Bayes estimators

```
Given \theta, X_1, \dots, X_n iid \sim f(x|\theta).
prior g(\theta).
joint distribution: f(x_1, \dots, x_n | \theta) g(\theta)
posterior g(\theta|x_1,\cdots,x_n).
Estimator T = h(X_1, \dots, X_n).
Loss: L(t,\theta)
Risk: R(T, \theta) = E_T L(T, \theta)
Bayes risk of T is
R(T,g) = \int_{\Omega} R(T,\theta)g(\theta)d\theta.
T is Bayes estimator if
R(T,g) = \inf_{T} R(T,g).
```

To minimize Bayes risk, we only need to minimize the conditional expected loss given each \boldsymbol{x} observed.

Binomial model

```
X \sim bin(x|n,\theta) prior g(\theta) \sim unif(0,1). posterior g(\theta|x) \sim beta(x+1,n-x+1). Beta distribution: f(x) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}, 0 \leq x \leq 1, E(X) = \frac{\alpha}{\alpha+\beta}. For squared error loss, the Bayes estimator is posterior mean \frac{x+1}{n+2}. If X is a random variable, choose c min E(X-c)^2. c = E(X)
```

Prior distributions

Where do prior distributions come from?

- * a prior knowledge about θ
- * population interpretation—(a population of possible θ values).
- * mathematical convenience (conjugate prior) conjugate distribution—the prior and the posterior distribution are in the same parametric family.

Conjugate prior distribution

Advantages:

- * mathematically convenient
- * easy to interpret
- * can provide good approximation to many prior opinions (especially if we allow mixtures of distributions from the conjugate family)

Disadvantages:

may not be realistic

Binomial model

```
\begin{split} X|\theta \sim bin(n,\theta) \\ \theta \sim beta(\alpha,\beta). \\ \text{Beta distribution:} \\ f(x) &= \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}, \\ 0 &\leq x \leq 1, E(X) = \frac{\alpha}{\alpha+\beta}. \\ g(\theta|x) &= beta(x+\alpha,n-x+\beta). \\ \text{posterior mean is } \hat{\theta} &= \frac{x+\alpha}{n+\alpha+\beta}. \end{split}
```

Binomial model: continued

Under loss function $L(t,\theta)=\frac{(t-\theta)^2}{\theta(1-\theta)}$. We need to minimize $g(t)=E_{\theta|X}L(t,\theta)=E_{\theta|X}\frac{(t-\theta)^2}{\theta(1-\theta)}$ = $t^2E_{\theta|X}\frac{1}{\theta(1-\theta)}-2tE_{\theta|X}\frac{1}{1-\theta}+E_{\theta|X}\frac{\theta}{1-\theta}$. It is a quadratic function of t. The minimizer is $t^*=\frac{E_{\theta|X}\frac{1}{1-\theta}}{E_{\theta|X}\frac{1}{\theta(1-\theta)}}=\frac{\alpha+x-1}{\alpha+\beta+n-2}$.

exercise

Let X_1, \dots, X_n be iid Poisson (λ) , and let λ have a gamma (α, β) distribution.

- 1). Find the posterior distribution of λ .
- 2). Calculate the posterior mean and variance.
- 3). Find the Bayes estimator under the loss $L(t,\lambda) = \frac{(t-\lambda)^2}{\lambda}$.

Solutions

1). The joint distribution of X_1, \cdots, X_n given λ is $p(x_1, \cdots, x_n | \lambda) = \prod_{i=1}^n \frac{e^{-\lambda} \lambda^{x_i}}{x_i!} = \frac{e^{-n\lambda} \lambda^{\sum_i x_i}}{\prod_i x_i!}$ the posterior distribution of λ is $g(\lambda | x_1, \cdots, x_n) \propto p(x_1, \cdots, x_n | \lambda) g(\lambda)$ $\propto \frac{e^{-n\lambda} \lambda^{\sum_i x_i}}{\prod_i x_i!} \frac{\beta^{\alpha}}{\Gamma(\alpha)} \lambda^{\alpha-1} e^{-\beta \lambda}$ $\propto \lambda^{\sum_i x_i + \alpha - 1} e^{-(\beta + n)\lambda} \propto \text{gamma} \left(\sum_i x_i + \alpha, \beta + n \right).$ 2). The posterior mean of λ is $E(\lambda | x_1, \cdots, x_n) = \frac{\sum_i x_i + \alpha}{\beta + n}$, and the posterior variance is $Var(\lambda | x_1, \cdots, x_n) = \frac{\sum_i x_i + \alpha}{(\beta + n)^2}$.

3). For simplicity, write $x=(x_1,\cdots,x_n)$, we need to minimize $E_{\lambda|x}L(t,\lambda)=E_{\lambda|x}\frac{(t-\lambda)^2}{\lambda}=E_{\lambda|x}(\frac{1}{\lambda}t^2-2t+\lambda)$ which is a quadratic function of t. The minimizer is $t^*=\frac{1}{E_{\lambda|x}\frac{1}{\lambda}}$.

Note
$$E_{\lambda|x}\frac{1}{\lambda}=\int \frac{1}{\lambda}\frac{(\beta+n)^{\sum_i x_i+\alpha}}{\Gamma(\sum_i x_i+\alpha)}\lambda^{\sum_i x_i+\alpha-1}e^{-(\beta+n)\lambda}d\lambda= \frac{\Gamma(\sum_i x_i+\alpha-1)(\beta+n)^{\sum_i x_i+\alpha}}{\Gamma(\sum_i x_i+\alpha)(\beta+n)^{\sum_i x_i+\alpha-1}}=\frac{\beta+n}{\sum_i x_i+\alpha-1}.$$
 and the Bayes estimator is $t^*=\frac{\sum_i x_i+\alpha-1}{\beta+n}.$

Let Θ consists of two points, $\Theta = \{\frac{1}{3}, \frac{2}{3}\}$. Let \mathcal{A} be the real line and $L(\theta, a) = (\theta - a)^2$.

A coin is tossed once and the probability of head is θ . Consider the set of nonrandomized decision rules which are functions from the set $\{H, T\}$ to \mathcal{A} : d(H) = x, d(T) = y.

Find the Bayes rule with respect to the prior distribution giving prob. 1/2 to $\theta=1/3$ and prob. 1/2 to $\theta=2/3$.

Exercise

Suppose the conditional distribution of given θ is $X|\theta \sim bin(3,\theta)$, and the prior distribution of θ is uniform on (0, 1). i.e.,

$$g(\theta) = 1, 0 \le \theta \le 1.$$

Suppose X = 2 is observed.

- 1). Find the joint distribution of X and θ .
- 2). Find the probability P(X = 2).
- 3). Derive the conditional distribution of θ given X=2.
- 4). Find the conditional mean and variance of θ given X=2.