Maximum likelihood Estimate (MLE)

Let $f(x_1, \dots, x_n; \theta)$ be the joint pdf/pmf of X_1, \dots, X_n . For fixed x_1, \dots, x_n , $L(\theta) = f(x_1, \dots, x_n; \theta)$ (as a function of θ) is called the **likelihood** function.

 $\log L(\theta)$ is called the loglikelihood function.

If X_1, \dots, X_n iid (independent and identically distributed) with pdf $f(x; \theta) > 0$, then

 $L(\theta) = f(x_1; \theta)f(x_2; \theta)...f(x_n; \theta) \text{ and} \\ \log L(\theta) = \sum_{i=1}^{n} \log f(x_i; \theta). \\ \text{e.g. Assume } X \sim binomial(3, \theta), \text{ then} \\ P(X = 1) = 3\theta(1 - \theta)^2 := L(\theta) \text{ is the likelihood function and} \\ LogL(\theta) = \log(3) + \log(\theta) + 2\log(1 - \theta) \text{ is the loglikelihood} \\ \text{function.} \end{cases}$

うしん 同一人用 人用 人口 マ

Likelihood Function

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□▶ ◆□◆

Likelihood function

More general given X = x, $P(X = x) = \frac{3!}{x!(3-x)!}\theta^x(1-\theta)^{3-x} = L(\theta)$ If assume X_1, X_2 iid, and observe $X_1 = 1, X_2 = 2$, then $P(X_1 = 1, X_2 = 2) = 3\theta(1-\theta)^2 * 3\theta^2(1-\theta) = 9\theta^3(1-\theta)^3 = L(\theta)$. More general, given $X_1 = x_1, X_2 = x_2$, we can get $L(\theta) = {3 \choose x_1} {3 \choose x_2} \theta^{x_1+x_2} (1-\theta)^{6-(x_1+x_2)}$. Further, if we assume X_i iid ~ binomial(k, θ) and observe $x_1, x_2, \dots x_n$, then $L(\theta) = (\prod_{i=1}^n {k \choose x_i}) \theta^{\sum_{i=1}^n x_i} (1-\theta)^{kn-\sum x_i}$.

Note the product notation $\prod a_i = a_1 a_2 \dots a_n$

For a given set of observations, x_1, \dots, x_n , the **maximum likelihood estimate** of θ is a point $\hat{\theta} \in \Theta$, say $\hat{\theta} = h(x_1, \dots, x_n)$ satisfying

$$f(x_1, \cdots, x_n; \theta) = \max_{\theta \in \Theta} f(x_1, \cdots, x_n; \theta).$$

i.e., $L(\hat{\theta}) = \max_{\theta \in \Theta} L(\theta).$

The MLE is the parameter point for which the observed sample is most likely.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Find MLE

Differentiating or direct maximization.

Assume $L(\theta)$ is twice differentiable in the interior of Θ , then $\hat{\theta}$ maximizes $L(\theta)$ if $\hat{\theta}$ is the unique extreme point in Θ satisfying $\frac{dL(\theta)}{d\theta}|_{\theta=\hat{\theta}} = 0, \frac{d^2L(\theta)}{d\theta^2}|_{\theta=\hat{\theta}} < 0$ $L(\theta)$ can be replaced by log $L(\theta)$ if loglikelihood is well defined.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Examlpe:
$$X \sim bin(3, \theta)$$
, observe $X = 1$ Find MLE of θ .
 $\log L(\theta) = \log(3) + \log(\theta) + 2\log(1 - \theta)$,
Let $\frac{d \log L(\theta)}{d\theta} = \frac{1}{\theta} + 2\frac{-1}{1-\theta} = 0$,
solve for $\hat{\theta} = \frac{1}{3}$.
If observe $X = x$, then
 $\log L(\theta) = \log(\binom{3}{x}) + x \log(\theta) + (3 - x) \log(1 - \theta)$,
by setting $\frac{d \log L(\theta)}{d\theta} = 0$,
we can obtain $\hat{\theta} = \frac{x}{3}$.

Find MLE

example: let X_1, \dots, X_n be a random sample from an exponential distribution $f(x; \theta) = \frac{1}{\theta} e^{-\frac{1}{\theta}x}$, find the MLE for θ . Note the likelihood function is $L(\theta) = (\frac{1}{\theta})^n e^{-\frac{1}{\theta}\sum x_i}$, $logL(\theta) = -n \log(\theta) - \frac{1}{\theta}\sum x_i$ Let $\frac{d \log L(\theta)}{d\theta} = -\frac{n}{\theta} + \frac{1}{\theta^2}\sum x_i = 0$ We can obtain $\hat{\theta} = \frac{\sum X_i}{n} = \bar{X}$.

Multiple parameters

Differentiate $L(\theta)$ with respect to each θ_i to find MLE. $\frac{\partial L(\theta)}{\partial \theta_i} = 0, i = 1, \dots, k.$ Example: X_1, \dots, X_n iid $\sim N(\mu, \sigma^2)$. Find MLE of μ and σ^2 .

solutions: $\hat{\mu} = \bar{X}_n, \hat{\sigma}^2 = \frac{1}{n} \sum_i (X_i - \bar{X}_n)^2$.

Derivation is not required here. You only need to know you can set partial derivative with respect to each parameter to 0 to find MLE for multiple parameters.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Sometimes we need to use direct maximization to find MLE when taking derivative does not work.

example: X_1, \dots, X_n iid ~ Uniform $(0, \theta)$. Find MLE of θ . Note θ here is a range parameter. $\hat{\theta} = X_{(n)}$ where $X_{(n)} = \max(X_1, X_2, \dots, X_n)$. To see why, assume we abserve $x_1 = 1.1, x_2 = 1.8$ for n = 2. $L(\theta) = (\frac{1}{\theta})^2$ if $\theta \ge 1.8$ Note the smaller the value for θ , the larger $L(\theta)$, but θ has to be at

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

least 1.8, so $\hat{\theta} = 1.8$.

exercise

1. One observation is taken on a discrete random variable X with pmf $f(x; \theta)$, where $\theta \in \{1, 2, 3\}$. Find the MLE of θ .

х	f(x; 1)	f(x; 2)	f(x;3)
0	1/3	1/4	0
1	1/3	1/4	0
2	0	1/4	1/4
3	1/6	1/4	1/2
4	1/6	0	1/4

If
$$x = 0$$
 is observed, $\hat{\theta} = 1$
If $x=1$, $\hat{\theta} = 1$.
if $x=2$, $\hat{\theta} = 2$ or 3.
if $x=3$, $\hat{\theta} = 3$.
if $x=4$, $\hat{\theta} = 3$.

Note here θ only takes three possible values. Given X = x is observed, we find the θ value that gives largest $f(x; \theta)$. That is, find the θ value that maximizes the probability in each row.

exercise

2. Let X_1, \dots, X_n be a random sample from a gamma (α, β) distribution.

Find the MLE of
$$\beta$$
, assuming α known.
 $f(x_1, \dots, x_n; \beta) = \frac{\beta^{n\alpha}}{(\Gamma(\alpha))^n} (\prod x_i)^{\alpha-1} e^{-\beta \sum x_i},$
 $\log L(\beta) = n\alpha \log \beta - n \log \Gamma(\alpha) + (\alpha - 1) \log(\prod x_i) - \beta \sum x_i,$
 $\frac{dLog(\beta)}{d\beta} = \frac{n\alpha}{\beta} - \sum x_i = 0,$
 $\hat{\beta} = \frac{\alpha}{X}.$

3. Given a random sample of size *n* from a beta distribution with $\beta = 1$, use the method of maximum likelihood to find an estimator for α .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

MLE:

$$f(x_1, \cdots, x_n) = \left(\frac{\Gamma(\alpha+1)}{\Gamma(\alpha)}\right)^n (\prod x_i)^{\alpha-1}.$$

$$\log L(\alpha) = n \log \alpha - (\alpha - 1) \log \prod x_i,$$

$$\frac{d \log L(\alpha)}{d\alpha} = \frac{n}{\alpha} + \log \prod x_i = 0,$$

$$\hat{\alpha} = \frac{n}{-\sum \log x_i}.$$

Large sample properties of estimators

When we use T which is a function of data to estimate θ , we expect a good estimator T for θ should be close to θ , or $E_{\theta}(T - \theta)^2$, the mean squared error (MSE) of T, is small. (Here the expectation is taken with respect to the distribution of T given θ .)

The MSE can be decomposed as

$$E(T - \theta)^2 = \sigma_T^2 + (E(T) - \theta)^2$$
, Note $(\sigma_T^2 = Var(T))$

 $E(T) - \theta$ is called the **bias** of *T*. If The bias of *T* is 0, we say T is an **unbiased estimator** for θ .

so MSE equals the variance of T plus the squared bias of T. example: X_1, \dots, X_n iid $\sim N(\theta, \sigma^2)$. Estimate θ assuming σ^2 known.

Compare two estimators: $T_1 = \bar{X}_n$, $T_2 = X_1$. Find their MSE. $E(T_1 - \theta)^2 = \frac{\sigma^2}{n}$, $E(T_2 - \theta)^2 = \sigma^2$. Both of them are unbiased, so MSE equals their variance.

(日)((1))

Limit of a sequence

$$\{a_n\} = \{1/2, 3/4, 7/8, 15/16, \cdots, 1 - 1/2^n, \cdots, \}$$
$$\lim_{n \to \infty} a_n = 1 \text{ or } a_n \to 1.$$
$$\{b_n\} = \{1/2, 3/4, 1/4, 7/8, 1/8, 15/16, 1/16, \cdots, \}$$
$$\overline{\lim_{n \to \infty} b_n} = 1, \underline{\lim_{n \to \infty} b_n} = 0.$$

The limit of a sequence exists when the lower and upper limits coincide.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

MSE consistent estimator

An estimator T is said to be a (MSE) **consistent** estimator of θ if $\lim_{n\to\infty} E_{\theta}(T-\theta)^2 = 0$. e.g., T_1 is (MSE) consistent as its MSE $\frac{\sigma^2}{n}$ tends to 0 when n goes to infinity.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

MLE yields consistent estimators.

Small sample properties of estimators

Unbiased estimator:

An estimator T is said to be an **unbiased** estimator of θ if $E_{\theta}(T) = \theta$ for every θ . We call $E_{\theta}(T) - \theta$ the **bias** of T.

e.g., $E(S_n^2) = \sigma^2$. The sample variance is unbiased for population variance. Recall $S^2 = \frac{1}{n-1} \sum (X_i - \bar{X}_n)^2$. MLE of σ^2 is $\frac{1}{n} \sum (X_i - \bar{X}_n)^2$. $E(\hat{\sigma}_{MLE}^2) = E \frac{n-1}{n} S_n^2 = \frac{n-1}{n} \sigma^2$, the bias is $\frac{n-1}{n} \sigma^2 - \sigma^2 = -\frac{1}{n} \sigma^2$, that is, the MLE for σ^2 has a negative bias.

If we have several unbiased estimators, which is better? Examine variance.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

UMVUE

An estimator T is said to be **Uniform Minimum Variance Unbiased Estimator** (UMVUE) of θ if

1) T is unbiased of
$$\theta$$
.
2). $Var(T) < \infty$.
3). For any other unbiased estimator \tilde{T} , of θ , $Var(T) < Var(\tilde{T})$.

How to find UMVUE and prove it? We can use Cramer-Rao Lower Bound (CRLB) to find UMVUE.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

exercise

1. Let X_1, \dots, X_n iid $\sim N(\theta, 1)$. Consider two estimators of θ . $\hat{\theta} = \bar{X}$ and $\hat{\theta} = \frac{1}{2}(X_1 + X_2)$. Find the MSE of both estimators. Are they consistent? 2. X_1, \dots, X_n iid $\sim Poi(\lambda)$. Find the MLE of λ and its MSE. \overline{X} is MLE. \bar{X} is unbiased for λ , and $Var(\bar{X}) = \frac{\lambda}{n}$. 3. X_1, \dots, X_n iid ~ Bernoulli(p). Find the MLE of p and its MSE. (Bernoulli(p) is binomial (1, p)). \bar{X} is the MLE. $E(\bar{X}) = p$, and $Var(\bar{X}) = \frac{p(1-p)}{p}$.

(日)<

Solutions

1. Note $E(\bar{X}) = \theta$, $E(\frac{1}{2}(X_1 + X_2)) = \theta$, so both estimators are unbiased for θ , and the MSE is variance of each estimator. $Var(\bar{X}) = \frac{\sigma^2}{n} = \frac{1}{n}$. $Var(\frac{1}{2}X_1 + \frac{1}{2}X_2) = \frac{1}{4}Var(X_1) + \frac{1}{4}Var(X_2) = \frac{1}{4} * 1 + \frac{1}{4} * 1 = \frac{1}{2}$. The estimator \bar{X} is MSE consistent, $\frac{1}{2}(X_1 + X_2)$ is not as its MSE does not go to 0 when n goes to infinity.

2. The likelihood function is $L(\lambda) = f(x_1; \lambda)f(x_2; \lambda) \cdots f(x_n; \lambda) = \prod \frac{e^{-\lambda}\lambda^{x_i}}{x_i!} = (\prod \frac{1}{x_i})e^{-n\lambda}\lambda^{\sum x_i},$ and the loglikelihood function is $\log L(\lambda) = \log(\prod \frac{1}{x_i}) - n\lambda + \sum x_i \log(\lambda),$ Let $\frac{d \log L(\lambda)}{d\lambda} = -n + \frac{\sum x_i}{\lambda} = 0,$ we can solve $\hat{\lambda} = \frac{\sum X_i}{n} = \bar{X}_n.$ i.e., the MLE for λ is the sample mean X_n . $E(\bar{X}_n) = \lambda$, so MSE= $Var(\bar{X}_n) = \frac{\lambda}{n}$ hence \bar{X}_n is MSE consistent.

Solutions

3. The likelihood function is

$$L(p) = f(x_1; p)f(x_2; p) \cdots f(x_n; p) = \prod p^{x_i}(1-p)^{1-x_i} = p^{\sum x_i}(1-p)^{n-\sum x_i},$$
The loglikelihood function is

$$\log L(p) = \sum x_i \log(p) + (n - \sum x_i) \log(1-p),$$
Let $\frac{d \log L(p)}{dp} = \frac{\sum x_i}{p} - \frac{n-\sum x_i}{1-p} = 0,$
we can solve $\hat{p} = \bar{X}_n$
 \bar{X}_n is unbiased for p and its MSE = $Var(\bar{X}_n) = \frac{p(1-p)}{n},$
so \bar{X}_n is MSE consistent.
Note if $X \sim Bernoulli(p)$, then $E(X) = p, Var(X) = p(1-p).$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶