(Jet Puff),
i = 3(WalMart)

– j is an index on microwave level with j = 1(Medium), j = 2(High)
– k is an index on the amount of time for a particular brand and

microwave combination
– yijk is the kth observation on amount of time for the ith brand and

jth level
– µ·· = true grand mean amount of time averaged over all brands

and levels
– αi is the true effect of the ith brand on amount of time yijk

– βj is the true effect of the microwave level on amount of time yijk

– αβij is the true interaction effect between brand i and level j on
amount of time yijk

– εijk is the effect of extraneous variables on amount of time yijk.
– εijk are independent normal random variables, each with mean 0

and variance σ2

c.

Source of Variation Df SS MS F P-value

Store 2 300.250 150.125 2.70 0.0940
Level 1 1066.667 1066.667 19.21 0.0004

Store*Level 2 436.083 218.042 3.93 0.0384
Error 18 999.500 55.528

Total (Corrected) 23 2802.500

i. Estimate of variance is 55.528
ii. Interaction is significant (F = 3.93, P = 0.0384 < 0.10)

Comparison of Brands when Setting = Medium (j=1):
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3.8 ≤ µ21 − µ11 ≤ 30.7
2.1 ≤ µ31 − µ11 ≤ 29.0

−15.2 ≤ µ31 − µ21 ≤ 11.7

Comparisons of Brands when Setting = High (j=2):

−16.0 ≤ µ22 − µ12 ≤ 11.0
−13.7 ≤ µ32 − µ12 ≤ 13.2
−11.2 ≤ µ32 − µ22 ≤ 11.2

6.4 a. There appears to be a heat source effect with amount of time larger
for the oven. There appears to be a brand effect with Cabot and Land
of Lake resulting in smaller times to melt but this comparison may
depend on heat source.

b. yijk = µ + αi + βj + αβij + εijk where
– i is an index on brand with i = 1(Cabot), i = 2(GreatValue),

i = 3(LandOLake)
– j is an index on method with j = 1(Oven), j = 2(Stove)
– k is an index on the amount of time for a particular brand and

method of melting combination
– yijk is the kth observation on amount of time for the ith brand and

jth method
– µ·· = true grand mean amount of time averaged over all brands

and methods
– αi is the true effect of the ith brand on amount of time yijk

– βj is the true effect of the method on amount of time yijk

– αβij is the true interaction effect between brand i and method j
on amount of time yijk

– εijk is the effect of extraneous variables on amount of time yijk.
– εijk are independent normal random variables, each with mean 0

and variance σ2
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c.

Source of Variation Df SS MS F P-value

Brand 2 2683.0 1341.5 6.09 0.0149
Heat 1 11806.7 11806.7 53.63 < .0001

Brand*Heat 2 1470.8 735.4 3.34 0.0703
Error 12 2642.0 220.2

Total (Corrected) 17 18602.5
i. Interaction is significant (F = 3.34, P = 0.0703 < 0.10)

Comparisons of Brands when Heat = Oven (j = 1):

−16.0 ≤ µ21 − µ11 ≤ 48.6
−35.3 ≤ µ31 − µ11 ≤ 29.3
−19.3 ≤ µ31 − µ21 ≤ 13.0

Comparisons of Brands when Heat = Stove (j=2):

10.4 ≤ µ22 − µ12 ≤ 75.0
8.7 ≤ µ32 − µ12 ≤ 73.3

−34.0 ≤ µ32 − µ22 ≤ 30.6

6.5 a. 4 levels of A; 3 levels of B
b. 35 + 1 = 36
c. Degrees of freedom for interaction = 6; MSAB = 80/6 = 13.3; MSE

= 400/28 = 14.3; F = 13.3/14.3 = 0.93 < 2.45, not significant.
d. MSA = 310/3 = 103.3, MSE = 400/28 = 14.3, F = 103.3/14.3 = 7.2

> 2.95, significant
e. SSB = 100, MSB = 100/2 = 50.0, MSE = 400/28 = 14.3, F = 50.0/14.3

= 3.5 > 3.34, significant
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B.7 Chapter 7

7.1 a. Time periods at which the two treatments (waterbed, regular) were
assigned for each baby. Total of 18 EUs, 2 for each baby

b. An example of a completely randomized design, say 18 babies, are
randomly assigned to the two treatments with 9 babies sleeping on the
waterbed and 9 babies sleeping on a regular mattress.

7.2 a. Type C blocking; a block is a sample of coal
b. Experimental units are halves of the sample assigned at random for

each sample to the two labs.
c. In a completely randomized design the 10 samples could have been

assigned completely at random to the two labs, with Lab1 receiving 5
samples and Lab2 receiving a different 5 samples.

7.3 a. Time to exhaustion; Diets 1, 2, 3; Time slots (3 day periods) assigned
to 3 diets for each person.

b. Subject. Variation in subjects which might affect time to exhaustion
such as general health, weight.

c. Have 18 subjects, say, assigned completely at random to the 3 diets,
with 6 persons per diet. Different groups of subjects for the 3 diets.

7.4 a. Time elapsed since college graduation is an extraneous variable that
would presumably affect proficiency score. Type A blocking.

b. Experimental units are 30 subjects (grouped by time elapsed since
graduation).

c. Differences in ability of 3 persons within each block. Different testing
conditions for three persons within a block.

7.5 a. Replication/Day
b. Time slots of the burning of a candle
c. Location effect on table, changes in micro-environment from one candle

lighting to another.
d. In a completely randomized design the 28 time slots at which the

candles are to be burned would be randomly assigned to the 28 candles.
With this design in theory 8 tan candles might be lit first, etc.

e. yij = µ·· + ρi + τj + εij where
– i = 1, 2, ..., 7 is an index on the replication/day j = 1, 2, 3, 4 is

an index on the color of the candle j = 1(Tan), j = 2(Blue),
j = 3(Purple), j = 4(White).

– yij is the observation on burning time for the ith block and jth

color.
– µ·· is the grand mean of burning time
– ρi is the true effect of the ith block on the burning time yij

– τj is the true effect of the jth color on the burning time yij

– εij is the effect of extraneous variable on the burning time yij
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f.

Source of Variation Df SS MS F P-value

Color 3 12398.4 4132.8 2.77 0.0713
Day 6 17795.7 2966.0 1.99 0.1204
Error 18 26820.9 1490.0

Total (Corrected) 27 57015.0
F = 2.77, P = 0.0713, not enough evidence at α = 0.05 of differences
in mean burn time across colors.
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B.8 Chapter 8

8.1 Yes, the errors appear to be dependent. After the residual at time 1, there
appears to be an upward trend, implying that time to melt was lower than
expected in the early trials and then higher than expected in the later
trials.

8.2 a.

Fan Status Flavor Burning Time TimeOrder Predicted Residual
On2 Vanilla 15 5 14.7 0.3
On2 Vanilla 16 11 14.7 1.3
On2 Vanilla 13 18 14.7 -1.7
On2 Cinnamon 14 2 15.7 -1.7
On2 Cinnamon 17 8 15.7 1.3
On2 Cinnamon 16 14 15.7 0.3
On4 Vanilla 19 6 19.3 -0.3
On4 Vanilla 21 15 19.3 1.7
On4 Vanilla 18 17 19.3 -1.3
On4 Cinnamon 21 1 20.3 0.7
On4 Cinnamon 20 3 20.3 -0.3
On4 Cinnamon 20 12 20.3 -0.3
Off Vanilla 27 4 27.0 0.0
Off Vanilla 29 7 27.0 2.0
Off Vanilla 25 10 27.0 -2.0
Off Cinnamon 26 9 27.3 -1.3
Off Cinnamon 28 13 27.3 0.7
Off Cinnamon 28 16 27.3 0.7

b. Check for assumption of constant variance of error terms. Plot does
not indicate extreme violation of assumption. Spread of points (burn
times) roughly same across treatments.

c. Check for assumption of independence of errors. No pattern of resid-
uals versus time and thus no evidence assumption violated.

d. Check for assumption of constant variance of error terms. Plot does not
indicate any gross violation of assumption - spread of points (residuals)
roughly same across all treatments

e. Check for assumption of constant variance of error terms. Plot does not
indicate any gross violations of assumption. No widening or narrowing
of plot as predicted burn time increases.

f. Histogram of residuals - used to check normality of errors. No evidence
that assumption is grossly violated. Histogram of residuals approxi-
mately symmetric bell-shaped.

g. Quantile-quantile plot of residuals - used to check normality of errors.
No evidence that assumption is grossly violated - plot is roughly linear.
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B.9 Chapter 9

9.1 a. Whole plot factor is temperature. Whole plot experimental unit is
growth chamber. Variations in treatment (temperature) within a cham-
ber; environmental location of chamber

b. Completely randomized design. Chambers are not blocked. Tempera-
tures assigned completely at random to chambers.

c. Split plot factor is strain of petunia (A,B,C). Split plot experimental
unit is pot/location in chamber. Some experimental error factors are
variation in pot soil, locations of pots within chambers.

d.
yijk = µ + αi + εw

k(i) + βj + αβij + εs
ijk (B.1)

where i = 1, 2, 3 indexes temperature, j = 1, 2, 3 strain of petunia, and
k = 1, 2, 3 indexes chamber associated with a particular temperature,
and

– Yijk is the growth of the petunia, at the ith level of temperature,
kth chamber nested within the ith level of temperature, and jth

level of petunia strain.
– µ is the grand mean of growth averaged over a population of cham-

bers, all levels of temperature, and all levels of strain of petunia.
– αi is the true effect of the ith level of the temperature on growth

of petunia.
– εw

k(i) is the error term for the kth chamber nested within the ith level
of the temperature, representing the effect of extraneous variables
associated with the chamber.

– βj is the true effect of the jth level of strain on growth
– αβij is the true interaction effect on growth of the ith level of

temperature and the jth strain.
– εs

ijk is the error term for the split unit, here pot/location, associ-
ated with the ith level of temperature, kth chamber nested under
the ith level of temperature,and the jth strain, representing the
effect of extraneous variables for this unit.

9.2 a. Whole plot factor is music type. Whole plot experimental unit is
session or time period of session. Variation in environmental conditions
associated with different sessions such as other noise, etc.

b. Completely randomized design. Music types assigned completely at
random to 9 sessions (sessions are not grouped in any way).

c. Split plot factor is font of list of words. Split plot experimental unit is
subject. Extraneous variables associated with subject are memorizing
ability, health of person, etc.

d.
yijk = µ + αi + εw

k(i) + βj + αβij + εs
ijk (B.2)
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where i = 1, 2, 3 indexes music type, j = 1, 2, 3 font color, and k =
1, 2, 3 indexes session associated with a particular music type, and
– Yijk is the proportion of correctly memorized words, at the ith level

of music, kth session nested within the ith level of music, and jth

level of font color.
– µ is the grand mean of proportion of correctly memorized words

averaged over a population of sessions, all levels of music, and all
levels of font color.

– αi is the true effect of the ith level of the music type on proportion
of correctly memorized words.

– εw
k(i) is the error term for the kth session nested within the ith

level of music type, representing the effect of extraneous variables
associated with the session.

– βj is the true effect of the jth level of font color on proportion of
correctly memorized words

– αβij is the true interaction effect on proportion of correctly mem-
orized words of the ith level of music type and the jth font color.

– εs
ijk is the error term for the split unit, here subject, associated

with the ith level of music type, kth session nested under the ith

level of music type,and the jth font color, repesenting the effect of
extraneous variables for the subject.

9.3 a. Whole plot factor is oven temperature. Whole plot EU is oven run/session.
Characteristics of oven run/session such as slight variations oven tem-
perature at different runs with same temperature setting

b. Completely randomized design. Oven temperatures are assigned com-
pletely at random to the runs. Runs are not grouped in any way and
then temperatures assigned at random within groups.

c. Split plot factor is Type of Ice Cube (bottle, tap, and salt). Split
plot experimental unit is ice cube. Extraneous variables include size
of cube, temperature variability within parts of oven, etc.

d.
yijk = µ + αi + εw

k(i) + βj + αβij + εs
ijk (B.3)

where i = 1, 2, 3 indexes oven temperature, j = 1, 2, 3 ice type, and
k = 1, 2, 3 indexes oven run/session associated with a particular oven
temperature
– Yijk is the amount of time for cube to melt, at the ith level of tem-

perature, kth oven run nested within the ith level of temperature,
and jth level of ice cube type.

– µ is the grand mean of amount of time averaged over a population
of oven runs/sessions, all levels of temperature, and all levels of ice
cube type.

– αi is the true effect of the ith level of temperature on amount of
time for ice cube to melt.
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– εw
k(i) is the error term for the kth oven run nested within the ith

level of temperature, representing the effect of extraneous variables
associated with the run

– βj is the true effect of the jth level of ice type on amount of time
to melt

– αβij is the true interaction effect on amount of time to melt for
the ith level of temperature and the jth ice type.

– εs
ijk is the error term for the split unit, here ice cube, associated

with the ith level of temperature, kth oven run nested under the
ith level of temperature,and the jth type, repesenting the effect of
extraneous variables for the cube.

e.
Source of Variation df SS MS F P-value
Temperature 2 89149.4 44574.7 10.32 0.0114
Error (Run(Temperature)) 6 25906.4 43717.7
IceType 2 59849.2 29924.6 13.53 0.0008
Temperature*IceType 4 10491.3 2622.8 1.19 0.3659
Error (Cube) 12 26544.2 2212.0
Total (corrected) 26 211940.5

f. No evidence of interaction (F = 1.19, P-value = 0.3659)
g. Evidence of temp main effects (F = 10.32, P-value = 0.0114)

Tukey-Kramer pairwise comparisons of temperatures with i = 1(250), i =
2(300), i = 3(350)

−6.9 ≤ µ1· − µ2· ≤ 183.1
44.1 ≤ µ1· − µ2· ≤ 234.1

−44.0 ≤ µ2· − µ3· ≤ 146.0

Evidence of Ice Type main effects (F = 13.53, P-value = 0.0008)
Tukey-Kramer pairwise comparisons of ice cube type with j = 1(tap), j =
2(bottle), j = 3(salt)

−15.8 ≤ µ·1 − µ·2 ≤ 102.5
55.1 ≤ µ·1 − µ·3 ≤ 173.4
11.7 ≤ µ·2 − µ·3 ≤ 130.0

h. Normality and homogeneity of split plot errors satisfied approximately.
9.4 a. Whole plot factor is fertilizer. Whole plot experimental unit is plot.

b. Block design. Plots grouped by blocks and then fertilizer assigned at
random to plots within a block.

c. Split plot factor is variety of wheat. Split plot experimental unit is
smaller plot.

d. The model for the split plot design in this example is:

yijk = µ + αi + ρk + εw
ik + βj + αβij + εs

ijk (B.4)

where
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– Yijk is the observation on yield at the ith fertilizer, kth block, and
jth wheat variety

– µ is the grand mean of yields averaged over a population of blocks,
all levels of fertilizer, and both wheat varieties.

– αi is the true effect of the ith level of fertilizer on yield
– ρk is the true effect of the kth level of block
– εw

ik is the error term for the whole plot assigned to fertilizer i in
block k representing the effect of extraneous variables associated
with the whole plot.

– βj is the true effect of the jth level of variety on yield
– αβij is the true interaction effect on the yield of the ith level of

fertilizer and the jth level of wheat variety
– εs

ijk is the error term for the smaller plot receiving the jth level
of wheat variety in the kth block for fertilizer i, representing the
effects of extraneous variables associated with the smaller plot.

e.
Source of Variation df SS MS F P-value
Block 1 131.1 131.1 56.77 0.0048
Fertilizer 3 40.2 13.4 5.80 0.0914
Error (Block*Fertilizer)) 3 6.93 2.30
Wheat 1 2.25 2.25 1.07 0.3599
Fertilizer*Wheat 3 1.55 0.52 0.25 0.8612
Error 4 8.43 2.12
Total (corrected) 15 190.4

f. No evidence of interaction (F = 0.25, P-value = 0.8612)
g. No evidence of fertilizer main effects (F = 5.80, P-value = 0.0914)

No evidence of wheat variety main effects (F = 1.07, P-value =
0.3599)


