
Maximum likelihood Estimate (MLE)

Let f (x1, · · · , xn; θ) be the joint pdf/pmf of X1, · · · ,Xn.
For fixed x1, · · · , xn,
L(θ) = f (x1, · · · , xn; θ) (as a function of θ) is called the likelihood
function .
log L(θ) is called the loglikelihood function.
If X1, · · · ,Xn iid (independent and identically distributed) with pdf
f (x ; θ) > 0, then
L(θ) = f (x1; θ)f (x2; θ)...f (xn; θ) and
log L(θ) =

∑n
i=1 log f (xi ; θ).

e.g. Assume X ∼ binomial(3, θ), then
P(X = 1) = 3θ(1− θ)2 := L(θ) is the likelihood function and
LogL(θ) = log(3) + log(θ) + 2 log(1− θ) is the loglikelihood
function.





Likelihood function

More general given X = x ,
P(X = x) = 3!

x!(3−x)!θ
x(1− θ)3−x = L(θ)

If assume X1,X2 iid, and observe X1 = 1,X2 = 2, then
P(X1 = 1,X2 = 2) = 3θ(1− θ)2 ∗ 3θ2(1− θ) = 9θ3(1− θ)3 = L(θ).
More general, given X1 = x1,X2 = x2, we can get
L(θ) =

( 3
x1

)( 3
x2

)
θx1+x2(1− θ)6−(x1+x2).

Further, if we assume Xi iid ∼ binomial(k, θ) and observe
x1, x2, · · · xn, then
L(θ) = (

∏n
i=1

(k
xi

)
)θ

∑n
i=1 xi (1− θ)kn−

∑
xi .

Note the product notation
∏

ai = a1a2..an



MLE

For a given set of observations, x1, · · · , xn, the maximum
likelihood estimate of θ is a point θ̂ ∈ Θ, say θ̂ = h(x1, · · · , xn)
satisfying
f (x1, · · · , xn; θ) = maxθ∈Θ f (x1, · · · , xn; θ).
i.e.,L(θ̂) = maxθ∈Θ L(θ).
The MLE is the parameter point for which the observed sample is
most likely.



Find MLE

Differentiating or direct maximization.
Assume L(θ) is twice differentiable in the interior of Θ, then θ̂
maximizes L(θ) if θ̂ is the unique extreme point in Θ

satisfying dL(θ)
dθ |θ=θ̂ = 0, d

2L(θ)
dθ2 |θ=θ̂ < 0

L(θ) can be replaced by log L(θ) if loglikelihood is well defined.

Examlpe: X ∼ bin(3, θ), observe X = 1 Find MLE of θ.
log L(θ) = log(3) + log(θ) + 2 log(1− θ),

Let d log L(θ)
dθ = 1

θ + 2 −1
1−θ = 0,

solve for θ̂ = 1
3 .

If observe X = x , then
log L(θ) = log(

(3
x

)
) + x log(θ) + (3− x) log(1− θ),

by setting d log L(θ)
dθ = 0,

we can obtain θ̂ = x
3 .



Find MLE

example: let X1, · · · ,Xn be a random sample from an exponential

distribution f (x ; θ) = 1
θ e
− 1

θ
x , find the MLE for θ.

Note the likelihood function is L(θ) = ( 1
θ )ne−

1
θ

∑
xi ,

logL(θ) = −n log(θ)− 1
θ

∑
xi

Let d log L(θ)
dθ = −n

θ + 1
θ2

∑
xi = 0

We can obtain θ̂ =
∑

Xi

n = X̄ .



Multiple parameters

Differentiate L(θ) with respect to each θi to find MLE.
∂L(θ)
∂θi

= 0, i = 1, · · · , k .

Example: X1, · · · ,Xn iid ∼ N(µ, σ2). Find MLE of µ and σ2.

solutions: µ̂ = X̄n, σ̂
2 = 1

n

∑
i (Xi − X̄n)2.

Derivation is not required here. You only need to know you can set
partial derivative with respect to each parameter to 0 to find MLE
for multiple parameters.



Direct maximization

Sometimes we need to use direct maximization to find MLE when
taking derivative does not work.
example: X1, · · · ,Xn iid ∼ Uniform (0, θ).
Find MLE of θ. Note θ here is a range parameter.
θ̂ = X(n) where X(n) = max(X1,X2, · · ·Xn).
To see why, assume we abserve x1 = 1.1, x2 = 1.8 for n = 2.
L(θ) = ( 1

θ )2 if θ ≥ 1.8
Note the smaller the value for θ, the larger L(θ), but θ has to be at
least 1.8, so θ̂ = 1.8.



exercise
1. One observation is taken on a discrete random variable X with
pmf f (x ; θ), where θ ∈ {1, 2, 3}. Find the MLE of θ.

x f (x ; 1) f (x ; 2) f (x ; 3)

0 1/3 1/4 0
1 1/3 1/4 0
2 0 1/4 1/4
3 1/6 1/4 1/2
4 1/6 0 1/4

If x = 0 is observed, θ̂ = 1
If x=1, θ̂ = 1.
if x=2, θ̂ = 2 or 3.
if x=3, θ̂ = 3.
if x=4, θ̂ = 3.
Note here θ only takes three possible values. Given X = x is
observed, we find the θ value that gives largest f (x ; θ). That is,
find the θ value that maximizes the probability in each row.



exercise

2. Let X1, · · · ,Xn be a random sample from a gamma (α, β)
distribution.
Find the MLE of β, assuming α known.
f (x1, · · · , xn;β) = βnα

(Γ(α))n (
∏

xi )
α−1e−β

∑
xi ,

Log L(β) = nα log β − n log Γ(α) + (α− 1) log(
∏

xi )− β
∑

xi ,
dLog(β)

dβ = nα
β −

∑
xi = 0,

β̂ = α
X̄

.



3. Given a random sample of size n from a beta distribution with
β = 1, use the method of maximum likelihood to find an estimator
for α.
MLE:
f (x1, · · · , xn) = ( Γ(α+1)

Γ(α) )n(
∏

xi )
α−1.

log L(α) = n logα− (α− 1) log
∏

xi ,
d log L(α)

dα = n
α + log

∏
xi = 0,

α̂ = n
−

∑
logxi

.



Large sample properties of estimators

When we use T which is a function of data to estimate θ, we
expect a good estimator T for θ should be close to θ,
or Eθ(T − θ)2, the mean squared error (MSE) of T , is small.
(Here the expectation is taken with respect to the distribution of
T given θ.)
The MSE can be decomposed as
E (T − θ)2 = σ2

T + (E (T )− θ)2, Note (σ2
T = Var(T ))

E (T )− θ is called the bias of T . If The bias of T is 0, we say T is
an unbiased estimator for θ.
so MSE equals the variance of T plus the squared bias of T .
example: X1, · · · ,Xn iid ∼ N(θ, σ2). Estimate θ assuming σ2

known.
Compare two estimators: T1 = X̄n,T2 = X1. Find their MSE.
E (T1 − θ)2 = σ2

n ,E (T2 − θ)2 = σ2.
Both of them are unbiased, so MSE equals their variance.



Limit of a sequence

{an} = {1/2, 3/4, 7/8, 15/16, · · · , 1− 1/2n, · · · , }

limn→∞ an = 1 or an → 1.

{bn} = {1/2, 3/4, 1/4, 7/8, 1/8, 15/16, 1/16, · · · , }

limn→∞bn = 1, limn→∞bn = 0.

The limit of a sequence exists when the lower and upper limits
coincide.



MSE consistent estimator

An estimator T is said to be a (MSE) consistent estimator of θ if
limn→∞ Eθ(T − θ)2 = 0.

e.g., T1 is (MSE) consistent as its MSE σ2

n tends to 0 when n goes
to infinity.
MLE yields consistent estimators.



Small sample properties of estimators

Unbiased estimator:
An estimator T is said to be an unbiased estimator of θ if
Eθ(T ) = θ for every θ. We call Eθ(T )− θ the bias of T .

e.g., E (S2
n ) = σ2. The sample variance is unbiased for population

variance. Recall S2 = 1
n−1

∑
(Xi − X̄n)2.

MLE of σ2 is 1
n

∑
(Xi − X̄n)2.

E (σ̂2
MLE ) = E n−1

n S2
n = n−1

n σ2,
the bias is n−1

n σ2 − σ2 = − 1
nσ

2, that is, the MLE for σ2 has a
negative bias.
If we have several unbiased estimators, which is better? Examine
variance.



UMVUE

An estimator T is said to be Uniform Minimum Variance
Unbiased Estimator (UMVUE) of θ if
1) T is unbiased of θ.
2). Var(T ) <∞.
3). For any other unbiased estimator T̃ , of θ,
Var(T ) < Var(T̃ ).

How to find UMVUE and prove it?
We can use Cramer-Rao Lower Bound (CRLB) to find UMVUE.



exercise

1. Let X1, · · · ,Xn iid ∼ N(θ, 1).
Consider two estimators of θ.
θ̂ = X̄ and θ̂ = 1

2 (X1 + X2).
Find the MSE of both estimators. Are they consistent?
2. X1, · · · ,Xn iid ∼ Poi(λ).
Find the MLE of λ and its MSE.
X̄ is MLE.
X̄ is unbiased for λ, and Var(X̄ ) = λ

n .
3. X1, · · · ,Xn iid ∼ Bernoulli(p). Find the MLE of p and its MSE.
(Bernoulli( p) is binomial (1, p)).
X̄ is the MLE.
E (X̄ ) = p, and Var(X̄ ) = p(1−p)

n .



Solutions

1. Note E (X̄ ) = θ,E ( 1
2 (X1 + X2)) = θ, so both estimators are

unbiased for θ, and the MSE is variance of each estimator.
Var(X̄ ) = σ2

n = 1
n .

Var( 1
2X1 + 1

2X2) = 1
4Var(X1) + 1

4Var(X2) = 1
4 ∗ 1 + 1

4 ∗ 1 = 1
2 .

The estimator X̄ is MSE consistent, 1
2 (X1 + X2) is not as its MSE

does not go to 0 when n goes to infinity.

2. The likelihood function is
L(λ) = f (x1;λ)f (x2;λ) · · · f (xn;λ) =

∏ e−λλxi
xi !

= (
∏ 1

xi
)e−nλλ

∑
xi ,

and the loglikelihood function is
log L(λ) = log(

∏ 1
xi

)− nλ+
∑

xi log(λ),

Let d log L(λ)
dλ = −n +

∑
xi
λ = 0,

we can solve λ̂ =
∑

Xi

n = X̄n.
i.e., the MLE for λ is the sample mean Xn.
E (X̄n) = λ, so MSE=Var(X̄n) = λ

n hence X̄n is MSE consistent.



Solutions

3. The likelihood function is
L(p) = f (x1; p)f (x2; p) · · · f (xn; p) =

∏
pxi (1− p)1−xi =

p
∑

xi (1− p)n−
∑

xi ,
The loglikelihood function is
log L(p) =

∑
xi log(p) + (n −

∑
xi ) log(1− p),

Let d log L(p)
dp =

∑
xi

p −
n−

∑
xi

1−p = 0,

we can solve p̂ = X̄n

X̄n is unbiased for p and its MSE = Var(X̄n) = p(1−p)
n ,

so X̄n is MSE consistent.
Note if X ∼ Bernoulli(p), then E (X ) = p,Var(X ) = p(1− p).


