The following tables list the loss functions, the distribution of observations $z_i, i = 1, 2, 3, 4$ given the states of nature $\theta_i, i = 1, 2, 3$ and 4 strategies $s_i, i = 1, 2, 3$ 1, 2, 3, 4.

Loss Table

	a_1	a_2	a_3	a_4
θ_1	0	2	4	8
θ_2	6	4	2	5
θ_3	3	2	1	0

Distribution of observations given state of nature

	z_1	z_2	z_3	z_4
$\theta_1(0.2)$	0	0.4	0.6	0
$\theta_2(0.3)$	0.4	0.2	0.2	0.2
$\theta_3(0.5)$	0.1	0.2	0.3	0.4

Suppose the prior distributions of θ is given by $P(\theta = \theta_1) = 0.2, P(\theta = \theta_2) =$ $0.3, P(\theta = \theta_3) = 0.5.$

1). Find the conditional distribution of θ given $z = z_1$. Based on this

distribution, which action should you take? $p(\theta = \theta_1 | z_1) = \frac{p(z_1 | \theta_1) p(\theta_1)}{p(z_1 | \theta_1) p(\theta_1) + p(z_1 | \theta_2) p(\theta_2) + p(z_1 | \theta_3) p(\theta_3)} = \frac{0.4.0.2}{p(z_1)} = 0.$ $p(\theta = \theta_2 | z_1) = \frac{p(z_1 | \theta_2) p(\theta_2)}{p(z_1 | \theta_1) p(\theta_1) + p(z_1 | \theta_2) p(\theta_2) + p(z_1 | \theta_3) p(\theta_3)} = \frac{0.4*0.3}{0*0.2+0.4*0.3+0.1*0.5} = 10.417$ 12/17.and $p(\theta = \theta_3 | z_1) = 5/17$. The average loss of each action: $a_1: 0*0+6*12/17+3*5/17=87/17,$ $a_2: 2*0+4*12/17+2*5/17=58/17,$ $a_3: 4*0+2*12/17+1*5/17=29/17,$ $a_4: 8*0+5*12/17+0*5/17=60/17.$ The best action to take is a_3 if z_1 is observed.

2). Find the best action to take given $z = z_i, i = 2, 3, 4$. Similarly, we can find the best action a_3 if z_2 is observed, the best action is a_3 if z_3 is observed, and the best action is a_4 if z_4 is observed.

3). Based on the results in 1) and 2), find the Bayes strategy and the associated Bayes risk.

Therefore, the best strategy (the Bayes strategy) is $s = (a_3, a_3, a_3, a_4)$. The expected loss of s given $\theta = \theta_1$ is: 0.4*4+0.6*4=4,

The expected loss of s given $\theta = \theta_2$ is

 $\begin{array}{l} 0.4^{*}2{+}0.2^{*}2{+}0.2^{*}2{+}0.2^{*}5{=}2.6,\\ \text{The expected loss of s given }\theta=\theta_{3} \text{ is}\\ 0.1^{*}1{+}0.2^{*}1{+}0.3^{*}1{+}0.4^{*}0{=}0.6,\\ \text{The mean risk (Bayes risk) is}\\ 4^{*}0.2{+}2.6^{*}0.3{+}0.6^{*}0.5{=}1.88. \end{array}$

Another way to compute the Bayes risk. The margin distribution of z is $p(z = z_1) = 0.17, p(z = z_2) = 0.24, p(z = z_3) = 0.33, p(z = z_4) = 0.26.$ Use the law of total probability $p(z_1) = \sum_i p(z_1|\theta_i)p(\theta_i)$ $29/17^*0.17+2.25^*0.24+25/11^*0.33+15/13^*0.26=1.88.$