Math 424 Exercises

1. Let X_1, \dots, X_n iid $\sim N(\theta, 1)$. Consider two estimators of θ . $T_1 = \bar{X}$ and $T_2 = \frac{1}{2}(X_1 + X_2)$. Find the MSE of both estimators. Are they consistent? Note both T_1 and T_2 are unbiased for θ , so $E(T_1 - \theta)^2 = V(T_1) = \frac{\sigma^2}{n} = \frac{1}{n}$. As $\frac{1}{n} \to 0$, T_1 is (MSE) consistent. $V(T_2) = V(\frac{1}{2}X_1 + \frac{1}{2}X_2) = \frac{1}{4}V(X_1) + \frac{1}{4}V(X_2) = \frac{1}{4} * 1 + \frac{1}{4} * 1 = 1/2$. So T_2 is not (MSE) consistent as its MSE does not tend to 0.

2. Let X be one observation from the $Bin(n,\theta)$ distribution where n is an known constant. Consider two estimators for θ .

 $T_{1} = \frac{X}{n} \text{ and } T_{2} = \frac{X+2}{n+4}.$ 1). Are T_{1} and T_{2} unbiased for θ ? $E(T_{1}) = E(\frac{X}{n}) = \frac{1}{n}E(X) = \frac{1}{n}(n\theta) = \theta$, so T_{1} is unbiased for θ . $E(T_{2}) = E(\frac{X+2}{n+4}) = \frac{1}{n+4}E(X+2) = \frac{E(X)+2}{n+4} = \frac{n\theta+2}{n+4} \neq \theta$ unless $\theta = 1/2$. So $E(T_{2})$ is biased for θ . 2). Find the MSE of T_{1} and T_{2} . $E(T_{1} - \theta)^{2} = V(T_{1}) = \frac{1}{n^{2}}V(X) = \frac{1}{n^{2}}(n\theta(1-\theta)) = \frac{\theta(1-\theta)}{n}.$ Bias of T_{2} : $E(T_{2}) - \theta = E(\frac{X+2}{n+4}) - \theta = \frac{n\theta+2}{n+4} - \theta = \frac{2-4\theta}{n+4}.$ variance of T_{2} : $V(T_{2}) = (\frac{1}{n+4})^{2}V(X) = \frac{n\theta(1-\theta)}{(n+4)^{2}},$ MSE of T_{2} : $E(T_{2} - \theta)^{2} = (\frac{2-4\theta}{n+4})^{2} + \frac{n\theta(1-\theta)}{(n+4)^{2}}$