Joint probability distributions

Let X and Y be two discrete rv's defined on the sample space S. The **joint probability mass function** p(x, y) is p(x, y) = P(X = x, Y = y). Note $p(x, y) \ge 0$ and $\sum_{x} \sum_{y} p(x, y) = 1$. $P[(X, Y) \in A] = \sum \sum_{(x,y)\in A} p(x, y)$.

The marginal probability mass function of X and Y, denoted by $P_X(x)$ and $P_Y(y)$ are $P_X(x) = \sum_{y} p(x, y), P_Y(y) = \sum_{x} P(x, y).$

Example

Let X = number of meals in restaurants and Y = number of movies a randomly selected JMU student has on a typical weekend. The joint pmf of X and Y is given by

		0	y 1	2	3
	p(x, y)	0	L	2	3
х	0	0.05	0.12	0.10	0.08
	1	0.06	0.12	0.11	0.09
	2	0.03	0.06	0.05	0.05
	3	0.03	0.02	0.02	0.01

$$\begin{split} P(Y \ge 2) &= p(0,2) + p(1,2) + p(2,2) + p(3,2) + p(0,3) + \\ p(1,3) + p(2,3) + p(3,3) &= 0.51 \\ \text{The marginal distributions are:} \\ p_X(0) &= 0.35, p_X(1) = 0.38, p_X(2) = 0.19, p_X(3) = 0.08 \\ p_Y(0) &= 0.17, p_Y(1) = 0.32, p_Y(2) = 0.28, p_Y(3) = 0.23. \end{split}$$

Exercise

Let X=number of heads and Y=number of heads minus the number of tails obtained in 3 flips of a balanced coin. Get the joint probability distribution of X and Y.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Joint pdf

Let X and Y be continuous rv's, then f(x, y) is the **joint probability density function** for X and Y if for any two-dimensional set A $P[(X, Y) \in A] = \int_A \int f(x, y) dx dy$. In particular, $P(a \le X \le b, c \le Y \le d) = \int_a^b \int_c^d f(x, y) dy dx$.

The marginal probability density function of X and Y, denoted by $f_X(x)$ and $f_Y(y)$, are given by $f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$ and $f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx$.

Example*

Given the joint pdf

$$f(x,y) = \begin{cases} \frac{2}{3}(x+2y), 0 < x < 1, 0 < y < 1\\ 0, \text{otherwise} \end{cases}$$

$$P(0 < X < 0.3, 0 < Y < 0.5) = \int_0^{0.3} \int_0^{0.5} \frac{2}{3} (x + 2y) dy dx = \int_0^{0.3} (\frac{2}{3}xy + \frac{2}{3}y^2) |_{y=0}^{0.5} dx = \int_0^{0.3} (\frac{1}{3}x + \frac{1}{6}) dx = \frac{x^2}{6} + \frac{x}{6} |_0^{0.3} = 0.02$$

 $\begin{aligned} f_X(x) &= \int_0^1 \frac{2}{3} (x+2y) dy = (\frac{2}{3} xy + \frac{2}{3} y^2) |_{y=0}^1 &= \frac{2}{3} (x+1), 0 < x < 1 \\ f_Y(y) &= \int_0^1 \frac{2}{3} (x+2y) dx = \frac{1}{3} (1+4y), 0 < y < 1. \end{aligned}$

Given the joint pdf

$$f(x,y) = \begin{cases} \frac{3}{5}x(y+x), 0 < x < 1, 0 < y < 2\\ 0, \text{otherwise} \end{cases}$$

Find $P(0 < X < \frac{1}{2}, 0 < Y < 1)$.
Find $f_Y(y)$.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Independent rv's

Two rv's X and Y are said to be **independent** if for every pair of (x, y), $p(x, y) = P_X(x)P_Y(y)$, when X and Y are discrete or $f(x, y) = f_X(x)f_Y(y)$ when X and Y are continuous.

example: meals and movie example: $p(0,0) = 0.05 \neq p_X(0) * p_Y(0) = 0.35 * 0.17.$

example *: $f_X(x)f_Y(y) = \frac{2}{3}(x+1)\frac{1}{3}(1+4y) \neq f(x,y)$, so X and Y are dependent.

Expected values, covariance and correlation

Let X and Y be two rv's with joint pmf p(x, y) or f(x, y), then

$$E(h(X,Y)) = \begin{cases} \sum_{x} \sum_{y} h(x,y)p(x,y), \text{ if } X \text{ and } Y \text{ are discrete} \\ \int \int h(x,y)f(x,y)dxdy, \text{ if } X \text{ and } Y \text{ are continuous} \end{cases}$$

The **covariance** between X and Y is $Cov(X, Y) = E[(X - \mu_X)(Y - \mu_Y)]$

$$= \begin{cases} \sum_{X} \sum_{Y} (x - \mu_X) (y - \mu_Y) p(x, y), X, Y \text{ discrete} \\ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x - \mu_X) (y - \mu_Y) f(x, y) dx dy, X, Y \text{ continuous} \end{cases}$$

proposition: $Cov(X, Y) = E(XY) - \mu_X \mu_Y$.

example

Meals and movies example:

			У			
	p(x, y)	0	1	2	3	p(x)
Х	0	0.05	0.12	0.10	0.08	0.35
	1	0.06	0.12	0.11	0.09	0.38
	2	0.03	0.06	0.05	0.05	0.19
	3	0.03	0.02	0.02	0.01	0.08
	p(y)	0.17	0.32	0.28	0.23	

Note $\mu_X = \sum xp(x) = 1, \mu_Y = \sum yp(y) = 1.57,$ $E(XY) = \sum_x \sum_y xyp(x, y) =$ 1 * 1 * 0.12 + 1 * 2 * 0.11 + 1 * 3 * 0.09 + 2 * 1 * 0.06 + 2 * 2 * 0.05 + 2 * 3 * 0.05 + 3 * 1 * 0.02 + 3 * 2 * 0.02 + 3 * 3 * 0.01 = 1.50,so $Cov(X, Y) = E(XY) - \mu_X \mu_Y = 1.50 - 1 * 1.57 = -0.07$

The correlation coefficient of X an Y, denoted by corr(X, Y), or

 $\begin{array}{l} \rho_{X,Y} \text{ or just } \rho, \text{ is} \\ \rho_{X,Y} &= \frac{Cov(X,Y)}{\sigma_X \sigma_Y}. \\ \text{Meals and movies example:} \\ E(X^2) &= 1^2 * 0.38 + 2^2 * 0.19 + 3^2 * 0.08 = 1.86, \sigma_X^2 = \\ 1.86 - 1^2 &= 0.86, \sigma_X = 0.927, \text{ and } \sigma_Y = 1.022, \\ \text{so } \rho_{X,Y} &= \frac{-0.07}{0.927 * 1.022} = -0.07 \\ \text{proposition:} \\ 1. \text{ If a and c are both positive or negative,} \\ Corr(aX + b, cY + d) &= Corr(X, Y). \\ 2. &-1 < \rho < 1. \end{array}$

3. If X and Y are independent, then $\rho = 0$ but $\rho = 0$ does not necessarily imply independence.

4. $\rho = \pm 1$ iff Y = aX + b for $a \neq 0$.

Suppose X and Y are independent with pdf's $f_X(x) = 3x^2, 0 \le x \le 1$ $f_Y(y) = 2y, 0 \le y \le 1$. Find $E(\frac{X}{Y})$. Optional: Find $P(X \ge Y)$.

The joint pdf of X and Y is

$$f(x, y) = 6x^2y, 0 \le x \le 1, 0 \le y \le 1.$$

$$E(\frac{X}{Y}) = \int_0^1 \int_0^1 (\frac{x}{y}) 6x^2y dx dy = 1.5.$$

$$P(X \ge Y) = \int_0^1 \int_0^x 6x^2y dy dx = 0.6$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Conditional distribution:

Let X and Y be discrete r.v.s with joint pmf p(x, y) and marginal pmf $p_X(x)$ and $p_Y(y)$. The conditional probability mass function of Y given X = x is $p_{Y|X}(y|x) = \frac{p(x,y)}{p_X(x)}.$ Let X(deductible on a car policy) and Y (deductible on a home

policy) have the joint pmf below:

y p(x,y) 0 100 200 x 100 0.20 0.10 0.20 250 0.05 0.15 0.30

Find the conditional distribution of Y given X = 250. P(X = 250) = 0.5, $p_{Y|X}(0|250) = \frac{0.05}{0.50} = 0.1$, $p_{Y|X}(100|250) = \frac{0.15}{0.50} = 0.3$ $p_{Y|X}(200|250) = \frac{0.30}{0.50} = 0.60$.

Let X and Y be two continuous r.v.s with joint pdf f(x, y)and marginal pdf $f_X(x)$ and $f_Y(y)$ respectively. The conditional pdf of Y given X = x is $f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Example

Given the joint pdf

$$f(x,y) = \begin{cases} 24xy, 0 \le x \le 1, 0 \le y \le 1, x+y \le 1\\ 0, \text{otherwise} \end{cases}$$

$$f_X(x) = \int_{-\infty}^{\infty} f(x,y) dy = \int_0^{1-x} 24xy dy = 12x(1-x)^2, 0 \le x \le 1.$$
Then $f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)} = \frac{24xy}{12x(1-x)^2}, 0 \le x \le 1, 0 \le y \le 1-x.$
Hence $f_{Y|X}(y|0.5) = \frac{2y}{(1-0.5)^2} = 8y, 0 \le y \le 0.5.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ