Testing hypothesis

Any statement about the unknown parameter $\boldsymbol{\theta}$ is called a hypothesis.

If a hypothesis completely specifies the distribution of X_1, \dots, X_n , then it is called a **simple hypothesis**. Otherwise it is called a **composite hypothesis**.

e.g., $X_1, \cdots, X_n \sim N(\theta, 1)$.

Simple hypothesis:
$$\theta = 0$$
, or $\theta = 2$

Composite hypothesis: $\theta > 0$.

Test function $\phi(x_1, \dots, x_n)$ is a mapping from the sample space \mathcal{X} into [0, 1]. If we observe (x_1, \dots, x_n) , then we reject H_0 with probability $\phi(x_1, \dots, x_n)$.

For simplicity, write $\underline{x} = (x_1, x_2, \cdots, x_n)$

when $\phi(\underline{x}) \in \{0, 1\}$, the ϕ is called a simple test function. $R_{\phi} = \{x : \phi(\underline{x}) = 1\}$: rejection region (critical region).

 $A_{\phi} = \{x : \phi(\underline{x}) = 0\}$: acceptance region.

Type I and Type II error

Type I and Type II error. Type I error: rejects H_0 when H_0 is true. Type II error: rejects H_1 when H_1 is true.

Size and Power of a test

 $H_0: \theta \in \Theta_0$ $H_1: \theta \in \Theta_1$

Probability of Type I error: For $\theta \in \Theta_0 : P_{\theta}(\phi(\underline{x}) = 1) = \mathsf{E}_{\theta}(\phi(\underline{x})).$

Probability of Type II error: For $\theta \in \Theta_1 : P_{\theta}(\phi(\underline{x}) = 0) = 1 - \mathsf{E}_{\theta}(\phi(\underline{x})).$

Size of a test: $\max_{\theta \in \Theta_0} E_{\theta} \phi(\underline{x})$. It is also called the level of significance.

Power function: $\pi_{\phi}(\theta) = \mathsf{E}_{\theta}\phi(\underline{x})$ is called the power function. If $\theta \in \Theta_0$, $\pi_{\phi}(\theta) = \text{prob. of Type I error.}$ If $\theta \in \Theta_1$, $\pi_{\phi}(\theta) = 1 - \text{prob. of Type II error.}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The size of a test is the maximum of prob. of Type I error. We want $\pi_{\phi}(\theta)$ to be large when $\theta \in \Theta_1$ and small when $\theta \in \Theta_0$.

Usually Type I and Type II error can not be made small at the same time when n is fixed. Traditionally, we control the prob. of Type I error and minimize the prob. of Type II error.

Example

Let $X \sim N(\theta, 1)$. $H_0: \theta > 1 \text{ vs } H_1: \theta < 1.$ Consider the test function $\phi(x) = 1$ if x < 1 and $\phi(x) = 0$ if $x \ge 1$. i.e., reject H_0 if we observe x < 1 and accept H_0 if we observe x > 1. Find the power function of ϕ . Find the prob. of Type I error when $\theta = 1$. Find the size of the test. Find the prob. of Type II error when $\theta = 0.5$. Repeat the problem for $\phi(x) = 1$ if $\bar{x}_n < 1$ for n = 25.

Solutions

Power function $\pi_{\phi}(\theta) = P(X < 1)$. Prob. of Type I error $= P(X < 1; \theta = 1) = P(Z < 0) = 0.50$. Size of the test $= \max_{\theta \ge 1} P(X < 1; \theta) = P(Z < 0) = 0.50$. That is, for $\theta \ge 1$, $\theta = 1$ maximizes the probability of Type I error. Prob. of Type II error $= P(X \ge 1; \theta = 0.5) = P(Z > 0.5) = 0.3085$

For n = 25. Power function $P(\bar{X}_n < 1)$. Prob. of Type I error= $P(\bar{X}_n < 1; \theta = 1) = P(Z < 0) = 0.5$. Size of the test $=\max_{\theta \ge 1} P(\bar{X}_n < 1; \theta) = P(\bar{X}_n < 1; \theta = 1) = 0.5$. Prob. of Type II error = $P(\bar{X}_n \ge 1; \theta = 0.5) = P(Z > 2.5) = 0.0062$.

Bayes test

The Bayes test minimizes a Bayes risk under an appropriate loss function.

Test $H_0: \theta \in \Theta_0$ vs $H_1: \theta \in \Theta_0^c$. Let $a_0 = \operatorname{accept} H_0, a_1 = \operatorname{accept} H_1$. Then $L(\theta, a_0) = 1$ if $\theta \in \Theta_0^c$ $L(\theta, a_0) = 0$ otherwise. $L(\theta, a_1) = 1$ if $\theta \in \Theta_0$ $L(\theta, a_1) = 0$ otherwise. This is called 0 - 1 **loss function**. You can imagine you guess the value of θ , you loss is 0 if your

guess is right and your loss is 1 if your guess is wrong.

A D N A 目 N A E N A E N A B N A C N

Bayes test

Posterior distribution of θ $g(\theta|\underline{x}) = \frac{f(\underline{x};\theta)g(\theta)}{\int f(\underline{x};\theta)g(\theta)d\theta}$. The posterior prob. of Θ_0 is $P(\theta \in \Theta_0|\underline{x}) = \int_{\Theta_0} g(\theta|\underline{x})d\theta$ The posterior prob. of Θ_0^c is $1 - P(\theta \in \Theta_0|\underline{x})$. The Bayes test under the 0-1 loss function is $\phi^*(\underline{x}) = 1$ if $P(\theta \in \Theta_0^c|\underline{x}) \ge P(\theta \in \Theta_0|\underline{x})$ and $\phi^*(\underline{x}) = 0$ otherwise

A D N A 目 N A E N A E N A B N A C N

Example

 X_1, \dots, X_n iid, ~ Bernoulli (θ). Test $H_0: \theta = 0.2$ vs $H_1: \theta = 0.8$. The prior distribution of θ is $P(\theta = 0.2) = P(\theta = 0.8) = 0.5$. Find the Bayes test under the 0-1 loss function.

write
$$\underline{X}_n = X_1, \dots, X_n$$

Reject H_0 if $P(\theta = 0.8 | \underline{x}_n) > P(\theta = 0.2 | \underline{x}_n)$.
Or $P(\underline{X}_n | \theta = 0.8) P(\theta = 0.8) > P(\underline{X}_n | \theta = 0.2) P(\theta = 0.2)$
or $P(\underline{X}_n | \theta = 0.8) > P(\underline{X}_n | \theta = 0.2)$
Now $P(\underline{X}_n | \theta = 0.8) = 0.8^{\sum x_i} 0.2^{n - \sum x_i}$
and $P(\underline{X}_n | \theta = 0.2) = 0.2^{\sum x_i} 0.8^{n - \sum x_i}$
(note for Bernoulli r.v., $P(X_i = x_i | \theta) = \theta^{x_i} (1 - \theta)^{1 - x_i}$)
Let $\frac{P(\underline{X}_n | \theta = 0.2)}{P(\underline{X}_n | \theta = 0.2)} > 1$
we can solve
reject H_0 if $\sum X_i > n/2$.

Example

Let X_1, \dots, X_n iid Bernoulli (θ). The prior distribution of θ is $g(\theta) \sim Uniform(0, 1)$.

Test $H_0: \theta \le 1/2$ vs $H_1: \theta > 1/2$. Find the Bayes test under 0-1 loss.

Note the posterior distribution for θ , $g(\theta|\underline{x})$ is a beta distribution with parameters $(\alpha = \sum x_i + 1, \beta = n - \sum x_i + 1)$, so the Bayes test is to Reject H_0 if $\int_{1/2}^1 beta(\theta; \sum x_i + 1, n - \sum x_i + 1)d\theta > 1/2$. $X_1, \dots, X_n \sim \text{Bernoulli}(\theta).$ Test $H_0: \theta = 0.2 \text{ vs } H_1: \theta = 0.7.$ The prior distribution of θ is $P(\theta = .2) = 0.4, P(\theta = 0.8) = 0.6.$ Find the Bayes test under the 0-1 loss function.