Statistics and Sampling distributions

a **statistic** is a numerical summary of sample data. It is a rv. The distribution of a statistic is called its **sampling distribution**.

The rv's X_1, X_2, \dots, X_n are said to form a **random sample** of size n if the X'_i s are independent and each X_i has the same probability distribution (identically distributed).

Derive sampling distribution

Example:
$$P(X = 1) = \frac{1}{3}$$
, $P(X = 0) = \frac{2}{3}$.
Let $\bar{X} = \frac{1}{2}(X_1 + X_2)$.
 $P(\bar{X} = 0) = P(X_1 = 0, X_2 = 0) = 4/9$.
 $P(\bar{X} = \frac{1}{2}) = P(X_1 = 0, X_2 = 1) + P(X_1 = 1, X_2 = 0) = \frac{4}{9}$.
 $P(\bar{X} = 1) = P(X_1 = 1, X_2 = 1) = \frac{1}{9}$.

x	0	$\frac{1}{2}$	1
$p(\bar{x})$	$\frac{4}{9}$	4 9	$\frac{1}{9}$

If $\bar{X} = \frac{1}{3}(X_1 + X_2 + X_3)$, then

x	0	$\frac{1}{3}$	$\frac{2}{3}$	1
$p(\bar{x})$	$\frac{8}{27}$	$\frac{4}{9}$	29	$\frac{1}{27}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Note $E(\bar{X}) = \mu_{\bar{X}} = \frac{1}{3} = E(X).$

Simulation

Specify

- 1. The statistic of interest.
- 2. The population distribution.
- 3. The sample size n.
- 4. The number of replication k.

For each sample, compute the statistic and the histogram of the k values gives the approximate distribution of the statistic.

the distribution of the sample mean

proposition: let X_1, X_2, \dots, X_n be a random sample from a distribution with mean μ and standard deviation σ , then 1. $E(\bar{X}) = \mu_{\bar{X}} = \mu$, 2. $V(\bar{X}) = \sigma_{\bar{X}}^2 = \frac{\sigma^2}{n}$ and $\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}}$

Normal population distribution

proposition: Let
$$X_1, X_2, \dots, X_n$$
, iid $\sim N(\mu, \sigma^2)$, then $\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$.

the Central Limit Theorem (CLT): Let X_1, X_2, \dots, X_n be a random sample from a population with mean μ and variance σ^2 . Then as $n \to \infty$, $\frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \to N(0, 1)$. Roughly speaking, when n is large (≥ 30), \bar{X} approximately $\sim N(\mu, \frac{\sigma^2}{n})$.

・ロト ・ 通 ト ・ 目 ト ・ 目 ・ の へ ()・

The Law of Large Numbers

 $\overline{X} \to \mu$ as $n \to \infty$. example: Flip a coin n times. Let $X_i = 1$ for a head and $X_i = 0$ for a tail. Then $\overline{X} =$ fraction of heads. $\overline{X} \to 0.5$ as $n \to \infty$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The distribution of a linear combination

Given a collection of n rvs and n constants a_1, \dots, a_n , the rv $Y = a_1X_1 + \dots + a_nX_n$ is called a **linear combination** of the X'_is . **proposition**:

1.
$$E(a_1X_1 + \dots + a_nX_n) = a_1E(X_1) + a_2E(X_2) + a_nE(X_n)$$

2. $V(a_1X_1 + \dots + a_nX_n) = a_1^2V(X_1) + a_2^2V(X_2) + a_n^2V(X_n)$ if X'_is are independent.

(日) (日) (日) (日) (日) (日) (日) (日)

In particular,

$$E(X_1 - X_2) = E(X_1) - E(X_2)$$
 and
 $V(X_1 - X_2) = V(X_1) + V(X_2)$ if X_1 and X_2 are independent.

Normal rvs

proposition: If X_1, X_2, \dots, X_n are independent, normally distributed rv's, then any linear combination of the $X'_i s$ also has a normal distribution.

(ロ)、(型)、(E)、(E)、 E) の(の)

Distributions based on a normal sample

propositions

- Z² ~ χ₁².
 If X₁ ~ χ_{ν1}², X₂ ~ χ_{ν2}², and they are independent, then X₁ + X₂ ~ χ_{ν1+ν2}².
 ∑_{i=1}ⁿ Z_i² ~ χ_n² for independent Z'_is.
 For a random sample from a normal distribution, (n-1)S²/2 ~ χ_n² = 1.
- 5. If $Z \sim N(0, 1), X \sim \chi^2_{\nu}$, and Z and X are independent, then $T = \frac{Z}{\sqrt{X/\nu}}$ is said to have a t distribution with ν degrees of freedom.

Theorem: If X_1, X_2, \dots, X_n is random sample from $N(\mu, \sigma^2)$, then $T = \frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t_{n-1}$.

F distribution

F distribution: If $X_1 \sim \chi^2_{\nu_1}, X_2 \sim \chi^2_{\nu_2}$ and X_1 and X_2 are independent, then $F = \frac{X_1/\nu_1}{X_2/\nu_2} \sim F_{\nu_1,\nu_2}.$ If we have a random sample of size *m* from $N(\mu_1, \sigma_1^2)$ and an independent sample of size *n* from $N(\mu_2, \sigma_2^2)$, then

$$F = \frac{\frac{(m-1)S_1^2/\sigma_1^2}{m-1}}{\frac{(n-1)S_2^2/\sigma_2^2}{n-1}} = \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F_{m-1,n-1}$$

F distribution can be used to make inference about the ratio of two population variances.