The Poisson distribution

A random variable is said to have a **Poisson distribution** with parameter $\lambda(\lambda > 0)$ if the pmf of X is $p(X=k)=\frac{e^{-\lambda}\lambda^k}{k!}, k=0,1,2,3,\cdots.$ check $\sum_{k=0}^{\infty} \frac{e^{-\lambda} \lambda^k}{k!} = e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} = e^{-\lambda} e^{\lambda} = 1.$ The mgf of X is $M_X(t) = \sum_{k=0}^{\infty} e^{tk} \frac{e^{-\lambda} \lambda^k}{k!}$ $= e^{-\lambda} \sum_{k=0}^{\infty} \frac{(\lambda e^{t})^{k}}{k!} = e^{-\lambda} e^{\lambda e^{t}} = e^{\lambda (e^{t}-1)}.$ $M_{\mathbf{x}}^{(1)}(t) = \lambda e^{t} e^{\lambda(e^{t}-1)}.$ $M_{\mathcal{X}}^{(2)}(t) = \lambda e^t e^{\lambda (e^t - 1)} + \lambda^2 e^{2t} e^{\lambda (e^t - 1)}.$ $E(X) = \lambda, Var(X) = \lambda.$

Example: Let X be the number of creatures of a certain type captured in a trap during a day. Suppose X has a Poisson distribution with $\lambda = 4.5$. i.e., on average the trap will capture 4.5 creatures a day. The probability that a trap capture 5 creatures in a day is

 $P(X = 5) = \frac{e^{-4.5}(4.5)^5}{5!} = 0.1708.$ The probability that the trap will capture 0 creatures is $P(X = 0) = \frac{e^{-4.5}(4.5)^0}{0!} = e^{-4.5} = 0.011.$ The probability that the trap will capture 12 creatures is $P(X = 12) = \frac{e^{-4.5}(4.5)^{12}}{12!} = 0.0016.$

approximating binomial distribution

proposition: The binomial pmf approaches the Poisson pmf if we let $n \to \infty$, $p \to 0$ in such a way that $np \to \lambda > 0$. proof p 223.

example

a typesetter, on average, makes one error in every 500 words typeset. A typical pages contains 300 words. What is the probability that there will be no more than 2 errors in 5 pages? Let X be the number of errors in 5 pages, then $X \sim$ binomial $(1500, \frac{1}{500})$, and $P(X \le 2) = \sum_{x=0}^{2} {1500 \choose x} (\frac{1}{500})^{x} (\frac{499}{500})^{1500-x} = 0.4230$. If we use $X \sim$ Poisson with $\lambda = np = 3$, then $P(X \le 2) = e^{-3}(1+3+3^{2}/2) = 0.4232$.

・ロト・(中下・(中下・(中下・))

The Poisson distribution can serve for number of events during a given time interval or in a specified region when

1). The events in nonoverlapping time intervals or regions are independent.

2). The probability of a single event occurring in a very small time interval or region is proportional to the length of the time interval or size of the region.

3). The probability of more than one events occurring a such a short time interval or a small region is negligible.

A telephone operator on averages handles 5 calls every 3 minutes. What is the probability that there will be no calls in the next minute? 0.189.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem: Suppose a series of events satisfying the Poisson model are occurring at the rate of λ per unit time. Let the random varible Y be the interval between consecutive events. Then Y has the exponential distribution $f_Y(y) = \lambda e^{-\lambda}, y > 0$.

proof: Suppose an event occurred at time a. Then the probability that no event will occur in (a, a + y) is $\frac{e^{-\lambda y}(\lambda y)^0}{0!} = e^{-\lambda y}$. Note no event in (a, a + y) iff Y > y. So $P(Y > y) = e^{-\lambda y}$ and $F_Y(y) = 1 - e^{-\lambda y}$, $f_Y(y) = \lambda e^{-\lambda y}$, y > 0.

Example

4.2.26. Suppose the commercial airplane crashes in a certain country occur at the rate of 2.5 per year. What is the probability that the next two crashes will occur within 3 months of one another?

The rate 2.5 per year is the same as 2.5/12 per month. The time between the next two crashes \sim exponential $\lambda = 2.5/12 = 0.2083$ $P(Y < 3) = F_Y(3) = 1 - e^{-0.2083 * 3} = 0.465.$

Exercise

Records show that deaths occur at the rate of 0.1 per day among patients in a large nursing home. If someone dies today, what are the chances that a week or more will elapse before another death occurs? $e^{-0.7} = 0.50$.