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Preface

The purpose of writing this text is to provide a presentation of statistical meth-
ods and concepts associated with the design and analysis of experiments geared
toward undergraduate students with only an introductory background in prob-
ability and statistics and with an interest in an applied, projects-orientation to
the subject.

The text arose from lecture notes used in multiple classes of an undergrad-
uate level course in experimental design and analysis of variance (ANOVA),
Math 321, taught at James Madison University over a number of years. The
class meets three times per week for approximately 15 weeks in a semester. The
students major in a variety of disciplines, including mathematics, statistics, psy-
chology, biology, health science, and environmental science. The prerequisite for
the course is an introductory course in statistics, calculus or non-calculus based.
Students usually take the class in either their junior or senior level, but there
are occasions when students are in their sophomore year.

In the first few years of teaching the course I used several undergraduate
level texts. While these texts have their strengths, I did not find them totally
suitable for the class given the background and goals of the class. Some books
were geared more toward specific disciplines, such as engineering and agriculture.
One book was compatible in many ways but I wanted a little more mathematical
rigor given that some students in the class were mathematics and statistics
majors.

The specific goals of the text are as follows:

• The first chapter should be relatively math-free introducing students to
the ideas of good experimental design, such as randomization, blocking,
and replication within the context of a variety of applications, some of
which are in the areas of interest of the students.

• I felt like the text had to have a significant formal review of basic concepts
in statistics (Chapters 2 and 3) since some students were entering the
class with only one introductory course with maybe having taken that one
course two or three years earlier. These two chapters should provide a
smooth transition to the rest of the text on the more advanced ANOVA
concepts and analyses. I typically spend about three weeks on these two
review chapters.
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• The text also needed to have examples and exercises from a variety of
disciplines because of the varied background of the students and the need
to keep the course relevant for them.

• The mathematical level had to be accessible to students with only a first
course in statistics with no calculus background. The deas of analysis of
variance should be presented at a basic level, although design issues could
and should be challenging and thought-provoking.

• The text should provide examples of experiments conducted by students
in previous semesters and report the results of those experiments. Seeing
results of experiments done by students in previous classes should make
students more confident in their abilities to perform their own experiments.
I regularly require students to do their own experiments in my classes. As
Box and Liu noted, “ The art of investigation cannot be found just by
playing with someone else’s data.” (“Statistics as a Catalyst to Learning
by Scientific Method Part I - An Example,” Journal of Quality Technology,
Vol. 31, No 1, January, 1999) In this regard the text is similar to the test
of Dean and Voss ([6]) but on an undergraduate rather than a graduate
level.

• The number of chapters should be relatively small (total of 10 chapters)
and cover the basic concepts. Other textbooks have larger numbers of
chapters with topics that cannot possibly be covered in a one-semester
course for students with only a minimal background in statistics.

• The text should not be tied to a particular computing package. I used
SAS in class and have SAS code at the ends of the chapters. However
results of analyses are not given as output from particular packages. This
allows other instructors to use the text with their favorite package.

• Checking of assumptions of analysis of variance methods is undertaken in
a single later chapter in the text in order to first concentrate on the details
of the analyses.

This work was supported by the James Madison University Program of
Grants for Faculty Assistance. I am extremely grateful to JMU for the op-
portunity to complete a career goal.

I would like to thank the many students who took my Math 321 classes over
the years for the interesting conversations about statistics and for providing me
with many real data sets from their experiments, some of which are used in the
text. Students whose experiments and data are used in the text are referenced
by name followed by the semester and year that the students took my class.

I would like to thank Steve Patch at UNC-Asheville and Dinesh Sharma,
Lihua Chen, and Hasan Hamdan of JMU for giving the text trial runs in their
classes and providing feedback. I would like to thank all of the other statistics
faculty in the Department of Mathematics and Statistics for giving me the
chance to teach my favorite course so many times.



xi

I would like to thank my wife, Reinhild, for her love, support, and patience
through so many working weekends, summers, and holidays, allowing me to
complete this long endeavor.

Rickie J. Domangue
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Chapter 1

The Nature of
Experimentation and
Analysis of Variance

1.1 Types of Statistical Studies

In this book we are going to be concerned with statistical studies in which groups
of individuals or objects associated with different conditions are compared in
terms of some characteristic. We will be mainly interested in experiments but
will occasionally investigate observational studies as well. The two kinds of
studies, experiments and observational, are described below.

• Experiment: A study in which the conditions are deliberately (and usu-
ally randomly ) assigned by a researcher to individuals/objects/time slots
for the purpose of seeing the effect that these assigned conditions have
on some characteristic. The assigned conditions are called treatments
. The characteristic is called the response variable . The individuals or
objects are called the experimental units .

• Observational Study: A study in which the conditions are not as-
signed/controlled by the researcher but simply observed. The conditions
are inherent characteristics of the subjects/objects/time slots. Interest
still lies in comparing the groups defined by the conditions in terms of the
response variable.

In this text it is assumed that the response variable is quantitative. The
conditions may be categorical or quantitative.

1
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1.2 Examples of Experiments

In this section examples of experiments are given and some basic terminology
is introduced.

a. In a study to determine if number of calories consumed affects longevity,
60 mice were given diets differing by number of calories. Twenty mice
were randomly assigned to a low calorie diet, twenty to a medium calorie
diet, and twenty to a high calorie diet. The number of months that the
mice lived was recorded (mice have an average lifespan of about 2 years).

This study is an experiment. The diets that the mice get are controlled
or assigned by the researcher. The different diets-low, medium, and high
calorie are the treatments. The response variable is the lifespan of a mouse
measured in months. The experimental units are the 60 mice.

b. Pop-up ads are advertisements that pop-up on your computer when you
are visiting or leaving a website. An internet service provider conducted
a study to see if reducing the number of pop-up ads would improve sat-
isfaction with their service. A group of 1000 subscribers were randomly
selected. Half of them, randomly selected, saw roughly half the usual
number of pop-up ads when visiting the website. The other half saw the
usual number of pop-up ads. After two weeks the 1000 subscribers were
asked to fill out a satisfaction survey regarding how they feel about the
provider.

This study is an experiment. The number of ads, “usual” or “half” are
conditions or treatments assigned to the subscribers, the experimental
units. The response variable is the satisfaction survey score.

c. Medical research has explored the medicinal uses of garlic. In one study
60 mice were fed high-cholesterol diets. Thirty of the mice, randomly
selected, were given allicin, one of garlic’s active ingredients. These 30
mice developed fewer fatty deposits in their arteries than the 30 mice not
receiving allicin. The experimental units are the 60 mice. The researchers
determined which mice received allicin and which did not. The treatments
are “received allicin” and “did not receive allicin.” The response variable
is the number of fatty deposits in the arteries.

The 30 mice making up the group not receiving allicin is called a control
group. A control group is a group that gets a standard treatment, no
treatment at all, or a sham treatment. The control group serves as a basis
of comparison.

d. In a study of a new headache relief medicine 100 headache sufferers were di-
vided at random into two groups, with one group getting the new headache
relief medicine and the other group a placebo, an inactive substance de-
signed to look like the new headache medicine.
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The placebo group is a type of control group, a comparison group, used to
control for the placebo effect. In medical studies with human subjects,
often patients respond positively to any treatment, even dummy treat-
ments, presumably due to attention being paid to them. This response is
called the placebo effect.

To determine if a new treatment is truly beneficial or just the placebo
effect at work, another group is given a placebo, rather than nothing at
all. If the new group receiving the new medicine is really beneficial, then
it should do better than the group getting the placebo.

e. In some animal health studies treatments are medicines provided in feed
or water for the control of certain infections. Animals may be housed in
pens. The medicine is then in the feed or water of the penned animals and
animals eat or drink from the same source. In such studies the experimen-
tal units are pens of animals rather individual animals since the medicines
are assigned at random to pens. The response variable may be a summary
of the pen of animals such as average daily weight gain (lbs/pig/day) for
all animals in a pen or average feed consumption (lbs/pig/day) over some
period of time for all animals in a pen.

f. An experiment was conducted to determine the differential effects of three
different fat/carbohydrate diets A, B, and C on how much time (seconds)
subjects could stay on a treadmill until exhaustion. Each of six subjects
received all three diets at different time periods, the order being randomly
determined. The conditions in this experiment to be compared are the
three diets. However the three diets are not assigned to different groups
of subjects. Each subject received all three diets. So the (random) assign-
ment in this experiment is the assignment, for each subject, of the three
different diets to be used at the three different time periods. So time pe-
riods are the experimental units with a total of eighteen, 3 for each of the
6 subjects. The response variable is the amount of time until exhaustion
for a particular subject on a particular diet at a particular time period.

g. An experiment was conducted to examine the effects of external distrac-
tions (none, constant, changing) and type of words (fruit, mixed, nouns)
on the ability to memorize words. There are nine (3 x 3) combinations of
external distraction and type of word. Thirty-six subjects were assigned at
random to the 9 combinations, with four subjects per combination. A list
of 30 words was prepared for each of the three word types. Each subject
studied his/her randomly assigned word list under his/her randomly as-
signed distraction type for a fixed amount of time. The response variable
was the number of words correctly remembered out of 30. The experi-
mental units are the 36 subjects. The treatments are the 9 combinations
of external distraction and type of word.

h. An experiment was conducted to examine the effects of depth perception
(both eyes open, left eye covered, right eye covered) and distance from
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a basketball goal (free throw distance and 1/2 free throw distance) on
the number of successful throws at the basket. There are six (3 x 2)
combinations of depth perception and distance from the goal. Twelve
students with some experience in playing basketball were recruited. The
twelve students were randomly assigned to the six combinations, with
2 students per combination. Each student took 30 shots at the basket
using one of the randomly selected depth perceptions and distances. The
response variable was the number of successful attempts among the 30
shots conducted by a student. The experimental units are the twelve
students. The treatments are the six combinations of depth perception
and distance from the goal.

i. Mark Bergenholtz, Michelle Clower, and James Skiba in 2014 investigated
the effects of stove temperature (levels of 4, 6, 10) and type of meat
(chicken, beef, and pork) on the amount of time for a piece of meat heated
in a skillet to reach an internal temperature of 165◦F. The experiment
was conducted over time using one skillet as follows. At a particular
heating time period a randomly selected stove setting and type of meat
was determined. A piece of meat for the randomly selected type of meat
was randomly selected. The piece of meat was heated in a skillet at the
selected setting and the amount of time (minutes) for the piece of meat
to reach the desired internal temperature was determined. Pieces of meat
within type of meat and across types were similar in size. This activity
was repeated over 45 different time slots/heatings in a completely random
order, five time slots/heatings per combination of heat setting and type
of meat. Experimental units are the 45 time slots/heatings. There are
nine treatments corresponding to the nine combinations of heat setting
and type of meat. Each treatment is being applied 5 times.

1.3 Examples of Observational Studies

In this section examples of observational studies are given, emphasizing the
difference between these studies and experiments.

a. When backing out of a parking space in a lot, do people take longer when
someone is waiting for them as compared with no one waiting? There
have been studies that looked at this question. Suppose a researcher does
a study by observing people getting into their cars in a university parking
lot. The researcher records whether or not someone is waiting to obtain the
parking spot and also how long it took the driver leaving to depart. The
response variable is the amount of time to depart from the time that the
person stepped into his/her car until he/she moved forward. Also observed
was whether or not there was someone waiting to take the person’s spot.

This is not an experiment. It’s an observational study because the condi-
tions “someone waiting” and “someone not waiting” are not assigned by
the researcher but observed.
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b. Researchers wanted to know if IQs of children related to whether or not
they were breast-fed. Researchers measured the IQs of a large number
of first graders in a large city. The researchers also asked the mothers
of these first graders whether or not they had breast fed their children.
The researchers found that IQs of children who had been breast-fed were
greater on average than those children who had not been breast-fed.

This is an observational study. The conditions that are being compared,
“breast-fed”, “not breast-fed” were not assigned by the researchers to the
children. These conditions were presumably selected by the mothers of
the children. The response variable is IQ of a child. The “experimental”,
or more accurately, observational units are the children.

c. Suppose you want to compare reading level by way of sentence length for
two magazines, People and Teen People. You randomly select 100 sen-
tences from an issue of People and 100 sentences from an issue of Teen
People. For each sentence you determine the number of letters and punc-
tuation signs and then compare the average sentence length for the two
magazines.

This is an observational study. The conditions associated with each sen-
tence, People and Teen People are not assigned, but are inherent char-
acteristics of the sentences. The observational units are the sentences and
the response variable is sentence length.

1.4 Variables in an experiment

A variable is a characteristic of a person or object that varies from person
to person or object to object. So examples of variables are height, eye color,
population of a city and color of a car. The possible values of a variable can
be quantitative, such as for height, or categorical, such as for eye color.

The response variable in an experiment has been previously defined as the
characteristic associated with the experimental units which is compared for dif-
ferent groups that have been assigned treatments. In this text we will be con-
cerned with studies where the response variable is quantitative, such as longevity
of a mouse or number of fatty deposits in the arteries.

In some experiments the treatments are one-dimensional and are the values
of a single variable called the factor in the study. In the longevity study the
single factor of interest is diet. There are three values or levels of the factor
diet: low, medium, and high calorie, which are the treatments. The purpose of
an experiment is to determine if the factor affects the response variable. Many
of the studies in this text have categorical factors. However factors can be
quantitative, such as dose level of a drug.

In some experiments there are two (or more) factors under study. For
example in the short term memory example in the last section there were two
factors of interest, distraction type and word type. The levels of distraction type
were: none, constant, and changing. The levels of word type were: fruit, mixed,
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and nouns. Treatments in a two-factor study refer to the combinations
of levels of the two factors. In the short term memory example there were
two factors with 9 treatments. In the basketball study from the last section
the two factors were depth perception with 3 levels and distance from the goal
with 2 levels. The treatments were the six combinations of the levels of the two
factors depth perception and distance from the goal.

There are typically other variables in an experiment that researchers need to
take into consideration when designing an experiment. An extraneous vari-
able is a variable not of main interest in the study but believed to be associated
with the response variable.

A student performed a class experiment to determine whether microwaving
oranges results in more juice being squeezed from the oranges. The factor of
interest is categorical with two levels: microwaving and not microwaving. The
response variable is amount of juice squeezed from an orange. An extraneous
variable in this study would be the size of the orange since larger sizes would
presumably result in more juice than smaller sizes. Another extraneous variable
would be the amount of pulp in the orange. The color of the orange or how
many dimples on the peel, while variables, are not extraneous variables.

In the study of different fertilizers on the effect of amount of tomatoes
(in pounds) grown on a plant, extraneous variables include variety of tomato,
amount of water or sunlight the plant receives, and soil fertility. In the short
term memory study of the last section an extraneous variable would be the
natural ability or inability of subjects to memorize words. In the basketball
shooting example of the last section an extraneous variable would be the bas-
ketball shooting experience of an individual.

1.5 What’s affecting the response variable?

Extraneous variables in an experiment are important to recognize and control
since differences on the response variable across the treatment groups may be
the result of extraneous variables, not the factor of interest.

Consider an experiment designed to compare two fertilizers (A,B) on the
amount of tomatoes grown. Suppose that ten plants of about the same size and
variety are used. The ten plants are assigned at random to ten plots in a garden.
Five are randomly assigned fertilizer A and the other five receive fertilizer B.
The resulting yields in pounds are given below:

Fertilizer A: 45, 50, 47, 57, 52
Fertilizer B: 48, 52, 53, 48, 56

Note that fertilizer B yields appear to be slightly larger than those for fer-
tilizer A. The mean yields for fertilizer A and B, respectively, are 50.2 and 51.4
pounds. Can we say conclusively that fertilizer B is better? Note that WITHIN
the same treatment or fertilizer group (A or B) the yields of the tomato plants
vary because of presumably extraneous variables. The different plots will have
slightly different fertilities. The plants, while all of the same variety, will have
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slightly different genetic makeups. This variation in values of the response vari-
able for identically treated plants is referred to as experimental error. So
maybe the slight differences seen in yields BETWEEN the two groups are not
due to fertilizer, but are actually due to variation resulting from extraneous
variables or due to experimental error. Perhaps just by chance (random as-
signment) the plants receiving fertilizer B were placed in plots that were a bit
more fertile or these plants were genetically predisposed to greater production.
In order to judge whether treatments really differ it is necessary to have some
idea of expected differences in groups simply due to experimental error. Meth-
ods of Analysis of Variance or ANOVA are concerned with the measurement
of differences between treatment groups, measurement of differences within
treatment groups, and the relative comparison of the two types measurements.

There are various sources of experimental error , such as natural variation
in experimental units, inability to identically treat the units in the same group,
inability to measure precisely. In general all extraneous variables contribute to
experimental error.

The key to designing a good experiment is to “control” the variation resulting
from extraneous variables. Controlling doesn’t mean getting rid of the effects
of the extraneous variables altogether, although sometimes that can be done.
For example, variety of tomato is an extraneous variable that we can control
by using the same variety. Controlling means NOT letting the effects of the
extraneous variables enter in a “systematic” way but only in a “random” way.

A systematic effect of an extraneous variable would be an effect which
generally goes one way: for or against a particular treatment. For example,
if we only watered the fertilizer A plants, that would be a systematic effect of
watering. This activity would bias the comparison in favor of fertilizer A.

A random effect of an extraneous variable would be an effect which some-
times favors fertilizer A and sometimes favors fertilizer B. For example, if we
randomly assigned the plants to fertilizer A and fertilizer B, then the genetic pre-
disposition for larger tomato production of a particular plant might sometimes
favor A and sometimes favor B. Overall the effects of this extraneous variable
would be mostly canceled out and thus we would have a fair comparison in
terms of genetic predisposition.

Extraneous variables whose effects enter an experiment in a systematic way
result in an association between the extraneous variable and the factor, in ad-
dition to the (possible) association between the extraneous variable and the
response variable. Then it’s impossible to tell whether any differences in the
response variable between the groups is because of differences in the treatments
or differences in the extraneous variable. The extraneous variable then becomes
a confounding variable and we say that the effects of the treatments are con-
founded with the effects of the extraneous variable. So in the example above
water would be a confounding variable, whose effects are confounded with the
effects of fertilizer.
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1.6 Confounding and Observational Studies

In designing experiments it is often possible to ensure that the effects of ex-
traneous variables are controlled and enter only in a random way. Section 1.8
presents some principles for doing this.

Researchers doing comparative observational studies often hope to show that
the factor of interest causes changes in the response variable. However in an
observational study groups determined by the factor levels may also differ in
other ways not controllable by the researcher. That is there may be confounding
variables which are influencing the response variable and resulting in differences
in the “treatment” groups.

Based on observational studies, it has been found that suicide rates in the
military are higher than in the general population. Is there something about
being in the military and its strict discipline that drives people to commit sui-
cide? Maybe not. A potential confounder here is socioeconomic status. Many
people who enlist in the military come from poor, unstable families and maybe
this is why the rate is higher. The point is that in observational studies group
membership is not under the control of an experimenter and treatment groups
may differ in other ways besides the factor of interest.

If in a medical study involving human subjects, one group gets the new
treatment and the other group no treatment at all, then the placebo effect is
a potential confounding variable. That is, whether subjects got something or
not could be related to the response and also whether they got something or
not is certainly related to group membership. In fact it defines group member-
ship. Thus the placebo effect is a potential confounder. The way to eliminate
the placebo effect is for the group not getting the treatment to get a dummy
treatment, or a placebo. Then both groups are receiving a “treatment.”

1.7 Blinding

In medical studies knowledge of what treatment a subject is getting is a potential
confounder. If I know I’m getting the real treatment as a compared to the
dummy treatment, then I may act in ways that affect the response. Thus
subjects in a medical study should not only be assigned at random to treatment
groups, but should not have knowledge as to what treatment they are receiving.
If this is true it is said that subjects are blinded.

A physician or evaluator’s knowledge of who received what treatment may
also be a confounder. The evaluator may subconsciously give better scores to
those subjects in a group whose treatment he/she believes to be better. Thus
often the physician or evaluator is blinded as well as the subject. This situation
is then called double blinding.
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1.8 Principles of Experiment Design

In this section we layout principles that researchers consider when designing ex-
periments to eliminate/reduce the potential biasing effects of variables and/or
increase the precision of the comparison of the treatments. The difference be-
tween experimental and measurement units is also discussed.

1.8.1 Four Principles of Experimental Design

a. Randomization

Randomization should be used to assign treatments to experimental units.
As an example of randomization consider the microwaving oranges exam-
ple from Section 1.4. Suppose that there are 40 oranges available for the
study. Suppose these are labelled 1, 2, 3, ..., 40. The randomization could
be conducted as follows. Write down the labels on 40 slips of paper and
mix thoroughly. Pull out 20 slips of paper. These twenty slips of paper
identify 20 oranges to be microwaved and the remaining slips identify the
remaining twenty oranges that do not get microwaved. This approach is
called a completely randomized design.

Randomly assigning experimental units to the treatment groups ensures
that the effects of extraneous variables enter the experiment in a random
fashion. Random assignment should, at least for larger group sizes, create
groups that are balanced with regard to extraneous variables associated
with the units. Thus the average size of the oranges in the microwave
group should be about the same as the average size of the oranges in the
non-microwaved group, thus preventing size from becoming a confounding
variable. For experiments that use a small number of experimental units,
complete randomization may not produce balanced groups and “blocking”
(described below) should be used to achieve better balance.

Sometimes an experiment has to be performed over time and experimen-
tal units are time slots. In this case randomization should be used to
balance out potential time effects. For example suppose that I wanted to
know which of two types of softballs, A or B, I could hit further with my
favorite softball bat. I buy 4 type A softballs, which I label A1, A2, A3,
A4 and 4 type B softballs, which I label B1, B2, B3, and B4. Since I can
only hit one ball at a time, this experiment will have to be done sequen-
tially. To control for time effects, such as fatigue, I will randomize the
order that the balls are pitched to me. In this way the effects of fatigue
will sometimes disfavor type A and sometimes type B softballs. Note that
the experimental units in this experiment are time slots corresponding
to the times when balls are hit. The types of softball, A and B, are not
assigned to the balls but are inherent characteristics of the balls. The
types of softballs are however assigned to time slots.

The heating experiment (Section 1.2, part [i.]) involved the process of
heating different pieces of meat of similar sizes at different heat settings
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over time. The experimental units are time slots for heating sessions. Ran-
domization was used to select the particular treatments (type of meat and
heat setting) over the 45 heating sessions. The purpose of the randomiza-
tion was to balance out across the treatment groups any time effects such
as changing environmental conditions associated with the sessions. An
extraneous variable in this study was also the inability to obtain pieces of
meat that were exactly the same size. Potential bias, that is some treat-
ment groups having larger pieces or smaller pieces of meat than other
groups, either intentional or unintentional, was prevented by randomly
selecting a piece of meat of the randomly chosen type at each heating.
In this way comparisons of heat settings for each type of meat should be
roughly balanced regarding the size of the pieces. Additionally compar-
isons of types of meats at each heat setting should be roughly balanced
regarding the size of the pieces.

b. Blocking

i. Basics with Orange Juice Microwave Example

Blocking refers to a statistical technique that attempts to eliminate
potential confounding by grouping experimental units into blocks or
groups with similar values on an extraneous variable and then ran-
domly assigning treatments within each of the blocks, independently
from block to block. The procedure may also result in a more precise
comparison between the treatments on the response variable.

Reconsider the orange juice example. Size is an extraneous variable.
One way of randomly assigning oranges to treatments is completely
at random to the two treatments without regard to size as noted at
the beginning of this section. In theory, randomization will, on aver-
age over many replications of the experiment, balance out the effect
of extraneous variables. However for a particular experiment, and for
small group sizes, the average size of the oranges for the microwave
group may not be about the same as the average size of the oranges
in the non-microwaved group. Thus any differences that are seen in
the average amount of juice between the two groups could be due
to random differences in size or other extraneous variables not fully
balanced by the randomization, and not necessarily due to microwav-
ing. Note that the randomization with blocking is totally different
than the randomization conducted previously under the completely
randomized design. There was no grouping of oranges first with the
completely randomized design. In the block design there is grouping
and then within each group randomization to treatments is carried
out.

An alternative way of designing the experiment is as follows. Before
any kind of randomization, sort the twenty oranges by size, such as
weight, from largest to smallest and then “block” or group them into
pairs. The first pair would be the two largest and would be about
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the same size, the 2nd pair would be the next two largest and would
be about the same size, . . . , until the last two which are the two
smallest oranges, about the same size. Within each pair of oranges
flip a coin(use randomization) to decide which of the two oranges gets
microwaved and which does not. The result is two groups of oranges
with a greater likelihood of balance on the size variable since the two
groups were created by selecting from blocks where the size variable
was about the same. This is called a block design. The analysis for
such designs consists of comparing the amounts of juice within each
block (pair) and then pooling these comparisons. Since in theory the
comparison of the two treatments within each block is not affected
by size (size of the two oranges is about the same within each block)
the pooled comparison between the two comparisons may be more
precise than in the completely randomized design. Greater precision
is achieved by eliminating one of the extraneous variables.

Note that the randomization with blocking is totally different than
the randomization conducted under the completely randomized de-
sign. There was no grouping of oranges before the random assign-
ment of the twenty oranges to the two treatments under the com-
pletely randomized design. In the block design there is grouping of
the oranges by pairs based on size and then within each group or
pair randomization to treatments is carried out. This is called re-
stricted randomization. In both designs two groups of oranges,
one for microwaving and another for not micro-waving, will be iden-
tified.

ii. Agricultural Origin of Blocking

The idea of blocking first arose in agricultural settings. An agri-
cultural researcher wants to compare the response variable yield for
three different varieties of wheat. The varieties of wheat are denoted
by A, B, and C. The experimental units are 12 plots of land arranged
in four rows and three columns. The researcher could perform the
experiment by assigning the three varieties of wheat to the 12 plots in
a completely randomized design, with 4 plots per wheat variety.
The result might be as in the following table:

A B C
C B C
B C A
A A B

Extraneous variables include soil fertility, amount of light, and pH of
the soil. Suppose that the layout of the plots is such that the plots
in the various rows have similar soil. Thus it makes sense to have
all three varieties used in each row and compare the varieties within
each row. Thus each row of plots would be regarded as a block of
plots and the three varieties would be randomly assigned within each
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block/row. The experimental arrangement with blocking might then
look as follows:

B A C
B C A
A C B
C A B

Notice here that all three treatments appear in each row or block.
Data analysis would take this structure into account. The yields for
the three varieties of wheat would be compared within each block
where soil is the same and then the results pooled to draw an overall
conclusion.

Note that blocking is a grouping of the experimental units BEFORE
randomization is performed. There is also a grouping of the plots by
treatment, here wheat variety, but this grouping occurs AFTER
randomization.

iii. Other Examples of Blocking

Sometimes blocks are natural groupings of the experimental units.
For example, several pairs of twins may be used in a study to compare
the effects of two drugs. A block is one pair of twins. The individuals
of the twin pair are randomly assigned to the two drugs with one twin
getting drug A and one twin getting drug B. This is then repeated
for several pair of twins.

Meat Heating Example Revisited. In experiments involving pro-
cesses conducted over time blocking may be a grouping of time slots.
In the original meat heating experiment described earlier (Section
1.2, part [i.]), it was assumed that the treatments (heat setting and
type of meat) were randomly assigned completely at random to 45
time slots/heating sessions and that the experiment was conducted
over one long time period. Because of time or other constraints sup-
pose it was decided to conduct the experiment over 5 days with one
full set of the 9 treatment combinations per day. Thus on each day
there would be 9 heating sessions, one for each of the 9 treatments.
On each day randomization would be used to decide which partic-
ular treatment of the 9 is applied first, which second, and so forth.
This is an example of blocking, here a grouping of the experimental
units, heating session, by Day, and independent randomisation done
on different days. There are 5 blocks or days in the study.

Baking Cookies. A study was conducted to compare the diameters
after baking of two types of Toll House pre-sliced cookies: chocolate
chip and sugar. There were a total of 10 oven runs with the same
oven temperature used for each run. At each oven run two cookies,
one of each type was placed at random locations on a baking sheet
on the middle shelf. The experimental units are the 20 cookies. The
factor of interest is the type of cookie, chocolate chip and sugar. The
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response variable is diameter of a cookie (mm). The experimental
units are grouped in the process of baking by oven run. So oven runs
are the blocks with 10 blocks. The design is a block design. In a
completely randomized design the 20 cookies would be baked one at
a time over 20 oven runs, a rather inefficient design. Blocking allows
comparison of the diameters of the two cookies at each oven run,
where two cookies are baked under similar conditions.

Chocolate and Endurance: Blocking by Reusing Subjects. In
some experiments subjects are given not one treatment, but all treat-
ments over time, the order of which is random. Thus subjects are
reused over time. Experimental units are the time slots at which the
subjects are reused. This is another example of blocking where the
grouping is of time slots by subjects. In the article “Chocolate Milk
as a Post-Exercise Recovery Aid” (International Journal of Sports
Nutrition, [2006], 16, 78-91) researchers compared three treatments
for post-exercise recovery: chocolate milk, a fluid replacement drink
(Gatorade), and a carbohydrate replacement drink. Subjects were 9
male, endurance-trained cyclists. Each subject performed an inter-
val workout followed by 4 hours of recovery, and then an endurance
trial to exhaustion on three separate days. On each day following the
first exercise bout and 2 hours of recovery, subjects drank one of the
randomly assigned drinks. One of the response variables was time
to exhaustion (minutes) in the endurance trial. For each subject the
three drinks are assigned to time slots corresponding to the exercise
trials. This is a type of blocking in that the total of 27 time slots or
experimental units are grouped by subject, three per subject. Each
subject is reused on 3 different days. In a completely randomized
version of this experiment the nine subjects would be assigned com-
pletely at random to the 3 drinks, 3 subjects per drink, with each
subject consuming only one of the drinks.

c. Direct Control

Direct control refers to control of an extraneous variable by using exper-
imental units that all have the same value on the extraneous variable.

For example, in the tomato production study cited earlier, variety of
tomato is an extraneous variable, but was directly controlled by using
only one variety. Assuming that all tomato plants were planted in an
open field, then amount of sunlight, another extraneous variable, is also
directly controlled. In the orange juice example, in theory, size could be
controlled by using oranges all of the same size.

Note that direct control can limit the scope of the conclusions. If only one
tomato variety is used, then the conclusions pertain only to that variety.
Blocking could be used in the tomato production study to extend the
scope of the study by including more than one variety.
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In the meat heating example an attempt was made to directly control the
sizes of the pieces of meat across the meat types. The same burner was
used to heat all 45 pieces of meat. The pieces of meat were placed at the
same location in the pan, that is direct control of the effects of location
on the response.

In the basketball free throw example the study was conducted in an indoor
facility for all trials to control the effects of environmental conditions on
the throwing accuracy. The same person did all of the shooting.

In the endurance trial for cyclists described in the last section all subjects
were male, healthy, and highly-trained cyclists.

d. Replication

Replication of a treatment refers to a series (2 or more) of repetitions
of the treatment to different independent experiment units. The exper-
imental units could be individuals, groups of individuals, time slots, or
runs of some process, such as a baking or cooking process. The multiple
repetitions are referred to as replicates.

There would not be replication in the orange juice microwaving example
if only one orange is used for each of the microwaving and no microwaving
treatments. Because of extraneous variables and their effects on the re-
sponse variable, replication is obviously important. A difference in orange
juice using only one orange for each treatment could be the result of a dif-
ference in size of the two oranges or some other extraneous variable. Only
with sufficient replication is it possible to conclude that there are “true”
differences in amount of juice between microwaving and not microwaving.

In the longevity study involving mice the three different diets were ran-
domly and independently assigned to the 60 mice, 20 per diet. There are
20 replicates or replicate mice for each diet.

To appreciate the benefits of replication consider an observational study
to compare the heights of adult males and females. If we only sampled one
male and one female at random (no replication) we might just by chance
obtain a taller female and then make the wrong conclusion that females
are taller than males. Obviously this would be wrong. If we replicate
the “treatments” (male and female), that is sampled independently many
males and many females, the “true” pattern would emerge.

Recall from an earlier discussion that differences in the values of a re-
sponse variable between treatments must be judged in terms of the amount
of difference that can be expected from the effects of extraneous variables
alone, that is from experimental error. Replication, that is multiple obser-
vations on independent experimental units within each group allows us to
measure variation in the response from the effects of extraneous variables
alone. (Recall from your first course in statistics that a standard deviation
measures variation of quantitative values in a group). This information in
turn allows us to determine the expected difference between treatment
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groups that could be due to the effects of extraneous variables alone. The
identification of the experimental units and subsequent replication is ex-
tremely important in the design of experiments since replication allows
the experimenter to measure the extent of differences between treatments
that could conceivably be due to error alone.

1.8.2 Experimental Units versus Measurement Units

Suppose that an experiment is to be conducted to compare two different recipes
(A,B) on the response variable moisture of a cake. The baking process is as
follows. Cake batter is prepared with one of the recipes chosen at random and
then the batter is baked in an oven for a certain amount of time, with the re-
sulting being a baked cake using that recipe. An experimental unit would refer
to a cake or cake-making run, that is the process of making the cake batter and
then baking the cake. Numerous extraneous variables associated with the cake-
making run might influence the moisture of the resulting cake. Replication in
this setting means multiple independent preparations of cake batter after ran-
dom assignments of recipe with subsequent baking of cake batter in the oven.
Suppose that the experimenter wants 5 observations on moisture for each recipe.
Baking one cake with recipe A and one cake with B and then taking 5 observa-
tions on moisture from 5 locations on each cake does not constitute replication
of a recipe. In fact in this case there would only be 1 experimental unit/cake for
each recipe and statistical analysis could not be conducted to compare recipes.
The 5 observations for each cake from the 5 locations constitute a subsample of
the experimental unit, cake, and are called pseudo-replicates. The 5 locations
on each cake are called measurement units as compared to the experimental
unit, cake. Statistical analysis, such as the independent samples t test could be
used to compare the two sets of 5 moisture levels made on each cake but the
conclusion would pertain only to moisture levels for those two cakes, not the
two recipes. To compare the two recipes the process of using a recipe, making
the cake batter, and then baking the cake has to be repeated or replicated.
That is there needs to be 5 cakes per recipe. Five moisture levels might still
be obtained from each of the five cakes per recipe. These five moisture levels
per cake could be averaged and then the 5 cake averages per recipe compared
for the two recipes. Or the individual location moisture levels could be used in
the analysis, with the analysis taking into account that these are sub-samples
of the experimental units, not true replicates.

In many studies it it relatively easy to determine the number of replicates
of a treatment because this corresponds to the number of observations on the
response variable. However this is not always the case. In many animal health
studies treatments are provided in the feed or water source for the animals in a
pen and all animals in the pen eat or drink from that same source. Independent
random assignments of treatments are done at the pen level. The experimental
units are pens of animals. Individual animals within a pen are called measure-
ment units. Replication of a treatment refers to different pens (at least 2) of
animals being independently assigned to that treatment.
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Suppose that two antibiotics (A,B) are being compared for control of an in-
testinal bacterium on average daily gain of pigs. The antibiotics are provided in
the feed of the pen of pigs. Suppose that 8 pens, each with 3 pigs, are available
for study. The 8 pens are randomly assigned to the two treatments, with 4 pens
per treatment. There would be 12 pigs per treatment group but only 4 replicates
(pens) per treatment group. The animals in the pen are called measurement
units, not experimental units or treatment replicates. Some responses are mea-
sured at the pen or experimental unit level. For example, feed consumption,
would be measured at the pen level, since individual feed consumption would
normally not be measured. A comparison of feed consumption between the two
anti-biotics would be compared using the four pen feed consumptions for the two
groups. Other characteristics, such as weight gain, might be measured at the pig
or measurement unit level. The three measurements per replicate/experimental
unit represent a subsample of the treatment replicate/experimental unit. The
analysis may proceed in different ways. If appropriate an average weight gain
for a pen might be calculated and pen average weight then compared for the 4
values/replicates for each group. Alternatively weight gain might be analyzed
individually or at the measurement unit level, 12 values per group, with pen as
the experimental unit or replicate properly accommodated for in the statistical
analysis. This type of analysis with subsampling will be explored in Chapter
10.

If in the pig study there was only one pen per anti-biotic group, 3 pigs per
pen, then the study would lack replication. The 3 pigs in the pen are called
pseudo-replicates. A statistical test, such as a t test could still be conducted
to compare the 3 weight gains for the two pens. However any differences found
would pertain to only those two pens and not in general to the two anti-biotics.
Treatments have to be replicated (2 or more pens for each group) in order to
draw conclusions about the two antibiotics.

In some studies pseudo-replication manifests itself as repeated mea-
sures on an experimental unit. Suppose that an experiment is designed to
compare three different paper airplane designs on flight distance of planes made
with the design. The experimental procedure is as follows. A paper airplane
is constructed after identifying a randomly selected design. The plane is then
thrown and the distance travelled (inches) is measured. This process is repeated
for a total of 30 different paper airplanes, 10 replicates per treatment. The ex-
perimental units are the 30 different time slots corresponding to the construction
of a paper airplane and subsequent flight. Suppose that the experimenter, want-
ing to increase precision of the comparisons of the designs, flew each plane three
times rather than once, for a total of 90 flight distances, 30 distances per de-
sign. These second and third flights do not constitute additional replicates for
each plane design but are pseudo-replicates, here repeated observations on the
experimental unit. The additional flights would need to be taken into account
in the analysis as pseudo-replicates rather than true additional replicates.
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1.9 Examples of Some Standard Experimental
Designs

The design of an experiment has two major components:

a. Treatment Structure

This refers to the treatments and how they are formed. In some studies
there is only one factor - the treatments are just the levels of the one factor.
In a two factor study treatments usually refer to the the different combi-
nations of the levels of the two factors. If in a two factor study treatments
are formed by all combinations of the levels of the two treatments then the
treatment structure is referred to as a factorial treatment structure.

b. Design Structure

This refers to how the treatments are assigned to the experimental units,
whether it is in a completely randomized fashion or whether there is some
restriction on the randomization, such as in blocking. Design structure
also refers to whether repeated measures are taken on units and whether
there is sub-sampling.

Below are examples of some standard experimental designs that are studied
in more detail in the text.

• One Factor Completely Randomized Design: Freeze-Dried Straw-
berries and Serum Cholesterol Level

In the article “Freeze-Dried Strawberries Lower Serum Cholesterol and
Lipid Peroxidation in Adults with Abdominal Adiposity and Elevated
Serum Lipids” (Journal of Nutrition, [2014]) researchers compared four
beverages consumed daily for change in serum cholesterol level over a 12
week period. The four beverages were 1) low dose (LD) beverage with
powdered strawberries, 2) control beverage for LD beverage, 3) high dose
(HD) beverage with powdered strawberries, and 4) control beverage for
HD. The control beverages were matched for calories and total fiber. Sixty
subjects with abdominal adiposity and elevated serum lipids were assigned
completely at random to the four beverage treatments with 15 per group.
Serum cholesterol level was measured before treatment and at the end
of 12 weeks. The 15 values of the response, change in serum cholesterol
level over the 12 week period,were compared for the four beverage groups.
The study has one factor, that being beverage type. The experimental
units are the 60 subjects assigned completely at random to the four bev-
erage groups. There was no grouping or blocking of subjects before being
assigned to the beverages.

• Two Factor Completely Randomized Design: Rubber Band Strength
Experiment
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Rebecca Aaron and Rebecca Redman in 2014 investigated the breaking
strength of two brands of rubber bands (Staples, CLI) under three differ-
ent temperature conditions (freezer, room, heated) for the rubber bands.
They measured how far rubber bands stretched (cm) until breaking. The
experiment has two factors, brand of rubber band and temperature ex-
posure. The experiment was conducted as follows over time, one rubber
band at a time. At a particular rubber band stretching session a brand
and temperature condition was selected at random. A randomly selected
rubber band of the particular brand was selected at random and then
subjected to the selected temperature condition. The experimental units
were time slots/stretching sessions. This process was repeated for a total
of 30 rubberbands, 5 replicates rubberbands per combination of brand and
temperature. The design is a completely randomized design since combi-
nations of brand and heating sessions were assigned completely at random
to the 30 sessions. There was no grouping or blocking of the stretching
sessions before randomization. The randomization in this example could
be implemented as follows. On 30 slips of paper write down each of the 6
treatment combinatons, 5 per treatment combination. At each of the 30
time slots/stretching sessions, draw a slip from the lot of slips - this will
then determine the particular combination to use. This is an example of
a two-factor completely randomized design, to be studied in more detail
in Chapter 6.

• One Factor Randomized Complete Block Design: Thawing Meat

In the article “Effect of Rapid Thawing on the Meat Quality Attributes
of USDA Select Beef Strip Loin Steaks” (Journal of Food Science, [2011]:
Vol. 76, Issue 2, pages S156-S162) researchers compared three methods for
thawing frozen beef strip loin steaks on various quality characteristics of
the meat. Each of 24 beef strip loins was cut into 3 steaks for a total of 72
steaks. The three steaks from each strip loin were randomly assigned to the
three thawing methods. There was one conventional method (18 to 20 hrs,
4◦C), and two rapid thawing methods (20 min, 20◦C) or very fast (11 min,
39◦C). The rapid thawing methods were conducted in a circulating water
bath. The design has one factor of interest, thawing method. The 24 strip
loins serve as blocks or groupings of the 72 steaks. The randomization of
the thawing methods to steaks was done independently from block (loin) to
block. The 72 steaks were not assigned completely at random to the three
thawing methods. The response variables are the quality characteristics.

• Two Factor Randomized Complete Block Design: Liquid Evap-
oration Experiment

Jill Yocum, Kristin Marucci, and Colleen Brookfield in 2010 investigated
the amount of evaporation of three types of liquid(orange juice, rubbing
alcohol, cola) in Tupperware containers with three different base areas (15,
25, 45 square inches). The experiment had two factors of interest: type
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of liquid and container base area. The response variable was the amount
of liquid that evaporated (mL) after two days. There were 5 replications
of each treatment combination of liquid and base area with one complete
replication (all 9 treatments) being tested every 2 days. The experiment
used the same 9 containers, 3 for each of the three sizes, every 2 days.
At the beginning of each testing cycles of 2 days the 9 treatments (com-
binations of liquid type and container type) were randomly assigned to 9
locations on the floor in a 3 x 3 grid. For the selected container type a par-
ticular container was randomly selected. The experimental units are the
nine floor locations with containers. There are 5 blocks in the experiment
corresponding to the 5 2-day testing cycles or 5 sets of 9 experimental
units per testing cycle.

• Two Factor Split Plot Design: Baking Experiment

The following experiment is an example of a split plot design. The split
plot design has two factors but there are two types of experimental units,
one for each factor.

John Szarka and Zamda Lumbi in 2004 investigated the effects of type
of flour (white, wheat, bread) and length of time in the oven (5, 10, 15
minutes) on the change in height of dough after baking. Three rolls of
dough were made with each type of flour for a total of 9 rolls. Each roll
was made using the same ingredients except for the type of flour. Each roll
was divided/split into 3 equal parts and the 3 parts put into the oven. One
part was baked for 5 minutes, another part at 10 minutes, and another for
15 minutes. One run of the oven involved one roll with its 3 parts. There
were 9 oven runs altogether with the particular flour for the roll used at an
oven run being selected at random. Random assignment determined the
amount of time each of the three parts stayed in the oven. The two factors
in the study were type of flour used for the roll/oven run and amount of
time in the oven for parts.

The randomization was conducted in two stages. At one stage random-
ization was used to assign type of flour to roll/oven run so roll at an oven
run is the experimental unit for type of flour. At a second stage random-
ization was used to determine the number of minutes each of the parts for
a given roll stayed in the oven. So the experimental units for the number
of minutes factor are the parts of the roll or 1/3 splits of the roll.

The rolls are also called whole units while the parts are also called split
units, since the rolls result from a splitting of the whole units rolls. Hence
the name split plot design. Type of flour is called thewhole unit factor
and amount of time in the oven is called the split unit factor.

The rolls or whole units are also blocks since each roll is a grouping of the
parts of 27 rolls.

The data from this example is analyzed in Chapter 9.
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• One Factor Completely Randomized Design with Sub-Sampling:
Feeding Fish

Suppose that an experiment is conducted to compare four different diets on
growth for a certain species of fish. It is difficult to feed fish individually so
the feeding is done by depositing the food in tanks and then the fish within
a tank feed on the food. There are a total of 120 fish available altogether
for the study. The fish are weighed individually before the start of the
study and then randomly assigned to 12 tanks, with 10 fish per tank.
The four diets are assigned at random to the 12 tanks, with 3 tanks per
diet. After several weeks the fish from all tanks are removed again and
weighed. Weight gain is calculated for each fish. There is one factor,
diet. The experimental units for diet are tanks of fish, not individual fish,
since the diets are assigned to tanks. Thus there are 3 replications per
diet, not 30. The 10 fish in each tank are sub-samples of the experimental
units/tanks and would have to be taken into account in the analysis. The
experimental units are tanks which were assigned completely at random
to the diets. Measurement units are the individual fish. Thus the design
is a one-factor completely randomized design with sub-sampling.

• Two Factor Split Plot/Repeated Measures Design: Obsessive
Compulsive Disorder

Two different medications and a placebo were compared for efficacy in
the treatment of Obsessive Compulsive Disorder (OCD). The level of the
patients’ illness was measured using the Yale Brown Obsessive Compulsive
Scale (YBOCS) at baseline before treatment and at weeks 1, 2, 3, 4,
6, 8, 10, and 12 weeks. The YBOCS score ranges from 0 to 40 with
higher values indicating more extreme cases. Thirty OCD patients were
assigned completely at random to the 3 treatments, 10 to each of the
two medications and the placebo. Researchers were interested in the time
profile of each treatment and how the three treatments compared over
time.

The design is similar to a split plot design. There are two factors with
two types of experimental units. One factor, the whole unit factor, is
treatment for OCD. The experimental units or whole units for the OCD
treatments are the 30 OCD patients. The whole units are assigned at
random to the levels of the whole unit factor. The other split unit factor
is number of weeks after start of medication, whose levels are baseline,
1, 2, 3, 4, 6, 8, 10, and 12 weeks. The split units are the time points
or occasions in time that correspond to the levels of the split unit factor
when the YBOCS scores are measured. One can think of the split units
resulting from a splitting of the large time frame when the experiment
was conducted. However unlike the usual split plot design the split units
are not assigned at random to the levels of the split unit factor, but are
inherent characteristics of the time points. Thus with this design there
is randomization of whole units to levels of the whole unit factor but no
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randomization of the split units to the levels of the split unit factor.

The term “repeated measures” refers to the fact that the whole units,
here subjects, are repeatedly measured on the response YBOCS on the
different time points or occasions.

1.10 Scope of the Conclusions of an Experiment

Experimental units in an experiment should ideally be selected at random from
some relevant population and then assigned at random to treatments in order
to be able to draw valid conclusions about the population. However random
selection from some population will usually mean a fair amount of variation
in the subjects and perhaps a large number of extraneous variables. This in
turn, can mean imprecise comparisons and thus not being able to say much at
all with regard to the comparison of the treatments. Blocking can be used to
minimize the problem, that is group the subjects that are similar and then make
comparisons within each block. Thus we can have our cake and eat it too!

The subjects in experiments involving humans are usually not selected at
random from some population but are volunteers who have consented to being
part of the study. Volunteers are necessary because of the nature of experimen-
tation in which people are treated in some kind of way. While volunteers can be
assigned at random to treatment groups, generalizing to some population may
require judgements from people who are familiar with the subject area. For
example, in a study which uses college students can we generalize to the general
population?
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Problems for Chapter 1

1.1∗ Osteoarthritis of the joints affects a large number of senior citizens. One
study looked at the perceived benefits of arthroscopic surgery for os-
teoarthritis by giving some patients a real knee operation, while others
underwent a sham surgery. Patients were assigned at random to either
receive arthroscopic surgery or a sham surgery. One response variable was
the speed of walking after surgery.

a. Is this study an experiment or an observational study? Explain.

b. What is the factor? What is the response variable?

c. What is the purpose of one group receiving a sham surgery?

1.2∗ Health experts suspect that re-circulated air in aircraft carries more germs
and causes more colds than on aircraft that pumps in fresh air. An article
in the New England Journal of Medicine reported the results of question-
naires given to 1100 passengers leaving the San Francisco area and trav-
eling to Denver between January and April 1999. Some of the passengers
had been aboard aircraft which used re-circulated air and others aboard
aircraft which circulated fresh air. A week after their flights, 21% of the
fresh-air passengers and 19% of the re-circulated air passengers reporting
having a cold.

a. What are the conditions in this study? Are they controlled or simply
observed? Explain.

b. What is the response variable?

c. The researchers noted that the incidence of colds in both groups was
higher than that of non-travelers which is about 3%. Give some
possible reasons for this difference besides cabin air.

1.3∗ Proponents of massage therapy believe that massaging some or all parts of
the body affect psychological and physical health. In designing an exper-
iment involving children with cancer, one group received massages from
their parents at bedtime, while another group received no such massage.
One critic claimed that any benefits might be due to the “attention” being
given to the kids in the massage group and not the massage itself. How
should the experiment be conducted to control for the “attention” effect?

1.4∗ In a study of 4600 young people aged 12-19 females with body piercings
(other than the ears) were 2 1/2 times more likely to have sex and 2 1/2
more likely to have smoked than those who did not have body piercings.
Boys had similarly high risks. [3].

a. What is the factor of interest in this study? What is (are) the re-
sponse variable(s)?

b. Is this study an experiment or an observational study? Explain.
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c. Can we conclude that body piercing leads to more sexual activity
and more smoking? Explain.

1.5∗ A recent article in the Lancet medical journal reported the results of a
study to determine if the implantation of a patient’s own bone marrow
stem cells into their leg muscles could create new vessels. If successful
this could eliminate pain from bad circulation due to clogged arteries and
help prevent gangrene or amputations. Twenty subjects, in whom both
legs were starved of blood flow, participated in the study. They had their
bone marrow stem cells injected into one leg, randomly chosen, and regular
blood injected into the other leg. The legs that got the stem cells had more
improvement than the others on a test comparing blood pressure in the
ankle with that in the arm before and after the treatment. Similar results
were seen in a second circulation test that measured differences in oxygen
inside and outside tissues.

a. What are the treatments in this experiment?

b. What are the response variables?

c. What was the purpose of randomization?

d. Was there any blocking in the experiment? Explain.

1.6∗ A survey of 232 elderly patients who had recently undergone heart surgery
was undertaken. The patients were asked, among other items, whether or
not they derived strength or comfort from religion. Patients were followed
for a number of years. Those patients who said they derived strength or
comfort from religion lived longer than those who said they did not. ([3])

a. What is the factor of interest in this study? What is the response
variable?

b. Is this study an experiment or an observational study? Explain.

c. Name some potential confounding variables.

1.7∗ An educational researcher is interested in comparing two different methods
of memorizing material to see if they differ with regard to retention. Thirty
subjects are available for the study. Explain how blocking might be used
in this study.

1.8∗ An experiment in Dean and Voss ([6], page 62) compares balloons of dif-
ferent colors in terms of amount of time needed to blow them up. One
individual blew up all 20 balloons of 4 different colors, 5 balloons of each
color.

a. What are the treatments in this experiment?

b. What are the experimental units?

c. Discuss how randomization would be used in this study and the pur-
pose of the randomization.
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d. Is there direct control of any extraneous variables in the study? Ex-
plain.

1.9∗ In the article “Bioevaluation of garlic on growth, haemotological and
serum characteristics of growing pigs”(African Journal of Biotechnology
[2013]: Vol. 12(25), pp. 4039-4043 ) researchers compared average daily
weight gains(kg/day) under three dietary treatments for pigs: 0, 100, and
200 g of sun dried garlic powder per 100 kg of feed. Eighteen grower pigs
aged 70 days were randomly assigned to 6 pens with 3 pigs per pen. The
three pigs in a pen consumed feed from the same feeding trough. The
three treatments were randomly assigned to the 6 pens with 2 pens per
treatment.

What are the experimental units in this study? Explain.

1.10∗ In the article “Randomized Trial of Exercise Therapy in Women Treated
for Breast Cancer”(Journal of Clinical Oncology [2007]: Vol. 25(13), pp.
1713-1721 ) researchers studied the effects of aerobic exercise therapy on
quality of life (QoL) as measured by a score on the Functional Assessment
of Cancer Therapy-General (FACT-G). Scores on the FACT-G range from
0 to 100 with larger values indicating a higher quality of life. The abstract
of the article reported that “a total of 108 women who had been treated
for breast cancer 12 to 36 months previously were randomly assigned to
supervised aerobic exercise therapy (n = 34), exercise-placebo (body con-
ditioning, n = 36), or usual care (n = 38). Women in the aerobic exercise
therapy group met on a one-to-one basis with an exercise specialist, 3
times per week, eight weeks total, for moderate-intensity aerobic exercise.
Women in the exercise-placebo group also met three times per week, each
session 50 minutes long, for eight weeks, for light-intensity body condi-
tioning/stretching exercises. The usual-care group continued with their
lives as usual.

a. This study is an experiment. Explain.

b. What are the experimental units?

c. Is blinding of subjects possible in this study? Explain.

1.11∗ In the article “Quality of Life and Functional Health Status of Long-Term
Meditators”(Evidence-Based Complementary and Alternative Medicine vol.
2012, Article ID 350674, 9 pages 2012. doi:10.1155/2012/350674 ) re-
searchers compared the quality of life and functional health of a sample of
334 long-term meditators to that of population norms for Australia. Par-
ticipants completed the Medical Outcomes Study Short Form 36 (MOS
SF-36).

Is this study an experiment or an observational study? Explain.

1.12∗ The American Statistical Association holds an annual poster and project
competition for students from grades K-12. Winners receive a monetary
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award and a plaque. One of the winners in the 2013 competition conducted
an experiment to answer the question: Do dryer balls reduce drying time?
The student conducted the experiment in response to an ad that claimed
that dryer balls “reduce drying time by up to 25%.” The student randomly
assigned the next 40 of his family’s wash loads to either be dried with dryer
balls added to the dryer or not. Only one washer and dryer was used. The
student weighed each load prior to drying and recorded how long it took
the load to dry (in minutes) using a stop watch. The dryer has a sensor
that detects when the clothes are dry.

a. What are the treatments in this experiment?

b. What are the experimental units?

c. Give some extraneous variables and explain how they are controlled.

1.13 John Ellis and John Tran in 2013 studied the effect of composition of pasta
(white, whole grain) and length of pasta (1.25, 6, 12 inches) on the change
in mass (grams) of the pasta after boiling the pasta for 10 minutes in 1
liter of water. There were 5 replications of each treatment combination
with 1 replication being conducted on each of 5 days. The 6 boilings of
pasta on each day were conducted one a time using the same boiling pot
and stove burner.

a. What are the two factors in the study?

b. What are the treatments in the study?

c. What are the experimental units?

d. Is there blocking in this study? Explain.

e. Explain how the necessary randomization could be physically imple-
mented

1.14 Nick Granered, Ryan Saba, and Charlie Watt investigated the effect of
type of cookie (Chips Ahoy Chocolate Chip, Oreo’s, Nutter Butters) and
type of liquid (milk, orange juice, water) in which the cookie was dipped on
the percentage increase in the weight (g) of the cookie. Forty-five cookies
were tested at the same time using 45 cups, 5 for each combination of type
of cookie and type of liquid. Type of cookie and liquid type were assigned
completely at random to the 45 cups.

a. What are the two factors in the study?

b. What are the treatments in the study?

c. What are the experimental units?

d. Is there blocking in this study? Explain.

e. Explain how the necessary randomization could be physically imple-
mented.
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1.15 Emily Shrader, Ashley Sawyer, and Lisa Kleinschmidt in 2009 investi-
gated the effects of type of cup (styrofoam, paper) and type of liquid
(water, water with lemon, water with salt) on the temperature of the liq-
uid 10 minutes after it had been heated to 160 degrees Fahrenheit. The
experiment was conducted as follows. A type of liquid was randomly se-
lected. Twenty ounces of the liquid was heated to 160 degrees in a pot.
The twenty ounces of liquid was then poured out, half into a styrofoam
cup and the other half into a paper cup. After 10 minutes the temperature
of the liquid in the two cups was measured. The procedure was repeated
eleven other times, resulting in 4 replications per combination of type of
liquid and type of cup. This is an example of a split plot design.

a. What are the two factors in the study?

b. What are the whole units? split units?

c. Is there blocking in this study? Explain.

d. Explain how the necessary randomization could be physically imple-
mented.

1.16 This example is based on an exercise in McClave and Sincich ([19], page
480) from the article “Vulnerability of Canada Geese to Taxidermy-Mounted
Decoys” (Journal of Wildlife Management, 59(3):474-477) A study com-
pared the effectiveness of three decoy types - taxidermy-mounted decoys,
plastic shell decoys, and full-bodied plastic decoys on the attraction of
Canadian geese to sunken pit blinds. Three pit blinds in three different
locations were used. Each pit blind was used on several days with all three
of the decoy types being used. The response variable was the mean daily
percentage of goose flocks attracted to a blind over the days when the
decoy type was used.

a. The experiment uses blocks. What are the blocks?

b. What is the factor of interest?

c. Explain what kind of randomization would be used in the experiment.

1.17 A student project examined the effects that different amounts of salt had
on the boiling temperature of 3 quarts of water in a pot. The student
found in his literature search an example where adding salt to water in-
creased the boiling temperature and they wanted to see if they would
obtain similar results. Three levels of salt were used (0, 1, 2 tablespoons)
in the experiment. Thirty different trials were conducted with 10 trials
per amount of salt. The student randomly selected a salt level and then
added that amount to three quarts of water. The pot was then placed
on the stove and heated. The amount of time to reach boiling was based
on visual inspection by the student when there was a “consistent boil.”
Discuss any possible bias in the measurement process.
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1.18 Reconsider the meat heating experiment from Section 1.2. Suppose the
original proposed design was to heat 5 pieces in the pan at one time, all
pieces being of the same type and using the same heat setting. This was
to be done for the 9 combinations of type of meat and heat setting. Thus
the 45 values on the response, amount of time, would be obtained with
only 9 heating runs.

a. What are the experimental units for this design? How many experi-
mental units are there?

b. What are the measurement units? How many measurement units are
there?

c. How many replicates are there of each treatment combination of type
of meat and heat setting?

d. Is this a valid design? Explain.

1.19 An experiment was conducted to compare three different watering regi-
mens on the growth of Marigold plants. Forty-five plants were purchased
at a local nursery and randomly assigned to 15 pots, with 3 plants per pot.
All 15 pots used Miracle Gro Soil. The 15 pots were randomly assigned to
the three watering regimens, with 5 pots per regimen. The three regimens
were: 1) pot receives 1/2 cup of water twice per cup, 2) pot receives 1
cup of water twice per week, 3) pot receives 1 1/2 cups of water twice
per week. The experiment was carried out over a period of 4 weeks. The
response variable was growth of a plant during the period (height at end
of 4 weeks minus height at beginning of study).

a. What are the experimental units in this study? How many are there?

b. Give two extraneous variables associated with the experimental units?

c. How many measurement units are there? How many are there?

d. Is there pseudo-replication in this study? Explain.

1.20 This example is based on an experiment described in the article “Music
and its effect on sports” (www.all-science-fair-projects.com) A group 10
students, 5 males and 5 females, aged 16, physically fit, with no health
problems, were used to compare distance run (no unit of measurement
given) on a treadmill for a 10 minute period. Each student ran on the
treadmill on two different days, on the 1st day without listing to music
and then on the 2nd day listening to fast paced songs on the MP3. On
each day each student had the opportunity to warm up for 5 minutes and
an additional 5 minutes to familiarize himself/herself with the treadmill.
The results showed that students ran longer distances on average when
the music was played.

a. What are the treatments in this study?

b. What is the response variable?
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c. Name two extraneous variables that are directly controlled in this
study.

d. This is a block design. Explain.

e. Note that there was no randomization of the treatments to the two
days when the students were tested. Because of this, is there poten-
tial for bias in the comparison of the amounts of time for the two
treatments? Explain.

f. How would this experiment have been conduced using a completely
randomized design instead of a block design?



Chapter 2

Basic Concepts and the
One Sample Problem

This chapter reviews the basic statistical concepts associated with inferences
about a single population based on a random sample selected from that popu-
lation. The notions of estimation of population parameters, standard errors of
estimators, and hypothesis testing are discussed.

2.1 Population versus Sample

Most statistical studies are concerned with the drawing of conclusions about
populations based on samples selected from those populations. In this chap-
ter we will concentrate on the one sample/one population case. Inferences as-
sume that the samples are randomly selected from the population of interest.
Often in practice samples are not randomly selected and thus judgement must
be exercised to determine if conclusions reached can be validly applied to some
population. Suppose y represents some quantitative variable in the population
with mean µ and variance σ2. The mean is also referred to as the expected value
of y, denoted by µ = E[y]. The variance is defined as σ2 = E[(y − µ)2], the
expected value of the square of the difference between y and µ. The standard
deviation of y is defined to be σ =

√
σ2. The mean µ, variance σ2, and standard

deviation σ of y in the population are examples of population parameters.
The normal population is a type of population that should be familiar to the

reader. Much of the theory of the analysis of variance is based on the assumption
of normal populations. The histogram of a variable y in a normal population is
symmetric, bell-shaped with center at µ. Figure 2.1 provides a histogram of a
basic normal population with mean of y equal to µ = E[y] = 23 and standard
deviation equal to σ = 1. The vertical axis (density) has been scaled so that
total area under the curve is equal to 1 and areas of regions under the curve
represent proportions in the population. The normal curve is an example of a
density curve. Recall that the area under a normal curve above the interval

29
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Figure 2.1: Normal Curve: µ = 23, σ = 1
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(µ − σ, µ + σ) is about 0.68, above (µ − 2σ, µ + 2σ) is about 0.95, and above
(µ−3σ, µ+3σ) about 1. Thus in this example about 68 percent of the values of
y in this normal population are between 22 and 24. The areas under the curve
can also be regarded as probabilities. Suppose one value is selected at random
from this population. The variable y is then called a random variable and
the curve is then referred to as the probability distribution for y. Areas under
the curve are then regarded as probabilities about y. Thus we can say before
sampling that there is about a 95% probability that the selection will result in
a value of y between 21 and 25.

The standard normal population is that normal population with mean µ = 0
and σ = 1. Fact 2.1 shows how the standard normal variable is related to an
arbitrary normal variable.

Fact 2.1 If y has a normal distribution with mean µ and standard deviation σ,
then z = (y − µ)/σ has a standard normal distribution.

Fact 2.1 generalizes. Subtracting from a normal random variable its mean
and dividing by its standard deviation results in a variable that has a standard
normal distribution. This general result will be applied in the next section.
Table A.1 in the Appendix provides right tail areas or probabilities for the
standard normal distribution.

2.2 Sample Mean and Standard Deviation

In practice the population mean µ and standard deviation σ are unknown and
interest is usually in estimating these parameters.

Let y1, y2, ..., yn represent a random sample of size n from a population y
with mean µ and variance σ2 (standard deviation σ). Statistically y1, y2, ..., yn
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Table 2.1: Sample Mean and Standard Deviation Calculation

Student i Weight yi (yi − y) (yi − y)2

1 180.1 17.9 321.8
2 157.7 -4.5 20.1
3 142.4 -19.8 393.1
4 155.5 -6.6 44.2
5 153.8 -8.4 70.2
6 131.1 -31.1 969.1
7 194.4 32.2 1034.5
8 157.3 -4.9 24.1
9 181.3 19.1 363.3
10 168.4 6.2 38.7
Sum 1621.9 0 3279.1

represent random values which are independent, identically distributed as the
population, each with mean µ and variance σ2.

The sample mean, denoted by y, is an estimate of the population mean µ and
the sample variance, denoted by s2, is an estimate of the population variance σ2

(sample standard deviation s =
√
s2 is an estimate of the population standard

deviation σ). The sample mean is defined as y = (
∑n

i=1 yi)/n. The sample
variance, s2, is defined as s2 =

∑n
i=1(yi − y)2/(n−1) with the sample standard

deviation s =
√
s2.

Example 2.1 Suppose that the weight of male students at a university in a
given semester is a normal random variable with population mean µ = 170
pounds and population variance σ2 = 225 (population standard deviation σ =√
225 = 15 pounds). In practice neither the population mean nor the population

variance (standard deviation) would typically be known. Suppose that a random
sample of n = 10 students is selected. Table 2.1 gives the 10 weights, the devia-
tions of the weights from the mean (yi − y) and the squares of the deviations.

The sample mean weights of the 10 students is y = 1621.9/10 = 162.2 and
the sample variance is s2 = (3279.1/(10 − 1) = 364.34 with sample standard
deviation s =

√
364.34 = 19.1. Notice that the sample mean and variance

(standard deviation) for this sample are not the same as the mean and variance
(standard deviation) for the population of students but differ due to sampling
error.

2.3 Sampling Distribution of the Sample Mean

A sample mean y is unknown before the sample is selected and is a random
variable with its own probability distribution, mean, and standard deviation.
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In Example 2.1 the sample mean for the particular sample selected was 162.2
pounds. If another sample is selected from the same population the sample
mean would be a different value. The probability distribution of the sample
mean y regarded as a random variable is called the sampling distribution of
the mean. Properties of the sampling distribution of the mean are reviewed
below.

1. The mean of the sampling distribution of y is µy = E[y] = µ. Note this
says that the average of sample means under repeated sampling is equal
to µ. In practice repeated sampling is NOT done. A researcher will have
only one sample mean and that one sample mean will NOT be the same
as µ.

2. The standard deviation of the sampling distribution of y is σy =
√
E[(y − µy)2] =√

E[(y − µ)2] = σ/
√
n. The quantity σy gives a crude measure of how far

“off” an observed sample mean is away from the unknown population
mean µ. Note that this number is not very useful in practice, however,
since σ is unknown. However we could estimate σ with s, the sample
standard deviation. See Example 2.2.

3. If the population is normally distributed then the sampling distribution
of y is exactly normally distributed. If the population is not normally
distributed but the sample size is sufficiently large, then by the Central
Limit Theorem the sampling distribution of y is approximately normally
distributed.

The properties listed above apply to repeated sampling from the same pop-
ulation. A computer can be programmed to illustrate the properties. The
following example illustrates.

Example 2.2 A SAS program was written to simulate the random sampling of
1000 samples of male university students, each of size n = 10 from the same
population used in Example 2.1. For each sample of 10 weights obtained the
sample mean was calculated. Figure 2.2 gives a histogram for the 1000 sample
means. Note the bell shaped appearance of the histogram. Also the mean of the
1000 sample means is 169.8 which closely approximates the theoretical value of
µy = µ = 170, in this example. The standard deviation of the 1000 sample

means is 4.71 which is close to the theoretical value of σy = σ/
√
n = 15/

√
10 =

4.74.

In practice usually only one sample is selected. That one sample will give a
particular sample mean which provides an estimate of the unknown population
mean µ. The sample will also provide an observed sample standard deviation,
s. This observed sample standard deviation is used to estimate σ, which then
provides an estimate of σy. This estimate of σy, called the standard error of
the mean, is sy = s/

√
n. The standard error of the mean provides a rough

idea of the error associated with the one observed sample mean as an estimate
of the unknown population mean.
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Figure 2.2: Histogram of 1000 Sample Mean Weights

By the properties, if the population is normally distributed or if the sample
size is large then the sample mean y is normally distributed (or approximately
normal) with mean µy = µ and σy = σ/

√
n. Hence by Fact 2.1 the standardized

sample mean,

(y − µ)

σ/
√
n

has a standard normal sampling distribution. So for example if a normal vari-
able/population has a mean µ = 200 and standard deviation σ = 24 then if we
repeatedly sample from this population samples of size n = 9 then y has a nor-
mal distribution with mean µy = 200 and standard deviation σy = 24/

√
9 = 8.

Also

(y − 200)

8

has a standard normal sampling distribution.

If in the standardized sample mean we replace σ in (y−µ)
σ/

√
n

with the sample

standard deviation, s, then the probability distribution of the resulting stan-

dardized sample mean (y−µ)
s/

√
n
no longer has the standard normal distribution. It

has what is called the Student’s t or simply the t probability/sampling distri-
bution. The t distribution will arise within the context of a confidence interval
for a single unknown population mean in the next section and in many other
contexts in this book. It is an important probability distribution in analysis of
variance.
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2.4 Confidence Interval for a Normal Popula-
tion Mean

In practice a population mean µ is unknown and must be estimated based
on a sample. A confidence interval estimate for a population mean is an
interval of plausible values for µ. Associated with the interval is a “confidence
level” which indicates how confident we are that the interval actually contains
µ. Typical confidence levels are 90%, 95%, and 99%. The one sample “t”
interval for a population mean is based on the Student’s t distribution.

Fact 2.2 Suppose a random sample y1, y2, ..., yn of size n is selected from a
normal population with mean µ and standard deviation σ. Let y and s be the
sample mean and sample standard deviation, respectively. Then the standardized
sample mean

(y − µ)

s/
√
n

has a probability distribution called the t distribution with degrees of freedom
(df) ν = n− 1.

The t distribution is symmetric, bell shaped with a mean of 0, that is

E[
(y − µ)

s/
√
n

] = 0

and standard deviation of ν
ν−2 . The t distribution is a family of distributions

indexed by the parameter ν. The distributions are all bell shaped, symmetric,
centered at 0, which makes them similar to the standard normal distribution.
Unlike the standard normal distribution which has a standard deviation of 1,
the standard deviation of the t distribution depends upon the parameter ν,
which depends on sample size. Figure 2.3 gives a picture of two t distributions
compared to the standard normal distribution.

Table A.2 gives the upper α probability points, denoted by tα;ν , for certain
values of α and degrees of freedom (df), ν. The area under the t distribution to
the right of tα;ν is α. Thus for example, the upper α = 0.05 probability point
from a t distribution with ν = 2 degrees of freedom is 2.920. Note that the area
under this t curve to the left of 2.920 would be 0.95. The area under the t-curve
between −2.920 and 2.920 would be 0.90.

Suppose a random sample of size n = 15 is to be selected from a normal
population with unknown population mean µ and population standard devia-
tion σ. The sample mean y and sample standard deviation s will be used to
summarize the sample. The goal is to estimate the unknown population mean
µ. A 95% confidence interval for µ is an interval of plausible values for µ.
The 95% “confidence level” refers to how confident we are that the value of µ
takes on one of the values in the interval. A brief derivation of such an interval
follows.
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Figure 2.3: Example of t distributions; ν = 2, 15
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By Fact 2.2, (Y−µ)
s/

√
n

has the t distribution with ν = 15−1 degrees of freedom.

Thus using Appendix Table A.2,

P [−2.145 <
(y − µ)

s/
√
n

< 2.145] = 0.95,

Note that 0.95 is a middle area. The area to the right of 2.145 under the t-curve
is 0.025. So the appropriate probability point from Table A.2 is the upper 0.025
probability point, 2.145, not the upper 0.05 probability point.

After some algebra the probability statement can be written as

P [y − 2.145(s/
√
n) < µ < y + 2.145(s/

√
n)] = 0.95

The interval within the brackets is a random interval because it has random
endpoints. The statement says that, before sampling, there is a 95% chance of
this random interval containing µ. After the sampling has occurred, the values
of y and s are known. They can then be substituted into the formula to obtain
an actual interval. This calculated interval is then called a 95% confidence
interval for µ.

Example 2.3 Suppose that amount of money spent by students on textbooks
in a given semester are normally distributed with some (unknown) mean µ and
standard deviation σ. Suppose a random sample of n = 15 students is selected.
The sample mean amount spent by those 15 students was y = $375.32 with
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sample standard deviation s = $27.18. The standard error of the sample mean,
$375.32, as an estimate of µ is thus

s√
n
=

27.18√
15

= $7.02

The standard error of $7.02 gives a crude idea of how far away the sample
mean of $375.32 is from the unknown population mean amount spent. The 95%
“margin of error” for the estimate of $375.32 is 2.145($7.02) = $15.06, where
2.145 is the upper 0.025 probability point from a t distribution with 14 degrees of
freedom. The 95% confidence interval for the unknown mean amount of money
spent on textbooks is

375.32− 15.06 < µ < 375.32 + 15.06

or

$360.26 < µ < $390.38

The general form of the endpoints of a one sample t confidence interval
for a normal population mean with confidence level of 100(1− α)% is

y ± tα/2;n−1(s/
√
n)

where tα/2;n−1 is the upper α/2 probability point from the t distribution with
ν = n − 1 degrees of freedom. Table A.2 is entered with α/2 to obtain the
correct probability point.

A more general form of confidence intervals that will be seen in this text is

point estimate±margin of error

or

point estimate±multiplier ∗ standard error of point estimate

The point estimate in the interval just considered was the sample mean y. The
multiplier was the upper α/2 probability point from the t distribution. The
standard error of the point estimate in the interval was the standard error of y,
s√
n
.

2.5 Hypothesis Testing about a Normal Popu-
lation Mean

The previous section described a statistical technique for estimating a normal
population mean with an interval of plausible values and providing a measure
of the reliability of the interval. Another statistical technique that is used
in practice is hypothesis testing. In hypothesis testing a researcher wishes to
provide evidence in favor of a conjecture involving an unknown population mean.
Data is collected and based on the data the conjecture is either supported or
not. The basic ideas are illustrated with an example.
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Example 2.4 Suppose that a standard method of treating a disease in the past
has resulted in a (population) mean survival time of 5 years or 60 months. The
actual survival time for particular individuals has varied from 60 months due
to extraneous variables. A new treatment is being proposed which is believed
to increase the (population) mean. A sample of 15 patients with the disease is
given the new treatment and their survival times (in months) are given below.

61 55 68 62 65 54 70 63 56 51 72
63 76 53 71

The sample mean y = 62.7 months, sample standard deviation s = 7.7
months, and standard error of the mean is sy = 2.0 months. Is this enough evi-
dence to conclude that the new treatment results in higher (population) average
survival time? Use a significance level of α = 0.05.

Certainly the sample mean of 62.7 months is greater than 60 months, but this
mean is based on a sample, not the entire “population” of individuals that could
be treated. Is the difference between 62.7 months and 60 months “real”, that is
an indication that the true population mean with the new treatment is greater
than 60 months? Or could we obtain a sample mean of 62.7 months simply
due to sampling variability and the fact that survival times will vary naturally,
even if the true population mean with the new treatment is no different than
60 months. That is, is the result due solely to chance (sampling) or is the new
treatment really better?

Let µ be the true population mean survival time with the new treatment.
The claim that the researcher hopes to provide evidence for is µ > 60, which
is called the alternative claim or alternative hypothesis and denoted by Ha :
µ > 60. Of course the opposite or the null hypothesis could be true, which is
denoted by Ho : µ ≤ 60.

The general approach to decision making in hypothesis testing is as follows:

• Assume initially that Ho is true

• Assuming Ho is true, calculate a summary of the data called the test
statistic. The probability distribution of the test statistic is known.

• Calculate the probability of obtaining a value of the test statistic like
the observed value or more extreme in the direction of the alternative
hypothesis if in fact Ho is true. This probability is called the P-value.

• If the P-value is less than or equal to (≤) some prescribed probability
then reject Ho as true and conclude that Ha is true. If the P-value is
greater than (>) the prescribed probability then Ho is not rejected - the
null hypothesis could be true. This prescribed probability is called the
significance level of the test and denoted by α. A common value used
for α is 0.05.
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For this example suppose that H0 is true and for the moment suppose that
µ = 60 months, that is, there is no difference in population mean survival time
between the new treatment and the standard treatment. Under this assumption
and normality of the population it is known from the previous section that

(y − 60)

s/
√
15

treated as a variable, has the Student’s t distribution with degrees of freedom

ν = 15− 1 = 14. The variable (y−60)

s/
√
15

is the test statistic in this example. Now

the observed value of the test statistic is

(62.7− 60)

2.0
= 1.35

That is, the observed sample mean of 62.7, is 1.35 standard errors above the
null hypothesized value for µ of 60. The P-value is the probability of obtaining
a value of the test statistic like the observed value of 1.35 or more extreme
in the direction of the alternative hypothesis, here greater than 1.35 since the
alternative hypothesis points to value of µ > 60. Symbolically the P-value for
this example is

P [
(y − 60)

s/
√
15

≥ 1.35]

which is the area of the shaded region under the t-curve in Figure 2.4.
Using Table A.2 with ν = 15−1 = 14 degrees of freedom, the P-value (area)

is approximately 0.10. A statistical program such as SAS or SPSS will give
P-value = 0.1010. Thus there is about a 10% chance of obtaining a value of the

test statistic, (y−60)

s/
√
15

, like the observed value of 1.35 or greater if in fact the null

hypothesis is true, that is µ = 60.
Using a significance level of α = 0.05, since the P-value of 0.1010 > 0.05

there is not enough evidence to reject the population mean being equal to 60
months and thus not enough evidence to support the researcher’s claim that
the new treatment extends the survival times of these patients. This conclusion
of not enough evidence to support the new treatment extending survival time
is based on survival times from 15 patients. A larger study with more patients
may have reached a different conclusion.

2.6 The General Form of the One Sample t test

The example in the previous section was an example of a one-sided single sample
t test. The term one-sided comes from the form of the alternative hypothesis
and the fact that the alternative is supported if the observed value of the test
statistic is on one side, the upper side, of the appropriate t distribution. The
general form of null and alternative hypotheses for the three versions of the t
test are given in Table 2.2, where µo some reference or standard value.
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Figure 2.4: P-value for Example 2.4
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Table 2.2: General Forms of Null and Alternative Hypotheses for One Sample
t test

(1) (2) (3)
Ho : µ ≤ µo Ho : µ ≥ µo Ho : µ = µo

Ha : µ > µo Ha : µ < µo Ha : µ ̸= µo
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Table 2.2 is a generalization of Example 2.4. The test statistic for all
three tests is the t statistic,

t =
y − µo

s/
√
n

which has a “t” sampling distribution if the population is normally distributed
and an approximate t distribution as long as the sample size is “large.”

Let t∗ be the observed value of the t statistic based on the data. Then
the P-values for the alternatives (1), (2), and (3) in Table 2.2 are, respectively,
P [t ≥ t∗], P [t ≤ t∗], and P [|t| ≥ |t∗|]. The alternative hypotheses in (1) and
(2) of Table 2.2 are called one-sided alternatives and the tests are called one-
sided tests. The alternative hypothesis in (3) of Table 2.2 is called a two-sided
alternative and the test is called a two-sided test.

2.7 Errors and Probabilities of Errors in Hy-
pothesis Testing

In the decision making process of hypothesis testing one of two possible errors
may result. The null hypothesis is really true yet the data and the test indicate
that the null hypothesis should be rejected and the alternative accepted. This
is called a Type I error. The other possible error is incurred if the alter-
native hypothesis is true but the null hypothesis is retained or the alternative
hypothesis is not accepted. This is called a Type II error.

In Example 2.4 concluding that the new drug increases the survival time as
compared to the standard treatment when in fact the true mean survival time
is 60 months (or less) would be a Type I error. A Type II error would be to
not conclude that the new drug increases survival time (fail to reject the null
hypothesis) when in fact the new drug does increase mean survival time.

Researchers cannot guarantee that either error is not made but they can
ensure that the probabilities of making these errors are low. Let’s consider the
probability of making the Type I error first.

Recall in the one sample t test that we reject the null hypothesis if the
P-value, calculated assuming the null is true, is smaller than some prescribed
probability, called the significance level, or the α level. Typical values used
here are α = 0.01 or α = 0.05. Symbolically the null hypothesis is rejected if
P − value ≤ α. Now it is possible to obtain a P-value this low even if the null
hypothesis is true and thus mistakenly reject a true null hypothesis, a Type I
error. In fact the probability is exactly α of obtaining a P − value ≤ α when
in fact the null hypothesis is true. Thus the probability of making a Type I
error is α, a value prescribed by the researcher. Thus it is relatively easy to
control the probability of a Type I error. If the Type I error is a very serious
error then the researcher or some regulatory authority would request that the
significance level or α level be perhaps set at 0.01 rather than 0.05. Note that
regardless of sample size setting the α level to some prescribed value ensures
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that the probability of a Type I error is fixed at that level. Sample size however
does influence the probability of a Type II error.

The probability of a Type II error, β, is not as easily controlled as the prob-
ability of a Type I error. Discussion of the probability of a Type II error usually
focuses on 1−β, called the power of the test. Thus power is the probability of a
correct decision, that of concluding that the alternative hypothesis is true based
on the test, when in fact the alternative hypothesis is true. Thus researchers
want β to be small, such as 0.20 or 0.10, or power to be high such as 0.80 or
0.90.

There are many different values for β or power (1 − β) depending upon
various characteristics of the study. For example in the one sample t test β, or
power depends upon:

1. Sample size. For a particular population standard deviation and particular
α level, increasing sample size will decrease β (increase power).

2. The α level. For a particular population standard deviation and fixed
sample size, increasing α decreases β (increases power) and decreasing α
increases β (decreases power).

3. Population standard deviation. For fixed sample size and α level, β will
be larger (power smaller) for populations with larger standard deviations.

4. The difference between the null hypothesis value of µ and the true value
of µ under the alternative hypothesis. In our example the null hypothesis
value of µ was µo = 60 months. If the new drug is more effective (al-
ternative true) and the true mean is µa = 62 months then the difference
or effect of the drug is an increase of 2 months. If the new drug is more
effective and the true mean is µa = 70 months then the difference or effect
of the drug is an increase of 10 months. The β level will depend upon the
difference or “effect” in this example. The greater the effect the smaller
the level of β or the higher the power. Thus in this example it is more
likely that the new drug is correctly concluded as being effective if it is a
lot more effective as compared with being minimally effective.

The probability of correctly concluding a true alternative hypothesis that is,
1−β, is called the power of a test. Table 2.3 gives the power of a one-sided single
sample t test using a significance level of α = 0.05 in terms of the standardized
effect E,

E =
|µa − µo|

σ

and sample size n. The values µo and µa are null and alternative values of µ,
respectively.
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Table 2.3: Power of One-Sided One Sample t test, α = 0.05

Standardized Effect E
Sample Size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

5 0.073 0.102 0.140 0.185 0.239 0.300 0.366 0.436 0.508 0.580
10 0.088 0.145 0.222 0.317 0.427 0.543 0.655 0.754 0.836 0.898
15 0.101 0.182 0.295 0.432 0.578 0.714 0.824 0.903 0.952 0.979
20 0.112 0.217 0.363 0.532 0.695 0.827 0.915 0.964 0.987 0.996
25 0.123 0.250 0.426 0.617 0.783 0.898 0.960 0.987 0.997 0.999
30 0.134 0.283 0.484 0.690 0.848 0.941 0.982 0.996 0.999 1.000
35 0.143 0.314 0.538 0.750 0.895 0.967 0.998 0.999 1.000 1.000
40 0.153 0.344 0.587 0.800 0.928 0.981 0.992 1.000 1.000 1.000
45 0.162 0.373 0.632 0.841 0.951 0.990 0.997 1.000 1.000 1.000
50 0.172 0.401 0.673 0.874 0.967 0.994 0.999 1.000 1.000 1.000
55 0.181 0.428 0.710 0.900 0.978 0.997 0.999 1.000 1.000 1.000
60 0.190 0.455 0.743 0.922 0.985 0.998 1.000 1.000 1.000 1.000
65 0.198 0.480 0.773 0.939 0.990 0.999 1.000 1.000 1.000 1.000
70 0.207 0.505 0.800 0.952 0.994 1.000 1.000 1.000 1.000 1.000
75 0.216 0.528 0.824 0.963 0.996 1.000 1.000 1.000 1.000 1.000
80 0.224 0.551 0.845 0.971 0.997 1.000 1.000 1.000 1.000 1.000
85 0.233 0.573 0.864 0.978 0.998 1.000 1.000 1.000 1.000 1.000
90 0.241 0.594 0.881 0.983 0.999 1.000 1.000 1.000 1.000 1.000
95 0.249 0.614 0.896 0.987 0.999 1.000 1.000 1.000 1.000 1.000
100 0.257 0.634 0.909 0.990 1.000 1.000 1.000 1.000 1.000 1.000
150 0.335 0.786 0.978 0.999 1.000 1.000 1.000 1.000 1.000 1.000
200 0.407 0.880 0.995 1.000 1.000 1.000 1.000 1.000 1.000 1.000
500 0.722 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

SAS Code for Chapter 2

Example 3.2

* Input survival times;

Data SURVIVAL;

Input Survival_Time @@;

datalines;

61 55 68 62 65 54 70 63 56 51 72

63 76 53 71

;

run;

* Use proc ttest to obtain results of one sample t test;

Proc ttest ho=60 data = SURVIVAL;

var Survival_time;

run;
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Problems for Chapter 2

2.1∗ Rebecca Aaron and Rebecca Redman in 2014 conducted an experiment to
study the effects of brand of rubber band and temperature conditioning
of the rubberband on how far a rubber band would stretch until breaking.
The two brands of rubberbands were Staples and CLI (Douglas Stewart
Company). Both brands were approximately 9 cm in length and 0.32 cm
in width. Prior to stretching rubberbands were exposed to either cold
(freezer for 24 hours), heat (microwave for 1 minute), or room temper-
ature. Rubberbands were tested/stretched one a time. The procedure
was as follows. A combination of brand and temperature was randomly
selected. A rubberband of the randomly selected brand and temperature
conditioning was selected. An apparatus was used to stretch the rubber-
band until it broke with a tape measure below the rubberband to measure
the stretched length. The stretching was videotaped to aid in the mea-
surement. This process was repeated for a total of 30 rubberbands, 5 for
each of the combinations of brand and temperature conditioning. Given
below are the stretched lengths (cm) of the Staples heated rubberbands.

72.6 76.2 79.0 66.6 72.5

Find the mean and standard deviation of the lengths. Interpret the stan-
dard deviation within the context of this study.

2.2∗ A group of 48 pigs receiving a new medicine for treating a bacterial in-
testinal disease gained during the study period on average 1.25 pounds
per day with a standard deviation of 0.2 pound. What is the standard
error of the sample mean of 1.25 pounds? Explain within the context of
this example the difference between the sample standard deviation and
the standard error of the mean?

2.3∗ Suppose that a random sample of size n = 16 is selected from a normal
population with µ = 50 and standard deviation σ = 5. Let the random
variables y and s refer to the sample mean and sample standard deviation,
respectively.

a. What is the form of the probability/sampling distribution of the sam-
ple mean y?

b. What is the form of the probility/sampling distribution of y−50

5/
√
16
?

c. What is the form of the probability/sampling distribution of y−50

s/
√
16
?

2.4∗ Suppose a random sample of size n = 25 is selected from a normal popula-
tion with µ = 100. Let the random variables y and s represent the sample
mean and sample standard deviation of the sample.
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a. What is the upper 0.05 probability point (or 95th percentile) of the
sampling distribution of y−100

s/
√
25

b. Find P [−1.318 < y−100

s/
√
25

< 1.318].

2.5∗ One question asked of randomly selected students at a university was how
many hours the student typically spent studying during the week. Based
on the data for n = 30 responses the 95% confidence interval for the mean
amount of time spent studying was (28.7, 36.5).

a. What is the sample mean amount of time for the 30 students?

b. What is the 95% error margin for the sample mean from part (a)?

c. What is the standard error associated with the sample mean from
part (a)?

d. Interpret the interval (28.7, 36.5) within the context of this example.

e. Suppose a different set of n = 30 students were random selected from
the same population of students. Would we get a different interval?
Explain.

2.6∗ This example is taken from Devore and Peck ([8], page 555). Calorie
contents for each of n = 12 frozen dinners was taken from the production
line during a particular period and are reported in the table below:

255 244 239 242 265 245 259 248
225 226 251 233

The calorie content given on the box is 240. Do the data give any reason
to believe that the true mean calorie of the population of frozen dinners
is different than stated on the box? Carry out a hypothesis test using a
significance level of 0.05. Use a statistical program to obtain a P − value.
Use this P − value to make your decision. Interpret the P-value within
the context of this example.

2.7∗ In the article “Quality of Life and Functional Health Status of Long-Term
Meditators”(Evidence-Based Complementary and Alternative Medicine vol.
2012, Article ID 350674, 9 pages 2012. doi:10.1155/2012/350674 ) re-
searchers compared the quality of life and functional health of a sample of
343 long-term meditators to that of population norms for Australia. Par-
ticipants completed the Medical Outcomes Study Short Form 36 (MOS
SF-36). One of the domains of health evaluated in the SF-36 is mental
health. The population norm score for Australia is 75.75. The mean and
standard deviation of the 337 respondents with valid mental health scores
was 85.31 and 12.31, respectively. The authors used a one sample t test
to compare the sample mean to the population norm of 75.75.
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a. Give the null and alternative hypothesis for the test. Assume that
a two-sided test was used. Be sure to define the relevant population
mean of interest in symbols and in words.

b. Calculate the value of the test statistic.

c. Suppose the P-value based on computer software is P < 0.0001.
Using a significance level of 0.05, what is the conclusion regarding
mental health scores of long term meditators as compared to the
population?

d. Calculate a 95 percent confidence interval for the population mean
mental health score and interpret within the context of this problem.

e. It is possible that an error was made in your conclusion in part(c).
What is the name of this type of error?

2.8∗ In one part of a research study (“Glass Shape Influences Consumption
Rate for Alcoholic Beverages,” PloS ONE 7 (2012) e43007)), each of 160
participants (50% male) viewed computer images of straight and curved
12 fl. oz glasses, the activity resulting in a numerical value reflecting what
the participant perceived to represent half full. The true value of a half full
glass was 30 with the perceived values by the participants deviating from
this value. We will only consider the data reported on the curved glass.
The article reported that the mean and standard deviation of perceived
midpoints of the curved glass by the 160 participants were 21 and 3,
respectively. The authors conducted a one-sample t test to determine if
participants’ perceived midpoint differed on average from the true value of
30. The value of the one sample t statistic reported was−37.97, P < 0.001.

a. Give the null and alternative hypothesis for the test. Be sure to define
the relevant population mean of interest in symbols and in words.

b. What is the conclusion based on the results of the test using a sig-
nificant level of 0.05?

2.9∗ Suppose that you are repeating the perception study of Exercise 2.7 to see
if you get similar results. You have limited resources and can only employ
20 subjects. You will also use a curved glass but of a different type of
curvature than that used in the study of Exercise 2.7. You will conduct a
one-sided one-sample t test to determine if the (mean) perceived midpoint
is less than 30. You don’t believe that the drop in perceived midpoint
will be as low as that observed in the article and might be only about a
2 unit drop. Using Table 2.3, what is the (approximate) power of your
test? Explain what this number means. Assume that population standard
deviation is 3 units. A significance level of 0.05 will be used for the t test.

2.10∗ The mean drying time of a spray paint is known to be 90 seconds. The
research division of the company that produces this paint contemplates
that adding a new chemical ingredient to the paint will accelerate the
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drying process. To investigate this conjecture, the paint with the chemical
additive will be sprayed on a number of surfaces and the drying times are
recorded. For similar experiments drying time has been approximately
normally distributed with a standard deviation of drying times of about
8 seconds. A drop of 5 seconds (on average) is deemed to be of practical
importance. The one-sample t test with a significance level of 0.05 will be
used. The research division wants the power of the test to be about 90%.
What sample size would you recommend to the research division?



Chapter 3

The Two Sample Problem

In this chapter it is assumed that there are two samples of quantitative normally
distributed data corresponding to the treatments in an experiment or the two
populations in an observational study. The two scenarios where the two samples
are independent or where they are dependent will be examined. Section 3.1
will examine hypothesis testing and confidence interval estimation in the two
independent samples situation. Section 3.2 will examine inferences within the
dependent samples situation.

3.1 Two Independent Samples/Completely Ran-
domized Design

In this section it is assumed two samples of quantitative data have been gathered
by one of two designs:

• An experiment has been conducted whereby two treatments have been
assigned completely at random to two groups of experimental units, that
is a completely randomized design.

• A survey or observational study has been conducted whereby two sam-
ples have been randomly and independently selected from two different
populations.

As an example of a survey, a group of students doing a project wanted to
compare GPAs of male and female undergraduates at their universities. They
obtained a list of all undergraduate male and all undergraduate female students
and randomly selected 100 students from each list.

Let y11, y12, ..., y1n1 represent the values of a random sample of size n1 from
a normal population with mean µ1 and variance σ2

1 . Let y1· and s1 represent
the sample mean and standard deviation of the sample. Then from Chapter 2,
E[y1·] = µ1 and the standard deviation of y1· is σy1·

= σ1/
√
n1 . Similarly, let

y21, y22, ..., y2n2 represent the values of a random sample of size n2 from another

47
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normal population with mean µ2 and variance σ2
2 . Let y2· and s2 represent

the sample mean and standard deviation of the sample. Then from Chapter 2,
E[y2·] = µ2 and the standard deviation of y2· is σy2·

= σ2/
√
n2.

Suppose the purpose of the two sample study is to compare the two unknown
population means of y, µ1 and µ2. The comparison is typically carried out by
drawing inferences on the unknown difference µ1 − µ2. Similar to Chapter 2,
we need an estimator of µ1 − µ2 and the standard deviation of this estimator.
We also need to know the probability or sampling distribution of the estimator.
The usual estimator of µ1 − µ2 is the analogous difference in sample means,
y1· − y2·.

3.1.1 Sampling Distribution of y1· − y2·

Properties of the sampling distribution of y1· − y2· are given below.

• The mean of y1· − y2· is µy1·−y2·
= E[y1· − y2·] = µ1 − µ2. Thus while

differences in sample means y1· − y2· will vary from pair of samples to
pair of samples the average of these differences is equal to the difference
in population means µ1 − µ2.

• The variance of (y1· − y2·) is σ2
y1·−y2·

= E[{(y1· − y2·) − (µ1 − µ2)}2] =
σ2
1

n1
+

σ2
2

n2
. The variance

σ2
1

n1
+

σ2
2

n2
measures the average squared distance

between differences in sample means y1· − y2· and the difference in the
population mean µ1 − µ2.

• The sampling distribution of y1·− y2· is normal if the two populations are
normal and approximately normal if the two sample sizes are “large.”

The standard deviation of y1·−y2· as an estimate of µ1−µ2 is the square root

of the variance, σy1·−y2·
=

√
σ2
1

n1
+

σ2
2

n2
. The standard deviation gives the average

distance differences in sample means are from the difference in population means
µ1 − µ2. The population variances σ2

1 and σ2
2 are unknown. So in order to be

of practical value these two population variances need to be estimated. We will
first consider hypothesis testing and confidence interval estimation when the
two population variances are estimated separately with the sample variances s21
and s22.

3.1.2 Two sample t test and Confidence Interval

Since y1· − y2· is normally distributed with mean µ1 − µ2 and variance
σ2
1

n1
+

σ2
2

n2

then the standardized version

(y1· − y2·)− µy1·−y2·

σy1·−y2·

=
(y1· − y2·)− (µ1 − µ2)√

σ2
1

n1
+

σ2
2

n2

has a standard normal distribution. Suppose that we substitute the sample
variances s21 and s22 for the population variances in the standard deviation in the
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denominator to obtain the standard error of y1· − y2·, sy1·−y2·
=

√
s21
n1

+
s22
n2

.

Then the resulting ratio

y1· − y2· − (µ1 − µ2)√
s21
n1

+
s22
n2

(3.1)

has an approximate Student’s t distribution if the populations are normally dis-
tributed or if the sample sizes are sufficiently large. The degrees of freedom, ν,
used for this approximate t distribution is called the Satterthwaite approxima-
tion and is data based:

ν =

(
s21
n1

+
s22
n2

)2

1
n1−1

(
s21
n1

)2

+ 1
n2−1

(
s22
n2

)2

Fortunately we can use computer software to obtain the degrees of freedom
and P-values.

The general form of the two-sided 100(1−α)% confidence interval for µ1−µ2

is

(y1· − y2·)± tα/2;ν

√
s21
n1

+
s21
n2

(3.2)

where tα/2;ν is the upper α/2 probability point from a t distribution with degrees
of freedom, ν, the Satterthwaite approximation. The Satterthwaite degrees of
freedom is not usually integer. If using Table A.2 then round down to the
nearest integer to obtain the probability point. This will result in a wider or
more conservative interval. Computer software will give more precise probability
points and intervals. Note that the interval of possible values for µ1 − µ2 is
formed by taking the estimate (y1·−y2·) and adding and subtracting a margin of

error, here tα/2;ν

√
s21
n1

+
s21
n2

. The margin of error is the product of a probability

point from a t distribution and the standard error of y1· − y2·. This is the same
general form as the confidence interval for a single population mean given in
Chapter 2.

The general forms of the null and alternative hypotheses for a test involving
the difference between µ1 and µ2 are given in Table 3.1. Note that the alternative
hypotheses in (1), (2) and (3) reflect differences (one or two directional) in the
two means and thus the test is used to determine if there is sufficient evidence
of a difference of some specified type.

The test statistic for the two independent samples t test is given in (3.3)
and is just the ratio (3.1) assuming that the null hypothesis is true, in particular
that µ1−µ2 = 0. Thus the numerator is a measure of how far away the observed
difference in sample means is away from the null hypothesized value of 0 for the
difference in population means. If the observed difference in sample means is
sufficiently far from 0 then the null hypothesis of no difference in population
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Table 3.1: General Forms of Ho and Ha for Two Sample t test

(1) (2) (3)
Ho : µ1 − µ2 ≤ 0 Ho : µ1 − µ2 ≥ 0 Ho : µ1 − µ2 = 0
Ha : µ1 − µ2 > 0 Ha : µ1 − µ2 < 0 Ha : µ1 − µ2 ̸= 0

means is rejected in favor of the alternative of a difference. Sufficiently far away
can be defined in terms of P-values like in Chapter 2.

t =
y1· − y2· − (0)√

s21
n1

+
s22
n2

(3.3)

The P-value is the probability, assuming equal population means, of getting a
value of the test statistic (3.3) like the observed value or more extreme in the
direction of the alternative hypothesis. The P-value is an area under a t curve
with degrees of freedom ν equalling the Satterthwaite approximation. For the
one-sided alternative hypothesis (1) in Table 3.1 the P-value is the area under the
t-curve to the right of the observed value of (3.3). For the one-sided alternative
hypothesis (2) in Table 3.1 the P-value is the area under the t-curve to the left
of the observed value of (3.3). For the two-sided alternative hypothesis (3) in
Table 3.1 the P-value is twice the area to the right of the observed value if the
observed value is positive or twice the area to the left of the observed value if the
observed value is negative. As with the confidence interval, the Satterthwaite
degrees of freedom is generally not integer. If using Table A.2 to obtain an
approximate P-value then round down to the nearest integer for a conservative
value. Computer software will calculate more precise P-values based on the
Satterthwaite degrees of freedom.

Example 3.1 Animal health researchers develop drugs to treat diseases of an-
imals. Suppose that in one study n1 = 22 pigs are treated with a medication to
control an intestinal disease while n2 = 18 other pigs served as a control and
were not treated. Weight gain (lbs.) is measured over the study period and is
reported in the table below.

Control(2) 16.4,12.8,13.0,10.7,3.9,9.1,8.7,9.5,8.5,6.0
9.0,13.4,3.4,9.6,14.4,11.3,6.8,2.3

Treated(1) 11.6,8.9,14.6,12.4,13.3,16.0,11.1,15.8,15.6,10.7
12.4,14.6,11.2,10.7,11.6,14.7,13.9,11.8,13.4,12.1
13.4,12.5

Is there sufficient evidence that the medication improves weight gain for pigs?

Figure 3.1 gives a plot of the weight gains versus treatment. Weight gain
does appear to be improved in the treated group. There also appears to be less
variability in weight gains in the treated group.
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Figure 3.1: Plot of Weight Gain (lbs) versus Treatment

Let n1 and n2 represent the numbers of pigs in the treated and control groups
respectively. The sample mean weight gains for the treated and control groups,
respectively, are y1· = 12.83 lbs. and y2· = 9.38 lbs. The standard deviation of
weight gains for the treated and control groups are, respectively, s1 = 1.87 lbs.
and s2 = 3.88 lbs. Let µ1 and µ2 represent the “true” mean weight gains for the
treated and control pigs, respectively. Then the null and alternative hypotheses
are of the form (1) in Table 3.1. The observed value of the test statistic is

t =
y1· − y2·√

s21
n1

+
s22
n2

=
12.83− 9.38√
1.872

22 + 3.882

18

=
3.48

0.99
= 3.46

Degrees of freedom would be

ν =

(
1.872

22 + 3.882

18

)2

1
22−1

(
1.872

22

)2
+ 1

18−1

(
3.882

18

)2 = 23.4

The P-value is the probability of getting a value of the test statistic like
the observed value, 3.46, or more extreme (greater than) if in fact there is no
difference in population mean weight gains for the treated and control groups.
The P-value can only be approximated using Appendix Table A.2. Rounding
down and using ν = 23 from Table A.2 we see that

0.0005 ≤ P − value ≤ 0.005

Thus at α = 0.05 there is evidence that weight gain is improved with the
medication.
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The mean improvement in weight gain could be estimated with a 95% con-
fidence interval using Formula 3.2. The appropriate upper 0.025 probability
point, using ν = 23 and Appendix Table A.2 would be 2.069. Thus the confi-
dence interval would be

(12.83− 9.38)− 2.069(0.99) < µ1 − µ2 < (12.83− 9.38) + 2.069(0.99)

or
3.45− 2.05 < µ1 − µ2 < 3.45 + 2.05

or
1.4 < µ1 − µ2 < 5.5

Thus it is estimated with 95% confidence that the true effect of the treatment
when compared to control is to increase average weight gain by somewhere from
1.4 to 5.5 pounds.

3.1.3 Two Independent Samples “Pooled” t test and Con-
fidence Interval

In some experimental and survey situations it is reasonable to assume that the
two population variances are equal either based on the data or on theoretical
considerations, that is, it is assumed that σ2

1 = σ2
2 = σ2. Thus the standard

deviation of y1· − y2· can be written as
√

σ2

n1
+ σ2

n2
.

Example 3.2 An example from McClave and Sincich [18], page 329, will il-
lustrate. A new method of teaching reading to children who are slow learners is
compared to a current standard method. The comparison is based on a reading
test score given at the end of the learning period. Ten subjects are taught by
the new method and 12 are taught by the standard method. The results of the
reading scores are given in the table. Is there statistical evidence that the new
method results in higher scores? Use a significance level of 0.05.

New Method (1) 80,76,70,80,66,85,79,71,81,76
Standard Method (2) 79,73,72,62,76,68,70,86,75,68,73,66

A plot of the scores versus the method is given in Figure 3.2. Note that
average and variation in scores are similar for the two methods.

Let n1 = 10 and n2 = 12 represent the numbers of children receiving the
new and standard methods respectively. The sample mean reading scores for
the new and standard method groups are y1· = 76.40 and y2· = 72.33. The
standard deviation of reading scores for the new and standard method groups
are, respectively, s1 = 5.83 and s2 = 6.34. Let µ1 and µ2 represent the “true”
mean reading scores for the new and standard methods. Then the null and
alternative hypotheses are of the form (1) in Table 3.1.

If the assumption of equal population variances is reasonable and since then
there is only one unknown population variance, it makes sense to combine the
two sample variances into one “pooled” sample variance, s2p, where
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Figure 3.2: Plot of Reading Score versus Method

s2p =
(n1 − 1)s21 + (n2 − 1)s22
(n1 − 1) + (n2 − 1)

Note that the numerator is just the sum of squared deviations of the scores from
their respective means. The denominator is the sum of the degrees of freedom
associated with the two sample variances. Estimating the common population
variance, σ2 with s2p we have the standard error of y1· − y2·, sy1·−y2·

to be

sy1·−y2·
=

√
s2p
n1

+
s2p
n2

or

sy1·−y2·
= sp

√
1

n1
+

1

n2

In order to construct confidence intervals and perform hypothesis testing we
need to have a sampling distribution to calculate P-values and to obtain prob-
ability points for error margins. From earlier it is known that y1· − y2· is

normally distributed with mean µ1 − µ2 and standard deviation
√

σ2

n1
+ σ2

n2
, as-

suming equal population variances. Thus (y1·−y2·)−(µ1−µ2)

σ
√

1
n1

+ 1
n2

has the standard

normal probability distribution and P-values and error margins could be based
on this distribution. However, again, the standard deviation in the denominator
is unknown. If we replace the standard deviation with its estimate, standard
error, then the ratio
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(y1· − y2·)− (µ1 − µ2)

sp

√
1
n1

+ 1
n2

has a t distribution with degrees of freedom ν = n1 + n2 − 2 if the two pop-
ulations are normally distribution and an approximate t distribution if sample
sizes are large. This ratio serves as the test statistic for a test comparing the
two population means.

Using the general form of a confidence interval from Chapter 2, we have that
the general two sided 100(1−α)% independent pooled samples confidence
interval for µ1 − µ2 is

(y1· − y2·)± tα/2;(n1+n2−2)sp

√
1

n1
+

1

n2

Continuing with our example, we have that

sp =

√
(n1 − 1)s21 + (n2 − 1)s22
(n1 − 1) + (n2 − 1)

=

√
(10− 1)5.832 + (12− 1)6.342

(10− 1) + (12− 1)
= 6.12

The standard error of y1· − y2· is therefore

sp

√
1

n1
+

1

n2
= 6.12

√
1

10
+

1

12
= 2.62

The observed value of the test statistic for the independent samples
pooled samples t test under the null hypothesis is thus

(y1· − y2·)− (µ1 − µ2)

sp

√
1
n1

+ 1
n2

=
(72.23− 68.30)− (0)

2.62
= 1.55

The appropriate degrees of freedom is ν = n1 + n2 − 2 = 20. The P-value
can only be approximated using Appendix Table A.2 with

0.05 < P − value < 0.10

Thus there is not enough evidence that reading scores are improved with the
new method at the 0.05 level of significance.

The appropriate upper 0.025 probability point for a 95% confidence interval
with ν = 20 from Appendix Table A.2 would be 2.086. Thus the pooled samples
t confidence interval would be

(76.40− 72.33)− 2.086(2.62) < µ1 − µ2 < (76.40− 72.33) + 2.086(2.62)

or
4.07− 5.47 < µ1 − µ2 < 4.07 + 5.47
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or

−1.40 < µ1 − µ2 < 9.54

The results based on the interval are inconclusive. With 95% confidence,
the new method may result in greater reading scores by as much as 9.54; there
could be no difference in mean reading scores between the two methods; or the
standard method may result in greater reading scores by as much as 1.40.

3.1.4 Which independent samples t test to use?

As previously described there are two possible tests, the two sample t test and
the pooled two sample t test, for comparing means of normal populations when
the samples are independent. When the sample sizes are the same the test
statistics for the two procedures take on identical values; however P-values will
be different since the degrees of freedom will generally be different. When the
sample sizes are different the two procedures will generally result in different
values of the test statistics, degrees of freedom, and P-values. The two sample
t test does not make any assumptions about population variances whereas the
pooled t test assumes population variances are equal.

If the two population variances are equal both tests are valid. The pooled t
test does have slightly higher power. But how does one know if the population
variances are equal. These are unknown population characteristics. There are
statistical tests for comparing population variances but the test are extremely
sensitive to the assumption of normality and significant results may indicate a
difference in standard deviations or non-normality. Also the hypothesis tests do
not address the magnitude of the difference in the population variances. The
pooled two sample t test is still approximately valid in some circumstances when
the population variances, while not equal, are approximately the same. Instead
of tests, some authors recommend rules of thumb regarding sample standard
deviations (or sample variances) to decide if the assumption is reasonable. Cobb
[4] recommends that if the ratio of the largest to smallest standard deviation is
greater than 3 then do not assume that the population standard deviations are
equal. Agresti and Franklin [1] comment that in practice equality of population
standard deviations is not relied upon if the ratio of the largest to smallest
standard deviation is greater than two.

When the population variances are not equal, the two sample t test is valid.
The pooled samples t test may be invalid depending upon the degree of difference
between the population variances and the distribution of the sample sizes across
the two groups.

The recommendation of this text for two sample comparisons is the two
sample t test. It is approximately valid regardless of the population variances.
Some elementary statistics texts discuss the pooled t test but also recommend
using the two sample t test (See DeVeaux, Velleman, and Bock [7]; Peck and
Devore [12]).

So why is the pooled samples t test even discussed in this text? As is
shown in later chapters the assumption of equal population variances is a basic
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assumption of ANOVA, a main topic of this text. In fact the ANOVA for a one
factor study with only two groups is equivalent to the pooled samples t test.

An alternative approach to handling unequal variances besides the two sam-
ple t test would be to transform the data to a new scale where the variances
would be equal or approximately equal. A larger discussion on statistical as-
sumptions of ANOVA, including equal population variances, will be conducted
in Chapter 8.

3.2 Two Dependent/Paired Samples

In this section we consider two sample designs where the two samples are depen-
dent or paired. Listed below are types of pairing (See Cobb [4]) and examples.
These are all examples of blocking as discussed in Chapter 1.

Types of Pairing/Blocking

• Re-Using: Each person or object is measured at two different time slots
or occasions. There may be only two treatments in an experiment. Each
individual receives one treatment on one occasion and the other treatment
on another occasion. Or the individual may be measured before some
treatment or intervention and then measured again at a later time. In
an observational study, blood pressures of women in late pregnancy are
compared while at work and while at home. Here each women is measured
twice under two conditions: while at work and while at home. Each
individual serves as a block or the pair of time slots/occasions.

• Sorting/Pairing. Subjects/objects are paired according to some extra-
neous variable related to the response variable. The two persons in each
pair are randomly assigned to the two treatments in the study. This is
repeated for several pairs. In an experiment to compare two methods for
learning difficult material subjects are paired according to academic abil-
ity and IQ. Each person within the pair is assigned at random to one of
the methods. A score is obtained indicating the degree of learning. Each
pair of individuals serves as a block.

• Splitting. Some experimental material, such as a volume of liquid or
piece of cloth, is physically split into two portions. The two halves are
randomly assigned to the two treatments and the response variable mea-
sured resulting in two samples of data. The two halves form a pair/block.
In an experiment a batch of bread dough is prepared and then split into
two halves. Both halves are put into the oven with one piece being baked
for 30 minutes and the other for 40 minutes. The assignment of the amount
of time of baking to the two halves is random. This process is repeated
for several batches with different oven runs for the different batches. Each
batch of dough serves as a block.
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Let the n random pairs or blocks of observations from a population of pairs
be denoted by (y11, y21), ..., (y1n, y2n). As before it is assumed that the y1

′ s
are a random sample from a population with mean µ1 and variance σ2

1 . The y2
′

s are a random sample from a population with mean µ2 and variance σ2
2 . Since

the observations on the response are paired there may be a relationship between
the two values within a pair. The degree of relationship between any two y’s
in a pair is quantified in the population by the population covariance, σ12

and population correlation coefficient, ρ. Readers may remember covariance
and correlation from their elementary statistics class. The covariance between
any two observations in a pair is a measure of the degree of linear relationship
between the two observations. The correlation coefficient is a scaled version of
the covariance which takes on values between -1 and 1 with values close to -1
or 1 indicating a strong linear relationship between the two variables.

The sample of y1
′ s may be summarized with the sample mean and sample

standard deviation y1· and s1. Similarly the sample of y2
′ s may be summa-

rized with y2· and s2. The degree of linear relationship between the two samples
may be summarized with the sample correlation coefficient, r. The sam-
ple correlation coefficient has properties similar to the population correlation
coefficient, ρ described above.

The analysis for paired data is based on the differences

d1 = y11 − y21

d2 = y12 − y22

.. = ..

.. = ..

dn = y1n − y2n

In theory the difference between the y′s is a comparison of the two treatments
for each individual uninfluenced by the pairing or blocking variable since the
pairing variable is roughly constant within the pair. Thus the analysis of the d′s
should give a more precise comparison of the treatments than the comparison
of treatments in a completely randomized design.

The sample of d′s is summarized by the sample mean

d = (

n∑
i=1

di)/n = y1· − y2·

and standard deviation

sd =

√√√√ n∑
i=1

(di − d)2/(n− 1)

The standard error of d is sd = sd/
√
n.
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Inferences are about the unknown “population” mean of differences, µd =
µ1 − µ2, the true effect or difference of the treatments.

If it is assumed that the d′s constitute a random sample from a normal
population with mean µd and standard deviation σd then we can use the one
sample t confidence interval and t test from Chapter 2 to draw inferences about
µd and thus conclusions about the differences in treatments or conditions.

The general form of the paired/dependent samples confidence interval
for µd with a confidence level of 100(1− α)% is thus

d± tα/2;n−1sd/
√
n

The hypotheses for a two-sided test regarding µd are Ho : µd = δ versus
Ha : µd ̸= δ. The hypotheses for the upper one-sided test are Ho : µd ≤ δ
versus Ha : µd > δ. The hypotheses for the lower one-sided test are Ho : µd ≥ δ
versus Ha : µd < δ. The value δ is taken to be 0 if the objective is to determine
if there are any differences in the treatments.

The test statistic for a hypothesis test of µd is

t =
d− δ

sd
=

d− δ

sd/
√
n

where δ is a null hypothesized value for µd, typically 0. P-values are based
on the t distribution with degrees of freedom ν = n − 1, that is number of
differences minus 1.

The paired samples procedures assume normality of the differences. The
procedures do not assume that the standard deviations, σ2

1 and σ2
2 , of y in the

populations are equal.
It can be shown that the variance of the d′s can be written as

s2d = s21 + s22 − 2rs1s2

where r is the sample correlation coefficient.
Thus the test statistic can be written as

t =
d− δ

sd/
√
n

=
d− δ√

s2
d

n

=
(y1· − y2·)− δ√
s21
n +

s22
n − (2rs1s2)

n

Assuming equal group sizes and δ = 0, the paired samples t test statistic
is the same as the test statistic for the independent samples t test statistic of
Equation 3.3,



59

t =
y1· − y2· − (0)√

s21
n1

+
s22
n2

(3.4)

except for the adjustment of the standard error by (2rs1s2)
n , in the denomi-

nator. If the correlation coefficient, r, is positive, then the adjustment results
in a reduction of the standard error. The reduction however may be offset by
the loss in degrees of freedom for the paired samples t test, n− 1 compared to
degrees of freedom for the independent samples t test.

Example 3.3 One semester the author conducted an experiment in his 3 el-
ementary statistics classes to determine if the ability to recall words was de-
pendent on the type of word, concrete or abstract. Two lists of words, each
of size 25, were constructed. List A had 25 concrete words, such as Bridge,
Supermarket, Television; List B had more abstract words, such as Happiness,
Government, Beauty. The entire set of words is given in Table 3.2. The two
lists were constructed so that length of the words and familiarity were not much
different. Each student studied both lists, in a random order, for two minutes,
and then immediately wrote down the number of words that he or she recalled.
The number of words recalled from each list by each student is given in Table 3.3
along with the difference in the numbers of words. Is there sufficient evidence
that recall depends upon the type of word? Use a significance level of 0.05.

In this example µd equals the “true” mean difference of numbers of words
recalled (List A - List B) over a population of students. The value δ = 0 so
that Ho : µd = 0 and the alternative is two sided with Ha : µd ̸= 0. The sample
mean of the differences d = 0.05 with standard deviation sd = 3.45. Thus the
observed value of the test statistic is

t =
0.05− 0

3.45/
√
60

= 0.11

The P-value is determined from a computer program to be P [|t| ≥ |0.11|] =
0.9110 based on a t distribution with 60− 1 = 59 degrees of freedom. Thus at
the 0.05 level of significance there is no evidence of a difference in recall for the
two types of words. Note that since sample size is large then normality of the
population of differences is not necessary for the validity of the test result.

3.3 Connection between Two-Sided Tests and
Confidence Intervals

In the two-sided tests described in this chapter using a significance level of α
the null hypothesis of equality of two population means is rejected and the
alternative of a difference in means is concluded if the P − value ≤ α. It can be
shown in this case that a 100(1−α)% confidence interval for the difference µ1−µ2

will not contain zero, indicating that the two means are different, consistent
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Table 3.2: Words Lists for Student Experiment

List A: Concrete List B: Abstract
Bridge Happiness
Supermarket Government
Bathroom Reputation
Refrigerator Beauty
Chocolate Music
Screwdriver Christmas
Lightning Health
Bicycle Time
Candle Marriage
Sister Magic
Baseball Power
Spoon Love
Apartment Foolishness
Piano Excitement
Underwear Honesty
Microphone Internet
Water Religion
Chimpanzee Fairness
Newspaper Friendship
Television Wealth
Mountain Motivation
Honeybee Inflation
Highway Jealousy
Rainbow Anger
Eyeglasses Competition
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Table 3.3: Number of Words Recalled out of 25

Student List A List B Difference

1 18 17 1
2 20 19 1
3 20 16 4
4 15 14 1
5 17 11 6
6 16 19 -3
7 13 14 -1
8 22 21 1
9 18 17 1
10 16 14 2
11 15 19 -4
12 13 14 -1
13 12 15 -3
14 21 16 5
15 13 12 1
16 20 14 6
17 18 15 3
18 7 10 -3
19 16 23 -7
20 13 14 -1
21 19 22 -3
22 10 19 -9
23 18 15 3
24 11 13 -2
25 14 13 1
26 24 21 3
27 16 16 0
28 12 13 -1
29 12 12 0
30 17 15 2
31 17 22 -5
32 15 16 -1
33 20 19 1
34 21 22 -1
35 19 17 2
36 19 21 -2
37 15 18 -3
38 12 10 2
39 20 12 8
40 17 19 -2
41 17 16 1
42 21 19 2
43 16 15 1
44 14 14 0
45 16 16 0
46 16 18 -2
47 20 13 7
48 17 15 2
49 17 17 0
50 13 12 1
51 18 12 6
52 16 20 -4
53 19 17 2
54 11 17 -6
55 15 18 -3
56 22 25 -3
57 17 13 4
58 12 11 1
59 18 19 -1
60 12 19 -7
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Table 3.4: Power of One-Sided Two Sample t test

Common Sample Size n
E 5 10 15 20 25 30 35 40 45 50
0.5 0.179 0.285 0.379 0.463 0.539 0.606 0.665 0.716 0.761 0.799
0.6 0.219 0.362 0.483 0.587 0.672 0.743 0.780 0.845 0.881 0.909
0.7 0.264 0.445 0.589 0.702 0.787 0.850 0.895 0.928 0.951 0.966
0.8 0.313 0.530 0.689 0.799 0.874 0.922 0.952 0.971 0.983 0.990
0.9 0.366 0.615 0.776 0.875 0.932 0.964 0.981 0.990 0.995 0.998
1.0 0.421 0.694 0.848 0.928 0.967 0.985 0.994 0.997 0.999 1.000
1.1 0.478 0.764 0.902 0.962 0.986 0.995 0.998 0.999 1.000 1.000
1.2 0.536 0.825 0.941 0.981 0.994 0.998 1.000 1.000 1.000 1.000
1.3 0.592 0.875 0.966 0.992 0.998 1.000 1.000 1.000 1.000 1.000
1.4 0.647 0.914 0.914 0.982 0.997 0.999 1.000 1.000 1.000 1.000
1.5 0.698 0.943 0.991 0.999 1.000 1.000 1.000 1.000 1.000 1.000

with the results of the test. Similarly if the null hypothesis is not rejected
(P −value > α), implying that the two means could possibly be the same, then
the 100(1 − α)% confidence interval will contain 0, again consistent with the
test. Thus the confidence interval could be used to perform a two-sided test.
Additionally the confidence interval provides information about the magnitude
of differences between the means.

3.4 Power of the One-Sided Pooled Two Sample
t test

In this section power calculations will be given for the one-sided two indepen-
dent pooled samples t test (assuming equal population variances) under certain
alternatives. Consider the test of the null hypothesis Ho : µ1 − µ2 ≤ 0 versus
the alternative Ha : µ1 − µ2 > 0. Suppose the alternative hypothesis is true.
Let E be defined as the absolute difference |µ1−µ2| in numbers of the common
standard deviation σ, i.e.

E = |µ1 − µ2|/σ

Table 3.4 gives power for various values of E, common sample size n, and
significance level α = 0.05.

Suppose that an educational researcher believes that a new method of teach-
ing reading will increase reading scores by as much as 10 points compared to
a standard method. Variability of reading scores for the standard method has
been about 15 points. The researcher will conduct an experiment comparing the
two methods with two equal sized groups of students. The researcher believes
that variability will be about the same in the two groups and will use the pooled
two sample t test to compare reading scores for the two groups. The researcher
would like at least a 90% chance of concluding that the new method is better
assuming the parameters above are correct.
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Thus E = 10/15 = 0.7. From Table 3.4 it is concluded that the researcher
needs 40 students in each group to achieved a power of 92.8%.
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3.5 SAS Code

3.5.1 Example 3.1

* The following data step inputs the weights for each

of the treated and control animals;

data WEIGHTS;

input Treatment $ WeightGain;

datalines;

Control 16.4

Control 12.8

Control 13.0

Control 10.7

Control 3.9

Control 9.1

Control 8.7

Control 9.5

Control 8.5

Control 6.0

Control 9.0

Control 13.4

Control 3.4

Control 9.6

Control 14.4

Control 11.3

Control 6.8

Control 2.3

Treated 11.6

Treated 8.9

Treated 14.6

Treated 12.4

Treated 13.3

Treated 16.0

Treated 11.1

Treated 15.8

Treated 15.6

Treated 10.7

Treated 12.4

Treated 14.6

Treated 11.2

Treated 10.7

Treated 11.6

Treated 14.7

Treated 13.9

Treated 11.8

Treated 13.4
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Treated 12.1

Treated 13.4

Treated 12.5

;

run;

* The proc means calculates descriptive statistics

associated with the two groups;

proc means data = WEIGHTS;

class treatment;

var weightgain;

run;

* The proc ttest does the necessary calculations necessary

for an independent samples t test and a confidence interval;

proc ttest data = WEIGHTS;

class treatment;

var weightgain;

run;

3.5.2 Example 3.2

* The following data step inputs the scores for each

of the children getting the new and standard methods;

data READING;

input Method $ Score;

datalines;

New 80

New 76

New 70

New 80

New 66

New 85

New 79

New 71

New 81

New 76

Standard 79

Standard 73

Standard 72

Standard 62

Standard 76

Standard 68

Standard 70

Standard 86

Standard 75

Standard 68

Standard 73
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Standard 66

;

run;

* The proc means calculates descriptive statistics

associated with the two methods;

proc means data = READING;

class Method;

var Score;

run;

* The proc ttest does the necessary calculations

for an independent samples t test and a confidence interval;

proc ttest data = READING;

class Method;

var Score;

run;

3.5.3 Example 3.3

* Input the number of words recalled by each student

from List A and List B;

data WORDLIST;

input Student NumWordsA NumWordsB;

datalines;

1 18 17

2 20 19

3 20 16

4 15 14

5 17 11

6 16 19

7 13 14

8 22 21

9 18 17

10 16 14

11 15 19

12 13 14

13 12 15

14 21 16

15 13 12

16 20 14

17 18 15

18 7 10

19 16 23

20 13 14

21 19 22

22 10 19

23 18 15
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24 11 13

25 14 13

26 24 21

27 16 16

28 12 13

29 12 12

30 17 15

31 17 22

32 15 16

33 20 19

34 21 22

35 19 17

36 19 21

37 15 18

38 12 10

39 20 12

40 17 19

41 17 16

42 21 19

43 16 15

44 14 14

45 16 16

46 16 18

47 20 13

48 17 15

49 17 17

50 13 12

51 18 12

52 16 20

53 19 17

54 11 17

55 15 18

56 22 25

57 17 13

58 12 11

59 18 19

60 12 19

;

run;

* Use proc ttest to do the necessary calculations to

perform a paired samples t test and to obtain a

confidence interval for the difference in means;

proc ttest data = WORDLIST;

paired NumWordsA * NumWordsB;

run;
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Problems for Chapter 3

3.1∗ A researcher tested two new fertilizers for growing tomatoes. One fertil-
izer, A, was a fertilizer that was used for two years and the other, B, was a
new fertilizer being tested for the first time. Sixteen tomato plants of the
same variety and about the same size were planted in a garden in a 4x4
rectangular fashion with the plants being about 6 feet apart. The sixteen
plants were randomly assigned to their plots and the two fertilizers were
randomly assigned to the plant/plot combination with eight plants receiv-
ing each of the two fertilizers. The total amount of tomatoes in pounds
from each plant for the two different fertilizers was measured.

a. What is the factor of interest? What is the response variable?

b. What are the experimental units?

c. Is this a completely randomized design or a paired design? Explain.

d. What are some extraneous variables? How are these controlled?

3.2∗ A student in an experimental design class wanted to see if there was a
difference in the amount of time (in minutes) that scented candles burned
as compared with non-scented candles. She bought twenty candles which
appeared to be the same except ten were scented and ten were unscented.
She could not burn all candles in the same day so she decided to burn
a pair of candles, one scented and one unscented per day at roughly the
same time of the day, for ten days. The same two locations in a room were
used for all days. On each day she randomly selected one scented and one
unscented candle. These two were then randomly assigned to location and
initial lighting. The data are given in the table below.

Test Scented Unscented
1 680 696
2 752 697
3 818 750
4 793 774
5 771 672
6 744 676
7 798 782
8 678 777
9 742 762
10 763 703

a. This is a paired design. Explain.

b. What is the factor? What is the response variable?
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c. Is there evidence that scented candles of this kind have different
mean burning times than unscented candles. Use a significance level
of 0.05. Use statistical software to obtain a P-value and look at a
histogram of differences to check the normality assumption.

3.3∗ Identify the experimental design in the following studies as either being
completely randomized or paired/blocked. If the design is a paired design,
then identify the type of pairing (re-using, sorting/grouping or splitting).

a. In a study of the effect of a diet for reducing weight, the weights of
ten subjects are measured both before and after being put on the
diet for five weeks.

b. In a study of flirtatious behavior, sixty male students were given false
information about female job applicants. Thirty of the male students
selected at random were falsely told that the female applicant was
attracted to her interviewer and the other thirty were not told such
false information. The men in both groups were asked if the female
exhibited any flirtatious behavior on the phone.

c. In order to determine whether the zipcode+4 gets a letter faster to
its destination than just the zipcode, a student data project mailed
two letters to each of twenty-six cities. The letters/envelopes were
the same except that one had the 5 digit zipcode on it while the other
letter had the zipcode+5 digits on it.

3.4∗ Approximately 200 patients with Alzheimer’s disease were measured for
mental ability before and after being given 120 mg to 240 mg of ginkgo
biloba, a plant extract, daily for three to six months.

a. What are the conditions of interest to be compared?

b. What are the “experimental” units?

c. Are the conditions assigned to the units? Explain

d. What are the consequences of your response to part (c) on the inter-
pretation of the results of the study?

3.5∗ A trucking firm wishes to choose between two alternate routes for trans-
porting merchandize from one depot to another. One major concern is
the travel time. In a study, 5 drivers are randomly assigned to route A,
the other 5 were assigned to route B. Data was obtained from each driver
on travel time (hours) and given below.

Route A: 18 24 30 21 32

Route B: 22 29 34 25 35

a. What is the factor in this experiment?

b. What is the response variable?
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c. Give one extraneous variable whose effects are potentially balanced
out by the randomization.

d. Based on the data, is there evidence of a difference in driving time
between the two routes? Use the independent samples t test that does
not assume anything about the population variances. Use computer
software to obtain a P-value. Use a significance level of 0.05.

e. Describe an alternate design for this experiment that would use pair-
ing/blocking.

3.6∗ In the article ”Feeding Preferences of Captive Tassel-Eared Squirrels (Sci-
urus Aberti) for Ponderosa Pine Twigs”(Journal of Mammalogy [1980]:
734-737 ) researchers wanted to determine in a laboratory setting if squir-
rels could distinguish between twigs from known feeding trees (FT) and
nonfeeding trees (FT). The feeding trees and nonfeeding trees were de-
termined in the field by the extent of defoliation and amounts of clipped
needles. Squirrels in the field presumably eat from certain Ponderosa
pines depending on nutritional quality, the occurrence of certain plant
compounds in the tree, pheromonal cures and other contextual factors.
Each of five squirrels was tested for preference on 6 different days at two-
week intervals. A testing consisting of providing a squirrel with one FT
twig and one NFT twig and then measuring the amount of the twig eaten
after 24 hours. The data below provide the mean amounts eaten by each
of the six squirrels over the 6 day treatment (The data were approximated
from a bar graph in the article).

Squirrel 1 2 3 4 5
FT 5.5 4.4 6.0 4.8 8.4
NFT 3.2 2.4 3.2 4.4 1.7

a. Is this an independent samples or paired samples design? Explain.

b. Based on the data, is there evidence that squirrels are attracted to
the twigs that come from the FTs. Use statistical software to obtain
a P-value. Use a significance level of 0.05.

3.7∗ The article ”Operational Plantations of Improved Slash Pine: Age 15 re-
sults” (http://www.rngr.net/Publications/sftic/1983/)compared “improved”
and “unimproved” slash pines in terms of volume production and fusiform
rust infection after 15 years of planting. The “improved” trees were grown
from seeds taken from parents selected for volume production, crown and
bole characteristics, and disease resistance. The data below are based on
two stands of slash pines, one with improved (I) and one with unimproved
(U) trees at each of the 10 locations.
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Location Seed Vol/Acre Vol/Acre Fusiform
Source (ft3)o.b. (ft3)i.b. %

Appling Co I 1677 1115 27.3
U 1792 1181 15.4

Atkinson Co I 2248 1535 16.8
U 2041 1355 13.9

Ben Hill Co I 849 529 28.9
U 937 570 12.9

Camden Co I 2252 1534 12.0
U 2102 1402 8.2

Laurens Co I 905 592 60.4
U 1243 794 73.8

Long Co I 849 534 16.1
U 994 625 15.2

Toombs Co I 1076 707 45.2
U 874 546 41.3

Ware Co I 1760 1171 5.8
U 1734 1135 6.7

Wheeler Co I 447 282 35.9
U 577 358 33.0

Wayne Co I 1466 959 13.2
U 1350 862 10.6

a. This is a paired samples design. Explain.

b. Based on the data, is there evidence that “improved” trees have
higher inner bark (i.b.) volume per acre. Use a significance level of
0.05.

3.8∗ Researchers studied the the maximum voluntary closing forces (in new-
tons, N) of the upper and lower lips for 15 young male and 15 young
female subjects (“Maximum Voluntary Closing Forces in the Upper and
Lower Lips of Humans”,Journal of Speech and Hearing Research, Volume
28, 373-376, 1985). Each subject was measured 5 times on the upper lip
and 5 times on the lower lip. The table below gives means of the 5 upper
and lower lip measures approximated from a scatterplot of the data given
in the article.
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Males Females
Subject Lower Lip Upper Lip Subject Lower Lip Upper Lip

1 19.5 3.0 1 7.0 2.5
2 7.5 5.5 2 13.0 3.0
3 17.0 6.0 3 11.0 4.5
4 11.5 2.0 4 8.0 4.0
5 13.0 4.0 5 4.5 2.0
6 16.0 3.5 6 12.0 4.5
7 15.0 5.0 7 9.0 4.0
8 11.0 4.0 8 5.5 3.5
9 10.0 5.5 9 8.5 3.0
10 19.0 4.0 10 5.5 1.0
11 13.5 5.0 11 13.0 3.0
12 9.0 5.0 12 7.0 3.0
13 17.0 5.5 13 11.0 4.0
14 10.0 4.5 14 6.0 3.0
15 21.0 3.5 15 11.0 4.0

a. i. Construct a plot of lower lip force versus gender. Comment on
any difference in average and spread.

ii. Is there evidence of a difference in mean lower lip force between
young males and females? Use statistical software to perform
an independent samples t test (do not assume anything about
population variances). Use a significance level of 0.05.

iii. Why is the independent samples t test more appropriate than
the paired samples t test?

b. Give an another example of a comparison involving the data for which
the independent samples t test would be appropriate. Give an ex-
ample of a comparison for which the paired samples t test would be
appropriate.

3.9∗ In one part of a research study (“Glass Shape Influences Consumption
Rate for Alcoholic Beverages,” PloS ONE 7 (2012) e43007)). each of
160 participants (50 % male) viewed computer images of both straight
and curved 12 fl oz glasses, the activity resulting in a numerical value
reflecting what the participant perceived to represent half full for either
type of glass. The true value of a half full glass (straight or curved) was 30
with the perceived midpoints in volume given by the participants varying
from the true value. The authors gave the following summary;

“One-sample t-tests against a test value of 30 indicated that for both
straight (M = 28, SD = 2, t[159] = -16.91, p < 0.001) and curved (M=21,
SD = 3, t[159] = -37.97, p < 0.001) glasses the half-way point was per-
ceived to be below the true half-way point. A paired-sample t-test indi-
cated a significant difference between the two glass conditions (t[159] =
30.89, p < 0.001).

In the above paragraph M refers to a sample mean.
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a. Give null and alternative hypotheses corresponding to the results of
the paired samples t-test. Assume a two-sided test. Be sure to give an
appropriate symbol and describe in words what that symbol means.

b. Is it possible to do the calculation of the t test statistic by hand given
the information provided? Explain.

c. Using a significance level of 0.05 what is the conclusion that can be
drawn regarding the two glasses and perceived midpoints in volume?

3.10∗ An experiment is conducted to test the effectiveness of a diet supplement
to increase the weight gain of chicks as compared to a control of no sup-
plement. A number of chicks will be fed with the supplement in their
diet and the same number of chicks will be fed the regular diet. An im-
provement in weight gain of on average 50 grams during the test period
is considered practically important. Based on other studies similar to the
current one, the standard deviation of weight gains is believed to be about
100 grams for both the diet supplement and the control groups and the
weight gains should be normally distributed. The two independent sam-
ples t test, assuming equal population standard deviations, will be used
to formally compare the two diets, using a significance level of 0.05. The
power for detecting an increase in weight gain of 50 grams should be about
80%. What group sizes would you recommend?

3.11∗ The American Statistical Association holds an annual poster and project
competition for students from grades K-12. Winners receive a monetary
award and a plaque. One of the winners in the 2013 competition conducted
an experiment to answer the question: Do dryer ball reduce drying time?
The student conducted the experiment in response to an ad that claimed
that balls ”reduce drying time by up to 25%. The student randomly
assigned the next 40 of his family’s wash loads to either be dried with
dryer balls added to the dryer or not. Only one washer and dryer was
used. The student weighed each load prior to drying and recorded how
long it took the load to dry (in minutes) using a stop watch. The dryer
has a sensor that detects when the clothes are dry. The drying times are
provided in the table below.
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Dryer Balls No Dryer Balls
34.5 23.5
28.0 24.5
28.5 22.5
24.0 21.0
24.0 29.0
40.0 21.0
21.5 34.0
29.0 36.0
34.0 34.0
30.0 24.0
33.0 31.0
22.0 26.0
31.0 21.0
22.0 41.0
22.0 32.0
29.0 36.0
21.0 39.0
33.0 29.0
35.0 22.0
24.5 21.0

Use statistical software where appropriate.

a. Construct a dotplot of the drying times versus dryer ball or not.
Compare the two groups in terms of average level and variation.

b. Determine the sample mean and standard deviation of the drying
times for the two groups.

c. Compare the two groups of drying times using an appropriate one-
sided t test. Give null and alternative hypotheses. Give the value
of the test statistic with a P-value and draw a conclusion. Use a
significance level α = 0.05.

3.12 In the article ”Sound Level of Environmental Music and Drinking Behav-
ior: A Field Experiment with Beer Drinkers”( Alcoholism: Clinical and
Experimental Research, Vol 32, No. 10, 20082: 1-4 ) researchers compared
number of drinks (beer) ordered, time spent to drink a glass (minutes),
and number of gulps per drink for two groups of patrons at a bar un-
der two experimental conditions. Unbeknownst to the patrons twenty of
them were assigned at random to listen to background music at the usual
sound level. Another twenty listened to the higher sound level. Means
and standard deviations are reported in the table below.
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Mean (standard deviation)
Level of Time spent to
environmental Number of drinks drink a glass Number of gulps
music ordered (in minutes) per drink
Usual level 2.6 (1.14) 14.51 (4.88) 7.02 (1.26)
High level 3.4 (0.99) 11.45 (2.89) 7.18 (1.29)

The authors reported that “the difference between the 2 experimental
conditions was tested by the help of an unpaired t-test.” They reported
the following result for the comparison of the two groups on time spent to
drink a glass: t(38, two− dailed) = 2.36, P < 0.03. The value of 38 refers
to degrees of freedom. The value of 2.36 is the value of the test statistic
for the unpaired t-test. The article did not indicate how the variable time
spent to drink a glass was recorded for data analysis for the t test if a
patron ordered more than one drink.

i. What are the treatments in this study?

ii. What are the experimental units? Can we tell how many experimen-
tal units there are based on the information reported above?

iii. What are the measurement units in the study? How many are there?
Explain.

iv. Suppose that the authors used the pooled two sample t test as their
unpaired t test. Confirm their calculation by calculating the test
statistic using the summaries provided above.

v. State null and alternative hypotheses for the test conducted. What
is the conclusion based on the reported P-value?

vi. The article stated that subjects were observed sitting at tables in the
bar and only tables with 2 patrons were used for data collection with
at least one of the patrons ordering a beer. Some tables provided
data on one patron and other tables provided data on 2 patrons.
Why does the data collection procedure raise questions about the
use of the unpaired t test?
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Chapter 4

Analysis for the One Factor
Completely Randomized
Design

4.1 Decomposing Data

A medical researcher on aging is studying the effects of diet on the longevity of
mice. Twelve mice were randomly assigned to one of three different diets with
four mice assigned to each diet. Thus the design is completely randomized.
There is only one factor of interest. The diets along with the lifelengths (in
months) of the mice are given below. A dotplot of the data is given in Figure 4.1.

Diet 1 (High Calorie) 22 18 21 22
Diet 2 (Medium Calorie) 20 19 23 21
Diet 3 (Low Calorie) 23 24 20 25

In general suppose there are t treatments and ni observations on the response
y for the ith treatment where i = 1, ...t. In the example above t = 3, where
i = 1 corresponds to Diet 1, i = 2 corresponds to Diet 2, and i = 3 corresponds
to Diet 3. Also n1 = 4, n2 = 4, and n3 = 4. Often treatment group sizes are
the same or similar. Let N =

∑t
i=1 ni be the total number of observations on

y. In this example N =
∑3

i=1 ni = n1 + n2 + n3 = 4 + 4 + 4 = 12. For each
treatment let yij denote the jth observation on treatment i. In this example,
y11 = 22, y32 = 24, etc.

The goal in this chapter is to develop a hypothesis test to determine if the
observed differences in longevity among the three diets are “real” or could be
explained by random extraneous variables, that is error, such as genetics, stress
factors, etc. The hypothesis test will be based on a decomposition of the
data into parts that reflect the contributions of those parts to the variation in
the lifelengths.

77
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Figure 4.1: Plot of Lifelength versus Diet

Table 4.1: Descriptives for Mice Data

Group Mean St.Dev.
Diet 1 (High Calorie) y1· = 20.75 s1 = 1.89
Diet 2 (Medium Calorie) y2· = 20.75 s2 = 1.71
Diet 3 (Low Calorie) y3· = 23.00 s3 = 2.16
All y·· = 21.50 s = 2.07
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Table 4.2: Errors for Mice Receiving Diet 3

e31 = y31 − y3· = 23− 23 = 0
e32 = y32 − y3· = 24− 23 = 1
e33 = y33 − y3· = 20− 23 = −3
e34 = y34 − y3· = 25− 23 = 2

The parts will be based on means and deviations from means. Table 4.1 pro-
vides the means and standard deviations for each diet group and the combined
groups. The mean y·· = 21.50 of all 12 lifespans is called the grand mean.

Now consider a particular diet, say Diet 3, the low calorie diet. While all
mice received Diet 3 the observed lifelengths differed, presumably because of
extraneous variables such as genetics, weight, etc. The effects of these extrane-
ous variables, called “errors” and denoted by e for these mice are measured
by the differences between lifelengths for Diet 3 mice and the mean for Diet 3,
23.00. The errors for all 4 mice receiving Diet 3 are given in Table 4.2.

In a first course in statistics errors were likely called deviations from the
mean and form the basis for a sample variance/standard deviation of a set of
data. In fact the sample variance (see Chapter 2) for the four lifelengths for the
mice receiving Diet 3 would be s23 =

∑n3

j=1(y3j − y3·)
2/(n3 − 1), based on the

what are now being called errors.

The term “error” does not mean that something is wrong with a mouse; it
is simply a reflection of the fact that all animals getting the same Diet will still
vary in lifelength due to other uncontrolled extraneous variables. For example,
the error for the second animal receiving Diet 3 is 1 month. The particular
extraneous variables associated with this animal resulted in a lifelength which
was 1 month higher than the average lifelength of all animals receiving the same
Diet 3. Note that if all lifelengths for mice on Diet 3 had been the same then
the errors would all be 0. Larger errors in magnitude reflect greater effects of
extraneous variables as compared to smaller errors. Note that the sum of the
errors for all four mice receiving Diet 3 is 0 + 1 + −3 + 2 = 0. In general the
differences between a group of values and their mean will equal to 0.

The errors for the other groups are calculated similarly by subtracting from
the lifelengths of mice the mean of the group to which the mice belong. The
errors for groups 1 and 2 are given below.
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Table 4.3: Decomposition of Lifelength Data: Group Mean + Error

yij = yi· + eij

Diet 1 22 = 20.75 + 1.25
18 = 20.75 + −2.75
21 = 20.75 + 0.25
22 = 20.75 + 1.25

Diet 2 20 = 20.75 + −0.75
19 = 20.75 + −1.75
23 = 20.75 + 2.25
21 = 20.75 + 0.25

Diet 3 23 = 23.00 + 0.00
24 = 23.00 + 1.00
20 = 23.00 + −3.00
25 = 23.00 + 2.00

Diet 1
e11 = y11 − y1· = 22− 20.75 = 1.25
e12 = y12 − y1· = 18− 20.75 = −2.75
e13 = y13 − y1· = 21− 20.75 = 0.25
e14 = y14 − y1· = 22− 20.75 = 1.25

Diet 2
e21 = y31 − y2· = 20− 20.75 = −0.75
e22 = y32 − y2· = 19− 20.75 = −1.75
e23 = y33 − y2· = 23− 20.75 = 2.25
e24 = y34 − y2· = 21− 20.75 = 0.25

Note that by solving for lifelength in the definition of error we have a de-
composition of lifelength. Consider Diet 3 again.

y31 = y3· + e31 or 23 = 23 + 0
y32 = y3· + e32 or 24 = 23 + 1

y33 = y3· + e33 or 20 = 23 + (−3)
y34 = y3· + e34 or 25 = 23 + (2)

Thus each observed value of lifelength can be expressed as the Diet 3 mean
lifelength plus the “effect” due to the other uncontrollable variables.

Table 4.3 gives the entire decomposition of the 12 lifelengths in terms of
group mean and error. The set of 12 equations is referred to as the sample
means model for the life lengths data.
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Table 4.4: Decomposition of Lifelength Data

yij = y·· + Ai + eij

Diet 1 22 = 21.50 + -0.75 + 1.25
18 = 21.50 + -0.75 + -2.75
21 = 21.50 + -0.75 + 0.25
22 = 21.50 + -0.75 + 1.25

Diet 2 20 = 21.50 + -0.75 + -0.75
19 = 21.50 + -0.75 + -1.75
23 = 21.50 + -0.75 + 2.25
21 = 21.50 + -0.75 + 0.25

Diet 3 23 = 21.50 + 1.50 + 0.00
24 = 21.50 + 1.50 + 1.00
20 = 21.50 + 1.50 + -3.00
25 = 21.50 + 1.50 + 2.00

There is one more step in the decomposition process. The effect of diet,
denoted with the letter A, will be measured by comparing the mean lifelength
for a diet to the grand mean of all lifelengths. The effects for the three diets,
A1, A2, A3, are calculated as follows:

A1 = y1· − y·· = 20.75− 21.50 = −0.75
A2 = y2· − y·· = 20.75− 21.50 = −0.75
A3 = y3· − y·· = 23.00− 21.50 = 1.50

Thus diet 3 has the “effect” of raising lifelength by 1.50 months compared
to the grand mean of 21.50 months. Diets 1 and 2 have the same effects, that
is of lowering lifelength compared to the grand mean. In general effects can all
be different, but note that the effects add to 0.

Using the effect definition the three diet group means can be decomposed as
follows:

y1· = y·· +A1 or 20.75 = 21.50 + (−0.75)
y2· = y·· +A2 or 20.75 = 21.50 + (−0.75)
y3· = y·· +A3 or 23.00 = 21.50 + (1.50)

Replacing each diet group mean in Table 4.3 with its decomposition results
in Table 4.4 where each lifelength is now written in terms of a sum of grand
mean, diet effect, and error (effect of extraneous variables). This completes the
decomposition of the lifelength data.

The 12 equations in Table 4.4 can be expressed symbolically as

yij = y·· +Ai + eij (4.1)

where i = 1, 2, 3; j = 1, 2, 3, 4; Ai = yi· − y··; and eij = yij − yi·.
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4.2 Degrees of Freedom

A concept associated with the decomposition in the last section and the analysis
in subsequent sections is degrees of freedom. A set of numbers or as we
shall see shortly a sum of squared numbers is said to have a certain “number
of degrees of freedom” associated with them. For example, the 12 values for
lifelength in the decomposition Table 4.4 have “12 degrees of freedom” because
the 12 values can be almost anything, that is all 12 are free to vary–there are no
mathematical restrictions on them. The 12 grand means have only “1 degree of
freedom” since they all have to be the same number, because of the way they
were calculated. The 12 diet/treatment effects in the decomposition table have
2 degrees of freedom because of the repetitiveness within each diet and the fact
that they all add to 0. Only two of the 12 treatment effects are free to vary.
The other 10 can be determined by repeating and the restriction that they add
to zero. The 12 “errors” in the decomposition table have 9 degrees of freedom.
This is so because within each diet only 3 of the errors are free to vary–once we
know 3, we can get the 4th since the errors for a particular diet have to add to
zero.

The degrees of freedom (df) are additive, that is

df for data = df for grand mean+ df for treatment effects + dffor errors

or

N = 1 + (t− 1) + (N − t)

In our example,

12 = 1 + 2 + 9

4.3 Population Models

The set of equations

yij = yi· + eij

for i = 1, 2, 3 and j = 1, 2, 3, 4 given in Section 4.1 is referred to as the sample
means model. The set of equations that uses the sample effects Ai,

yij = y·· +Ai + eij

is referred to as the sample effects model. Both models are sample based,
that is based on the observed samples of data.

The population means model for the lifelength data refers to the set of
12 equations:

yij = µi + ϵij
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for i = 1, 2, 3 and j = 1, 2, 3, 4.
The population effects model refers to the set of 12 equations:

yij = µ· + αi + ϵij

for i = 1, 2, 3 and j = 1, 2, 3, 4.
In the above equations,

• µi = the population or true mean longevity for the ith diet

• µ· = the population or true grand mean = (
∑t

i=1 µi)/t

• αi = µi − µ· = population or true effect of the ith diet on longevity

• ϵij = yij − µi = population or true experimental error , that is true or
population effect of extraneous variables associated with the experimental
unit for the jth observation on the ith diet.

Assumptions of the population model are that the experimental errors, ϵij
′s,

are values of independent normal random variables each with mean or expected
value of 0 and unknown variance σ2. That is,

• ϵij
′s are statistically independent

• ϵij
′s each have mean of 0, that is E[ϵij ] = 0

• ϵij
′s each have variance, that is E[(ϵij − E[ϵij ])

2] = E[ϵ2ij ] = σ2

• ϵij
′s are normally distributed

Thus σ2 is the expected square of an error. As will be seen shortly, σ2 will
be estimated by an averaging of the squares of the estimated errors, that is the
eij

′s.
It is important to realize that µ·, µi, αi, ϵij in the population effects model are

NOT the same as y··, yi·, Ai and eij in the sample effects model. The latter are
based on sample data; the former are the “true” values obtained if populations
or very large numbers of mice were observed for each diet. The distinction is
analogous to the distinction between a sample mean and a population mean in
a first course in statistics. Inferences, such as confidence interval estimation and
hypothesis testing, concern the “true” values.

Returning to the lifelength study, recall that for Diet 3,

y31 = y·· +A3 + e31 (4.2)

y32 = y·· +A3 + e32

y33 = y·· +A3 + e33

y34 = y·· +A3 + e34
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Substituting actual values we have

23 = 21.50 + 1.50 + 0 (4.3)

24 = 21.50 + 1.50 + 1

20 = 21.50 + 1.50 + (−3)

25 = 21.50 + 1.50 + 2

With the population effects model we would have, for example, for y31,

y31 = 23 = µ· + α3 + ϵ31

We cannot fill in values for µ·, α3, ϵ31 because we don’t know what the true
values are. The value of y·· = 21.50 is an estimate of µ·; A3 = 1.50 is an
estimate of α3; e31 = 0 is an estimate of ϵ31.

4.4 Testing for Overall Differences

4.4.1 Logic of the Test

In this section a hypothesis test is developed to test the null hypothesis that all
true or population treatment means are equal versus the alternative hypothesis
that the true means are not all the same. We will use the lifelength data to
illustrate. In that example the null hypothesis is

Ho : µ1 = µ2 = µ3

versus the alternative hypothesis,

Ha : not all µi
′s are equal

Note that µ1 = µ2 = µ3 is equivalent to α1 = α2 = α3 = 0 so an equivalent set
of hypotheses is

Ho : α1 = α2 = α3 = 0

versus

Ha : not all αi
′s = 0

Intuitively if the null hypothesis of no difference in true diet means or equiv-
alently 0 diet effects holds, then the sample mean lifelengths yi· would all be
about the same or the sample diet effects Ai would all be about 0. If the
alternative hypothesis is really true, then the sample means should be different
looking or the sample diet effects should not be close to 0.

Just because the sample diet means look different or the sample diet effects
are not close to 0 does not necessarily prove that the diets truly have differential
effects. One can obtain different sample means yi· even if the µi are the same
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or obtain sample effects Ai different from 0 even if the true effects αi are all
0, simply because of the effects of extraneous factors. To see this consider the
means model for Diet 1 and Diet 2, which are, respectively:

y1j = µ1 + ϵ1j

and

y2j = µ2 + ϵ2j

Remember that the ϵ’s represent the effects of extraneous variables. Now av-
eraging y11, y12, y13, y14 and y21, y22, y23, y24 according to the two models we
have

y1· = µ1 + ϵ1· (4.4)

y2· = µ2 + ϵ2· (4.5)

Thus according to the models,

y1· − y2· = (µ1 − µ2) + (ϵ1· − ϵ2·)

The difference in sample means is a function of the difference in true means
AND the difference of (average) errors. So even if the true means for diet 1
and diet 2 are the same (µ1 − µ2 = 0), it is still possible to obtain two sample
means that are different simply due to the effects of extraneous variables. Thus
what is needed to assess whether or not differences in sample means are “real”
is some idea of what to expect for a difference in sample means solely from the
effects of extraneous variables.

Consider the decomposition table again in Table 4.4. The calculated errors
eij measure solely the effects of extraneous variables. The calculated diet effects,
Ai, however, contain the effects of extraneous variables and also the effects of
diets if there truly are diet effects. So intuitively if the calculated diet effects, Ai

are “larger” than the calculated errors or extraneous variable effects, eij , then
that is evidence that diet truly has an effect on lifelength. If the calculated diet
effects are of about the same magnitude as the extraneous variable effects, then
there is not enough evidence of true Diet effects.

In order to develop a test statistic which compares the “Diet” effects Ai with
the extraneous variable effects eij , we shall summarize the two sets of values.
We are going to summarize the two sets not by averaging the effects, but by
averaging the squares of the effects.

The sum of squared effects for the Diet treatment, SSTR, is defined as the
sum of the squared diet effects for all observations in the decomposition table,
and since there are repeats,

SSTR = n1A
2
1 + n2A

2
2 + n3A

2
3 (4.6)
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= 4(−0.75)2 + 4(−0.75)2 + 4(1.50)2

= 2.25 + 2.25 + 9.00

= 13.50

The mean square of effects for the Diet treatment, MSTR, is obtained by
dividing SSTR by its degrees of freedom, t− 1 = 3− 1 = 2.

MSTR = SSTR/(t− 1) (4.7)

= 13.50/2

= 6.75

Now we will “average” the squared errors eij by summing the squares of
these values and then dividing by degrees of freedom. The sum of squared
errors, denoted by SSE, for the lifelength data is

SSE = (1.25)2 + (−2.75)2 + (0.25)2 + (1.25)2 Diet1

+(−0.75)2 + (−1.75)2 + (2.25)2 + (0.25)2 Diet2

+(0.00)2 + (1.00)2 + (−3.00)2 + (2.00)2 Diet3

= 10.75 + 8.75 + 14.00

= 33.5 (4.8)

The mean squared error, denoted by MSE, is defined as the sum of squared
errors divided by the degrees of freedom associated with the errors, which is
N − t = 12− 3 = 9. Thus

MSE = SSE/(N − t) = 33.5/9 = 3.72

It would be expected that mean square diet effects, MSTR, would be about
the same as MSE if diet truly has no effect, or equivalently it would be expected
that the ratio MSTR

MSE would be about 1. If diet does have an effect, then we would

expect MSTR
MSE to be somewhat larger than 1. Expectations can be quantified.

It can be shown (see Kuehl [14], page 62) that

E[MSTR] = σ2 +
1

t− 1

t∑
i=1

niα
2
i

E[MSE] = σ2

Recall that σ2 is the common variance of the errors ϵij
′s.

Thus on average MSE is equal to the error variance σ2 regardless of whether
or not treatments have an effect. The actual observed value of MSE will be our
estimate of the unknown error variance. If diet truly has an effect on lifelength
(not all αi are zero) then the expected value or average of MSTR is greater
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than the expected value or average of MSE, equal to σ2. If diet does not have
an effect (αi are all zero), then the expected values of MSTR and MSE are
both equal to σ2, in which case the observed values of MSTR and MSE should
be similar.

In the lifelengths example, the estimate of the error variance σ2, regardless
of whether treatment effects exist, is the observed value of MSE = 3.72. The
observed value of MSTR = 6.75. Thus the ratio

MSTR

MSE
= 6.75/3.72 = 1.81

Thus the ratio is larger than 1, but is it “large enough” to provide convincing
evidence that the diets truly have an effect. In order to answer this question
we need to consider the probability or sampling distribution of the ratio MSTR

MSE
under the null hypothesis that Diet has no effect. That is, what are the possible
values of the ratio simply due to error (effects of extraneous variables) when diet
has no real effect. This sampling distribution is considered in the next section.

4.4.2 The F Sampling Distribution

In this section we describe the sampling distribution of the ratio MSTR
MSE .

Fact 4.1 From statistical theory it is known that if the t populations corre-
sponding to the t different treatments are normally distributed with identical
population variances, the observations from the populations are independent,
and the null hypothesis Ho : α1 = α2 = ... = αt = 0 is true, then the ra-
tio MSTR/MSE has the Fisher’s “F” probability distribution with “numerator
degrees of freedom”, ν1 = t−1 and “denominator degrees of freedom” ν2 = N−t.
The numerator degrees of freedom ν1 = t−1 is the degrees of freedom associated
with MSTR in the numerator of the ratio. The denominator degrees of freedom
ν2 = N − t is the degrees of freedom associated with MSE in the denominator
of the ratio.

Properties of the F probability distribution:

• There are an infinite number of F distributions, depending on two param-
eters, the numerator degrees of freedom, ν1, and denominator degrees of
freedom, ν2.

• The F distribution represents the probability distribution of a statistic
which is non-negative, such as MSTR/MSE.

• The F distributions are positively skewed.

The density curves for three different F distributions are given in Figure 4.2.
Note the skewness of the distributions. The upper α probability points, denoted
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Figure 4.2: Examples of F distributions
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by Fα;ν1,ν2 , are given in the Appendix, Tables A.7 and A.8, for α = 0.05 and
α = 0.01, respectively, for various values of ν1 and ν2. For example, the upper
0.05 probability point for the F distribution in Figure 4.2 with ν1 = 2 and ν2 = 6
is from Table A.7, F0.05;2,6 = 5.14.

The right tail of the appropriate F distribution for the Diet example with
ν1 = t − 1 = 3 − 1 = 2 and ν2 = N − t = 12 − 3 = 9 is graphed in Figure 4.3.
The upper 0.05 probability point, 4.26, and the observed value of the ratio
MSTR/MSE are plotted along the horizontal axis. The P-value is shaded.

The observed value of the F ratio for the lifelength data is F = 1.81. The
P-value associated with this value is

P − value = P (F ≥ 1.81)

This P-value can only be approximated from Table A.7 as P > 0.05. A
computer program will show that P-value = 0.218. Assuming a significance
level α = 0.05 then there is not enough evidence that Diet has an effect on
lifelength.

4.4.3 Summary of the F test for Treatment Effects

The null and alternative hypotheses for the test of treatment effects for t treat-
ments are

Ho : α1 = α2 = . . . = αt = 0

or equivalently,

Ho : µ1 = µ2 = . . . = µt
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Figure 4.3: P-value for Diet Example
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The alternative hypothesis is

Ha : not all αi
′s = 0

or equivalently,
Ha : not all µi

′s are equal

The test statistic is

F =
MSTR

MSE
=

SSTR/(t− 1)

SSE/(N − t)

where

SSTR =

t∑
i=1

niA
2
i =

t∑
i=1

ni(yi· − y··)
2

and

SSE =

t∑
i=1

ni∑
j=1

(eij)
2

=

t∑
i=1

ni∑
j=1

(yij − yi·)
2

= (n1 − 1)s21 + (n2 − 1)s22 + ...+ (nt − 1)s2t (4.9)

where s21, s
2
2, ..., s

2
t are the sample variances of the responses in treatment groups

1, 2, .., t, respectively. Thus SSE can be calculated with only a knowledge of the
treatment group sizes and variances (or standard deviations).
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Table 4.5: Decomposition of Lifelength Data

yij = y·· + Ai + eij

Diet 1 22 = 21.50 + -0.75 + 1.25
18 = 21.50 + -0.75 + -2.75
21 = 21.50 + -0.75 + 0.25
22 = 21.50 + -0.75 + 1.25

Diet 2 20 = 21.50 + -0.75 + -0.75
19 = 21.50 + -0.75 + -1.75
23 = 21.50 + -0.75 + 2.25
21 = 21.50 + -0.75 + 0.25

Diet 3 23 = 21.50 + 1.50 + 0.00
24 = 21.50 + 1.50 + 1.00
20 = 21.50 + 1.50 + -3.00
25 = 21.50 + 1.50 + 2.00

If the null hypothesis is true and the assumption of independent, normally
distributed errors with mean 0 and common variance holds, the F ratio above
has the “F” distribution with ν1 = (t − 1) numerator degrees of freedom and
ν2 = (N − t) denominator degrees of freedom.

At a significance level of α the null hypothesis would be rejected if the
observed value of the test statistic, Fo, is larger than Fα;(t−1),N−t the upper
α probability point from the appropriate F distribution. Equivalently the null
hypothesis is rejected if P − value ≤ α, where P − value = P [F ≥ Fo]. Upper
α probability points for α = 0.05 and α = 0.01 are given in Tables A.7 and A.8,
respectively. P-values can only be approximated using Table A.7 or A.8. More
precise P-values can be obtained using statistical computing software such as
SAS or SPSS.

4.5 The Analysis of Variance (ANOVA) Table

The decomposition of the lifelength data is reproduced in Table 4.5.
Recall that we used the sum of squared diet effects and the sum of squared

errors to develop a test for true diet effects, where SSTR = 13.50 and SSE =
33.50.

In this section we will also sum the squares of the lifelengths, which we shall
call total sum of squares and denote by SSTOT :

SSTOT = (22)2 + (18)2 + (21)2 + (22)2 Diet1

+(20)2 + (19)2 + (23)2 + (21)2 Diet2

+(23)2 + (24)2 + (20)2 + (25)2 Diet3

= 1733 + 1731 + 2130

= 5594 (4.10)
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Table 4.6: ANOVA Table for Lifelength Data

Source of Variation Df SS MS F P-value

Grand Mean 1 5547
Treatments 2 13.50 6.75 1.81 0.218

Error 9 33.50 3.72

Total 12 5594

We will also consider the sum of the squares of the grand mean, SSGM
associated with each lifelength. This is easier since all values are the same.

SSGM = 12(21.50)2 = 5547

Note that

SSTOT = SSGM + SSTR+ SSE

or
5594 = 5547 + 13.50 + 33.50

From a conceptual standpoint SSTOT can be regarded as a summary mea-
sure of variability in the lifelengths and we are partitioning this variability into
components, that due to some common value, the grand mean, that due to the
treatments (diets here), and that due to error. We are doing an ANalysis Of
the VAriation (ANOVA) in lifelengths by breaking it up into parts.

An ANOVA table is a summary of the components of the total variation in
the response variable with also the F ratio for testing for treatment effects (and
a P-value if you are using a computer). An ANOVA table in our example is
given in Table 4.6.

The general form of the ANOVA table for a one factor completely random-
ized design when there are t treatments and N total observations is given in
Table 4.7. Note that MSE, the estimate of the variance of the error terms in
the population model, appears in the denominator of the F test statistic and
thus is used to determine if there are treatment effects. MSE will also be used
in the next chapter to help determine which means differ if we conclude from
the F test that there are differences somewhere.

An alternative partitioning of the lifelength data is given in Table 4.8.
The grand mean of 21.50 months was subtracted from each lifelength (this

is called lifelength corrected for the grand mean). The interpretation now is
that each deviation of a lifelength from the grand mean of 21.50 is partly due
to diet effect and partly due to error. For example, the difference between the
lifelength of 22 months and the grand mean of 21.50 months (= 0.50) is part
diet effect of −0.75 and part error of 1.25.
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Table 4.7: General ANOVA Table - One Factor CRD

Source of Variation Df SS MS F P-value

Grand Mean 1 SSGM
Treatments t− 1 SSTR MSTR MSTR/MSE ***

Error N − t SSE MSE

Total N SSTOT

Table 4.8: Decomposition of Lifelength Corrected for Grand Mean

yij − y·· = Ai + eij

Diet 1 0.50 = -0.75 + 1.25
-1.50 = -0.75 + -2.75
-0.50 = -0.75 + 0.25
0.50 = -0.75 + 1.25

Diet 2 -1.50 = -0.75 + -0.75
-2.50 = -0.75 + -1.75
1.50 = -0.75 + 2.25
-0.50 = -0.75 + 0.25

Diet 3 1.50 = 1.50 + 0.00
2.50 = 1.50 + 1.00
-0.50 = 1.50 + -3.00
3.50 = 1.50 + 2.00
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Table 4.9: ANOVA Table for Lifelength Data: Correction for Grand Mean

Source of Variation Df SS MS F P-value

Treatments 2 13.50 6.75 1.81 0.218
Error 9 33.50 3.72

Total (Corrected) 11 47

Table 4.10: General ANOVA Table with Correction for Grand Mean - One
Factor CRD

Source of Variation Df SS MS F P-value

Treatments t− 1 SSTR MSTR MSTR/MSE ***
Error N − t SSE MSE

Total(Corrected) N − 1 SSTOTC

To obtain the modified ANOVA table we sum the squares of the corrected
lifelengths and obtain the total sum of squares corrected for the mean, denoted
by SSTOTC

SSTOTC = (0.50)2 + (−1.50)2 + . . .+ (3.50)2 = 47

The sums of squares partitioning is

SSTOTC = SSTR+ SSE

or in the lifelength example,

47 = 13.50 + 33.50

The modified ANOVA table would then look as in Table 4.9. Note that rather
than summing squares of lifelengths corrected for the grand mean, SSTOTC

can be calculated by SSTOTC = SSTOT − SSGM .
The general form of the ANOVA table with the correction for the grand

mean is given in Table 4.10.

4.6 Independent Samples t Test Revisited

Consider the two-sided pooled independent samples t test introduced in Chapter
3 that assumed equal population variances. This special testing situation can
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be shown to be equivalent to ANOVA and F test of this chapter with t = 2
treatments.

First we can model the independent samples t test situation as follows. Let
y11, y12, ..., y1,n1

be independent measurements from a population with mean
µ1. Let y21, y22, ..., y2,n2 be independent measuresment from a population with
mean µ2. Let σ

2 be the common population variance.
We can decompose the yij as in this chapter:

yij = µi + ϵij

where the ϵij are independent, normally distributed random variables with mean
of 0 and variance of σ2. These are the conditions that are assumed in this
chapter. Note that without the assumption of equal population variances the
variances of the errors would not be equal. Thus an F test for the equality of
the t = 2 means should be equivalent to the two-sided t test of Chapter 3. An
example follows.

Example 4.1 This example is from the Chapter 3 exercises. A trucking firm
wishes to choose between two alternate routes for transporting merchandise from
one depot to another. One major concern is the travel time. In a study, 5 drivers
are randomly assigned to route A, the other 5 were assigned to route B. Data
was obtained from each driver on travel time (hours) and given below.

Route Travel Time (hours)
A 18,24,30,21,32
B 22,29,34,25,35

Is there evidence of a difference in driving time between the two routes?

The following table gives the means and standard deviations of the two
groups of travel times:

Route n Mean Standard Deviation
A 5 25.0 5.92
B 5 29.0 5.61

The pooled sample variance s2p, the estimate of the common population variance,
is s2p = 33.25. The observed t ratio is t = −1.10. The two-sided P-value is
P [|t| ≥ | − 1.10|] = 0.3046 with df = 5 + 5− 2 = 8. The ANOVA table for the
route times data is given below.

Source of Variation Df SS MS F P-value

Routes 1 40 40 1.20 0.3046
Error 8 266 33.25

Total (Corrected) 9 306
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Note that the P-value for the observed F ratio of 1.20 is the same as the P-
value for the observed t ratio of −1.10. It can also be shown that the square
of the t ratio is equal to the F ratio. Note here that the square of the t ratio,
(−1.10)2 = 1.21 differs slightly from the observed F ratio, 1.20, because of
rounding. The equivalence is only between the two-sided independent samples
t test, assuming equal population variances, and the F test. It should also be
noted that the estimate of the common population variance, s2p = 33.25 from
the t procedure, is the same as MSE = 33.25, the estimate of the common
variance of the error terms in the one factor population model. Thus one can
cast the pooled independent samples t test (with equal population variances)
within the context of analysis of variance.
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4.7 SAS Code

4.7.1 Lifelength Example

* Lifelength Example;

* Input diet and lifelength;

data DIET;

input Diet Lifelength;

datalines;

1 22

1 18

1 21

1 22

2 20

2 19

2 23

2 21

3 23

3 24

3 20

3 25

;

run;

* Use proc glm to obtain ANOVA table;

proc glm data = DIET;

class Diet;

model Lifelength = Diet;

run;

4.7.2 Example 4.1

* Example 4.1;

* Input;

data TruckRoute;

input Route $ TravelTime;

datalines;

A 18

A 24

A 30

A 21

A 32

B 22

B 29
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B 34

B 25

B 35

;

* proc ttest for obtaining results of independent

samples t test;

proc ttest data = TruckRoute;

class Route;

var TravelTime;

* proc glm for obtaining ANOVA table;

proc glm data = TruckRoute;

class Route;

model TravelTime = Route;

run;
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Problems for Chapter 4

4.1∗ A psychologist was interested in the effects of three different kinds of drugs
on the mean time to complete a certain task. The psychologist used 15
subjects and randomly assigned 5 of them to each drug A, B, and C. The
data represent the time in minutes to complete the task.

A 20 22 25 24 19
B 21 26 26 27 25
C 30 24 26 25 30

a. Construct a decomposition table (one without the correction for the
grand mean and one with the correction for the grand mean).

b. Construct the ANOVA table (not corrected for the grand mean and
corrected for the grand mean).

c. At the 5% significance level, is there evidence of a difference in true
mean time (or a difference in true effects from 0) for the drugs? Use
the upper 0.05 probability point from the F-table in the Appendix
rather than a P-value to make your decision.

4.2∗ Consider the following incomplete ANOVA table for a one factor com-
pletely randomized design.

Source of Variation Df SS MS F P-value

Grand Mean 1 1728
Treatments 4
Error 105

Total 30 1918

a. Fill in the blanks of the table. Using Table A.7 or A.8 give an in-
equality expressing the approximate P − value.

b. How many treatments are in the study upon which this ANOVA table
is based?

c. Assuming equal replication of treatments how many replications are
there per treatment?

d. At a significance level of α = 0.01 would the null hypothesis of equal
true treatment means be rejected?

4.3∗ A former statistics student investigated the effects of plant food and music
on growth of pansy plants. She investigated two levels of plant food (yes,
no) and three levels of music (techno, classical, reggae). The data for plant
growth (in inches) for those replications where plant food was supplied
only is given below.
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Classical 2.3 2.6 2.9 3.0
Reggae 2.5 2.1 2.3 2.4
Techno 1.7 2.3 2.7 2.9

Is there evidence that the different types of music result in different mean
growth for pansy plants? Use α = 0.05.

4.4∗ Two students, Cheryl Butterworth and Josh Hiller, performed an exper-
iment to study the effect of beverage type on the amount of time for ice
cubes to melt. Types of beverage were coca-cola, orange juice, and water.
The beverages were left out over night to set them at a constant temper-
ature. Fifteen ice cubes of approximately the same size were randomly
assigned to fifteen identical cups. Equal amounts of beverage, five of each
kind, were randomly assigned to the cups. The amount of time (minutes)
for the ice cubes to melt was recorded and given below.

Coca cola 19 17 15 14 18
Orange Juice 27 28 30 26 27
Water 10 11 13 7 9

a. What is the factor of interest?

b. What are the treatments?

c. What are the experimental units?

d. Give some extraneous variables that are part of experimental error?

e. Give the (true) effects model for the data and describe the parameters
of the model within the context of this study.

f. Is there evidence of a difference in melting times for the three treat-
ments?

i. Give the null and alternative hypotheses in terms of the effects
parameters from part (e).

ii. Use a statistical program to calculate the F ratio and associated
P-value. Answer the question at the 0.05 level of significance.

iii. What assumptions about the true errors are necessary in order
to ensure that your conclusions in part(ii) are valid?

4.5∗ This data comes from an example in Kutner, Nachtsheim, Neter, and
Li [15]. Four brands of rust inhibitors (A,B,C,D) were compared. The
four brands were assigned to 40 experimental units, 10 for each brand in
a completely randomized design. The rust inhibition measurements are
given in the table below with the higher the value, the more effective is
the brand.

A 43.9 39.0 46.7 43.8 44.2 47.7 43.6 38.9 43.6 40.0
B 89.8 87.1 92.7 90.6 87.7 92.4 86.1 88.1 90.8 89.1
C 68.4 69.3 68.5 66.4 70.0 68.1 70.6 65.2 63.8 69.2
D 36.2 45.2 40.7 40.5 39.3 40.3 43.2 38.7 40.9 39.7
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With the help of statistical software answer the following:

a. Give the sample means and standard deviations. Does there appear
to be a different in brands?

b. Obtain an ANOVA table for this data. What is the estimate of the
variance of the errors?

c. Is there evidence of a difference in the degree of inhibition? Use
α = 0.05. Use the P-value obtained from your software to answer
the question.

4.6∗ In the article “A prospective study of patients with chronic back pain ran-
domised to group exercise, physiotherapy or osteopathy”(Physiotherapy
[2008]: 94, 21-28) researchers investigated the difference on a disability
index between patients treated with group exercise, physiotherapy or os-
teopathy. At baseline and at a 6-week followup patients were measured
on the Oswestry Diability Index (ODI), which measures aspects of pain
and functional ability on a scale from 0 (no disability) to 100 (extreme
disability). The response variable was the difference in the ODI (baseline
- followup). The treatment group sizes, means, and standard deviations
are given in the following table.

Treatment Group n Mean Standard Deviation
Group exercise 24 4.5 8.4
Physiotherapy 35 4.1 8.0
Osteopathy 39 5.0 10.5

Suppose an ANOVA was conducted on the data. What is SSE? What is
MSE?

4.7∗ Suppose that an experiment is to be conducted with 3 treatments labelled
1,2,3 and with group sizes of n1 = n2 = n3 = 10. Suppose that the
true or population means of the response variable corresponding to the
treatments are µ1 = 4, µ2 = 4, and µ3 = 7. Suppose that the true error
variance is σ2 = 2.

a. What are the true or population effects of the treatments?

b. Suppose that an observation on the response variable under treat-
ment 2 is Y = 6. Decompose this observation of Y = 6 according to
the population effects model.

c. If this experiment is repeated a large number of times then MSE will
on average be equal to what value?

d. If this experiment is repeated a large number of times then MSRT
will on average be equal to what value?
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e. Suppose the experiment is performed once and data is collected. Is
it possible that the difference in sample means for treatments 1 and
2, y1·−y2·, will be different than 0 even though there is no difference
in the corresponding population means (µ1 = 4, µ2 = 4)? Explain.

4.8∗ In the article “Sex differences in viewing sexual stimuli: An eye-tracking
study in men and women” (Hormones and Behavior [2007]: Vol. 51,
pgs 524-533 ) researchers compared three groups of heterosexuals: males,
normal (menstrual) cycling females (NC), and oral contracepting females
(OC), on various responses to viewing sexual stimuli. Stimuli were sex-
ually explicit photos of heterosexual couples engaged in oral sex or in-
tercourse. Because researchers thought that any group differences found
in the current study could be due to differences in participants’ previous
experience viewing sexually explicit stimuli, sexual attitudes, sexual mo-
tivation, or comfort with visual sexual stimuli, they compared the three
groups on these variables using a one factor ANOVA. Only the results of
the comparison of the three groups on sexual motivation as measured by
the frequency of sexual thoughts and desire to engage in sexual activity
in the previous month is given here. The table below gives the means and
standard deviations of the sexual motivation variable for the three groups.

Group n Mean Standard Deviation
Men 15 5.2 0.71

NC Women 15 3.8 1.18
OC Women 14 4.64 0.73

a. Give the population effects model for this study and describe within
context the various terms in the model. Be sure to give the assump-
tions associated with the error terms.

b. Give an appropriate null and alternative hypothesis in terms of effects
of group.

c. The F ratio was 8.72 with P-value = 0.001.

i. What are the numerator and denominator degrees of freedom for
the F ratio?

ii. What does the P-value mean as a probability within the context
of this problem?

iii. What is your conclusion in context? Use a significance level of
0.05.

4.9∗ The American Statistical Association holds an annual poster and project
competition for students from grades K-12. Winners receive a monetary
award and a plaque. One of the winners in the 2013 competition conducted
an experiment to answer the question: Do dryer ball reduce drying time?
The student conducted the experiment in response to an ad that claimed
that balls ”reduce drying time by up to 25%. The student randomly
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assigned the next 40 of his family’s wash loads to either be dried with
dryer balls added to the dryer or not. Only one washer and dryer was
used. The student weighed each load prior to drying and recorded how
long it took the load to dry (in minutes) using a stop watch. The dryer
has a sensor that detects when the clothes are dry. The drying times are
provided in the table below.

Dryer Balls No Dryer Balls
34.5 23.5
28.0 24.5
28.5 22.5
24.0 21.0
24.0 29.0
40.0 21.0
21.5 34.0
29.0 36.0
34.0 34.0
30.0 24.0
33.0 31.0
22.0 26.0
31.0 21.0
22.0 41.0
22.0 32.0
29.0 36.0
21.0 39.0
33.0 29.0
35.0 22.0
24.5 21.0

Analyze the data in two ways. Use the two-sided independent samples t
test first. Give the value of the t test statistic, degrees of freedom, and
P-value. Next analyze the data using a one factor analysis of variance.
Give the value of the F statistic, degrees of freedom, and P-value. Show
the equivalence between the two sets of results in terms of test statistics,
degrees of freedom, and P-values and thus the same conclusion is reached.

4.10 This example is based on an experiment described in the article “Acid rain
and the survival of fresh water guppies” (www.all-science-fair-projects.com)
Fifty freshwater guppies were placed in 5 small fish tanks, 10 guppies per
tank. The pH level of the water in the 5 tanks were 4.5, 5.0, 5.5, 6.0, and
6.5. The number of fish surviving was recorded 2, 4, 6, 8, and 10 hours
after the start of the experiment. The data are given below.
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Tank No pH Level Number of Fish Surviving
Start 2 hrs 4 hrs 6 hrs 8 hrs 10 hrs

1 6.5 10 10 10 10 10 10
2 6.0 10 10 9 9 8 8
3 5.5 10 9 9 8 8 7
4 5.0 10 3 1 0 0 0
5 4.5 10 1 0 0 0 0

i. The treatments are the 5 different pH levels of water. How many
replicates are there of each treatment?

ii. Is the one factor analysis for the completely randomized design (6
observations per pH level) discussed in this chapter appropriate for
the analysis of this data? Explain.

4.11 This example is based on data reported in Oehlert ([24], page 61) on
leaflet angle (degrees) from plants in the genus Albizzia after exposure
to red light. Certain plants from this genus have the ability to fold and
unfold their leaves under various light conditions. The researcher selected
15 leaves and subjected them to red light for 3 minutes. The leaves were
then divided at random into three groups with 5 leaves per group. The
groups were defined by the length of time, 30, 45, or 60 minutes after
exposure to the red light when leaflet angle was measured for the leaves.
The data are given below.

Delay (minutes) Angle (degrees)
30 140 138 140 138 142
45 140 150 120 128 130
60 118 130 128 118 118

a. What is the factor in this study? What are the treatments? What
are the experimental units?

b. Construct a decomposition table (one without the correction for the
mean and one with the correction for the mean).

c. Construct the ANOVA table (not corrected for mean and corrected
for mean).

d. At the 5% significance level, is there evidence of a difference in true
mean angle (or a difference in true effects from 0) among the delay
times? Use the upper 0.05 probability point from the F-table in the
Appendix rather than a P-value to make your decision.
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Chapter 5

Multiple Comparisons

5.1 Introduction

If it has been concluded from the F test from ANOVA that there are some
differences in the means of a response variable, then a researcher typically would
want to know which means differ. Depending upon the study objectives the
researcher may wish to make pairwise comparisons of all possible means and
then rank the treatments. Or the researcher may only be interested in comparing
treatment means with a control mean. In another scenario the researcher may
wish to compare means of subsets of treatments. The researcher will in general
make multiple comparisons of the means to satisfy the objectives of the
study.

5.2 Types of Multiple Comparisons

5.2.1 All Pairwise Comparisons

If there are t treatments in a study then it is easily shown that there are

m =
t!

2!(t− 2)!

possible pairwise comparisons, where in general the symbol x! stands for the
product (x)(x−1) . . . (1). For example, if t = 3 there are 3 possible comparisons;
if t = 4 there are 6 possible comparisons, and so on.

Suppose that a one factor experiment is conducted using a completely ran-
domized design as in Chapter 4. A significant F test is obtained and the re-
searcher is interested in making all possible pairwise comparisons of the t means.
One approach to making the m comparisons is the do m t-tests according to
methods of Chapter 3. We shall use the pooled independent samples t test that
assumes equal population variances, consistent with the assumption of equal
population variances in the ANOVA. The pooled standard deviation sp in the
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test statistic from Chapter 3 will be replaced by
√
MSE from the ANOVA.

Suppose that population means µi and µj are to be compared with i and j
referring to two of the possible t means. Then for an α level of significance and
a two-sided test the null hypothesis Ho : µi = µj is rejected if P-value ≤ α, or
equivalently, ∣∣∣∣∣∣ yi· − yj·

√
MSE

√
1
ni

+ 1
nj

∣∣∣∣∣∣ ≥ tα
2 ;ν (5.1)

or

|yi − yj | ≥ tα
2 ;ν

√
MSE

√
1

ni
+

1

nj
(5.2)

Here tα
2 ;ν refers to the upper α

2 probability point from a t distribution with

degrees of freedom ν = N − t associated with MSE.
√
MSE is the estimate

from ANOVA of the common population standard deviation σ. The product√
MSE

√
1
ni

+ 1
nj

is the standard error of the difference in sample means yi·−yj·.

Note that this procedure differs slightly from the t test considered in Chapter 3.
First the estimate of the population standard deviation,

√
MSE, is based on all

t samples, not just the two samples being compared. The appropriate degrees
of freedom, ν, is the degrees of freedom associated with MSE. For other designs
discussed later in this text, degrees of freedom associated with the estimate
of the population standard deviation will differ from that of the one factor
completely randomized design.

A 100(1− α)% confidence interval for the difference (µi − µj) is

(yi· − yj·)± (tα
2 ;ν)

√
MSE

√
1

ni
+

1

nj
(5.3)

If the confidence interval does not include zero then the null hypothesis is re-
jected and we conclude that the two population means µi and µj are different.
If the interval includes zero the null hypothesis is not rejected, i.e. there is not
enough evidence that the two means are different.

Example 5.1 Source: Weber and Skilling, p. 241. A company is considering
three different covers for boxes of a brand of cereal. Box cover 1 has a picture
of a sports hero eating the cereal, cover 2 has a picture of a child eating the
cereal, and cover 3 has a picture of a bowl of the cereal. The company wants
to determine which cereal box type provides for the most sales. Eighteen test
markets were selected by the company and each box type was randomly assigned
to six markets. The number of boxes of this cereal sold per 10,000 population in
a specified period is recorded for each test market. The sales are as follows:

Cover 1: Sports Hero 52.4 47.8 52.4 51.3 50.0 52.1
Cover 2: Child 50.1 45.2 46.0 46.5 47.4 46.2
Cover 3: Cereal Bowl 49.2 48.3 49.0 47.2 48.6 48.2
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Table 5.1: Descriptives for Sales Data

Group Mean St.Dev.
Cover 1 (Sports Hero) y1· = 51.00 s1 = 1.81
Cover 2 (Child) y2· = 46.90 s2 = 1.72
Cover 3 (Cereal Bowl) y3· = 48.42 s3 = 0.71

Table 5.2: ANOVA Table for Box Cover Sales

Source of Variation Df SS MS F P-value

Covers 2 51.57 25.78 11.43 0.0010
Error 15 33.83 2.26

Total (Corrected) 17 85.40

Is there evidence of a difference in population mean sales among the three types
of covers? Use a significance level of 0.05. If the F test for overall differences is
significant then use 95% t confidence intervals to determine which means differ.

Table 5.1 provides the means and standard deviations of the sales data for
the three cover types. The ANOVA table is given in Table 5.2.

The differences in the mean sales for the three cover types are significant with
F = 11.43 and P-value= 0.0010. The endpoints for the confidence intervals for
the differences in population means µ1 − µ2, µ1 − µ3, and µ2 − µ3, respectively,
are

(y1· − y2·) ± (t 0.05
2 ;15)

√
MSE

√
1
n1

+ 1
n2

(y1· − y3·) ± (t 0.05
2 ;15)

√
MSE

√
1
n1

+ 1
n3

(y2· − y3·) ± (t 0.05
2 ;15)

√
MSE

√
1
n2

+ 1
n3

The upper 0.025 percentile from the t distribution, t 0.05
2 ;15, with ν = 15 degrees

of freedom is, from Table A.2, 2.131. Thus the endpoints for the 3 confidence
intervals are:

(51.00− 46.90) ± (2.131)
√
2.26

√
1
6 + 1

6

(51.00− 48.42) ± (2.131)
√
2.26

√
1
6 + 1

6

(46.90− 48.42) ± (2.131)
√
2.26

√
1
6 + 1

6

or
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4.10 ± 1.85
2.58 ± 1.85
−1.52 ± 1.85

Thus the three intervals are:

2.25 ≤ µ1 − µ2 ≤ 5.95
0.73 ≤ µ1 − µ3 ≤ 4.43

−3.37 ≤ µ2 − µ3 ≤ 0.33

It can be concluded that the box cover with the sports hero results in the highest
means sales. There is not enough evidence of a difference in mean sales between
the box cover with the child and the box cover with the bowl of cereal. It is
estimated with 95% confidence that the mean sales with the sports hero as the
box cover is between 2.25(/10, 000) and 5.95(/10, 000) boxes higher than when
the cover has a child. It is estimated with 95% confidence that the mean sales
with the sports hero as the box cover is between 0.73(/10, 000) and 4.43(/10, 000)
boxes higher than when the cover has a bowl of cereal.

5.2.2 Contrasts - Generalization of Pairwise Comparisons

The difference between two means, µi − µj , is an example of a more general
comparison of the means called a contrast. In some studies there is some
kind of structure to the treatments and interest is not in all possible pairwise
comparisons but in certain pre-planned comparisons of subgroups of the means.

Let µ1, ..., µt be the population treatment means. Then we define a contrast
of the means to be a linear combination of the means, C:

C = c1µ1 + c2µ2 + ...+ ctµt (5.4)

where the c′s are constants defined so that c1 + c2 + ...+ ct = 0.
Suppose in a study with one factor there are t = 4 treatments with means

µ1, ..., µ4. An example of a contrast would be a pairwise comparison such as
µ3 − µ4 because we can write this difference as C1 where

C1 = 0µ1 + 0µ2 + (1)µ3 + (−1)µ4

where c1 = 0, c2 = 0, c3 = −1, and c4 = 1 with the sum of the c′s being 0.
However another example of a contrast would be C2 defined as

C2 =
1

2
µ1 +

1

2
µ2 −

1

2
µ3 −

1

2
µ4

This contrast represents a comparison of the average of µ1 and µ2 with the
average of the µ3 and µ4. Here c1 = 1

2 , c2 = 1
2 , c3 = −1

2 , and c4 = −1
2 with the

sum of the c′s equalling 0.
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We will now consider estimation and hypothesis testing regarding an arbi-
trary contrast defined as in Equation 5.4. We first need an estimate of C.

The point estimate of the contrast C in Equation 5.4 is

Ĉ = c1y1· + c2y2· + ...+ ctyt· (5.5)

This estimate is normally distributed with mean or expected value

E[Ĉ] = C (5.6)

and variance, denoted by σ2{Ĉ}, can be shown to be

σ2{Ĉ} = c21σ
2{y1·}+ c22σ

2{y2·}+ ...+ c2tσ
2{yt·}

= c21
σ2

n1
+ c22

σ2

n2
+ ...+ c2t

σ2

nt

= σ2(
c21
n1

+
c22
n2

+ ...+
c2t
nt

) (5.7)

In practice the error variance, like in Chapter 4, is unknown and is estimated
with MSE from the analysis of variance. Thus the estimate of the variance of
Ĉ, denoted by s2{Ĉ} is

s2{Ĉ} = MSE(
c21
n1

+
c22
n2

+ ...+
c2t
nt

) (5.8)

The estimated standard error, s{Ĉ} of the estimated contrast Ĉ is the square
root of the estimated variance, that is,

s{Ĉ} =

√
s2{Ĉ} (5.9)

Since Ĉ is normally distributed with mean C and variance σ2{Ĉ} then the
ratio

Ĉ − C√
σ2{Ĉ}

(5.10)

has a standard normal distribution. If we replace the denominator with the
estimate we have the ratio

Ĉ − C√
s2{Ĉ}

(5.11)

which has a t distribution with degrees of freedom equal to N − t for the one
factor model in a completely randomized design.

Thus the endpoints for the 100(1− α)% confidence interval for C is:
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Ĉ ± tα/2;N−t

√
s2{Ĉ} (5.12)

Testing hypotheses about C usually involves testing hypotheses of the form:

H0 : C = 0 (5.13)

Ha : C ̸= 0 (5.14)

The test statistic is

t =
Ĉ√
s2{Ĉ}

(5.15)

The null hypothesis is rejected and the alternative accepted at the α level
of significance if |t| ≥ tα/2;N−t or P-value ≤ α. An example follows.

Example 5.2 A study was conducted at a large university to compare different
methods of teaching the non-calculus based elementary statistics course. Five
different methods were used:

Method 1: Lecture method of instruction, large class
Method 2: Lecture method of instruction, large class with smaller problem

sessions once a week
Method 3: Lecture method of instruction, small class
Method 4: Half lecture, half group work, small class
Method 5: All group work, small class
The five methods of instruction were assigned completely at random to 30

sections, with six sections per method. At the end of the session students rated
their satisfaction with the course on a scale from 1 to 15, with larger values indi-
cating greater satisfaction. The response variable is the class mean satisfactory
score.

Four comparisons of the methods were formulated prior to the conduct of the
study:

1. Large classes versus small classes (1,2 vs 3,4,5)

2. Comparison of large classes, with and without problem sessions (1 vs. 2)

3. Comparison of small classes, all group work versus other (3,4 vs 5)

4. Comparison of small classes, lecture versus mix of lecture and group (3 vs
4)

The researchers used a significance level of 0.05 to test each comparison.

The values of the class mean satisfaction score for the different methods of
instruction are given in Table 5.3.

Table 5.4 provides the means and standard deviations of the satisfaction
data for the five methods of instruction.
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Table 5.3: Satisfaction Data

Method 1 8.0 9.3 8.3 6.6 10.7 7.8
Method 2 7.3 7.7 8.2 10.0 8.7 8.6
Method 3 8.7 10.6 10.7 10.4 8.1 7.5
Method 4 11.5 10.2 9.3 9.3 12.1 11.7
Method 5 9.4 10.9 8.2 8.7 9.3 9.2

Table 5.4: Descriptives for Satisfaction Data

Group Mean St.Dev.
Method 1 y1· = 8.45 s1 = 1.40
Method 2 y2· = 8.42 s2 = 0.94
Method 3 y3· = 9.33 s3 = 1.41
Method 4 y4· = 10.68 s4 = 1.25
Method 5 y5· = 9.28 s5 = 0.91

Table 5.5: ANOVA Table for Instruction Method Satisfaction

Source of Variation Df SS MS F P-value

Methods 4 20.37 5.09 3.53 0.0205
Error 25 36.09 1.44

Total (Corrected) 29 56.47
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The ANOVA table is given in Table 5.5. The differences in the sample mean
class satisfaction scores are significant at the 0.05 level with F = 3.53, P =
0.0205.

The contrasts of the instruction method population means corresponding to
the four comparisons of interest are:

C1 = (
1

2
)µ1 + (

1

2
)µ2 + (−1

3
)µ3 + (−1

3
)µ4 + (−1

3
)µ5

C2 = (1)µ1 + (−1)µ2 + (0)µ3 + (0)µ4 + (0)µ5

C3 = (0)µ1 + (0)µ2 + (
1

2
)µ3 + (

1

2
)µ4 + (−1)µ5

C4 = (0)µ1 + (0)µ2 + (1)µ3 + (−1)µ4 + (0)µ5 (5.16)

Note that the coefficients add to 0 for each of the linear combinations of
means.

The estimated contrasts are:

Ĉ1 = (
1

2
)y1· + (

1

2
)y2· + (−1

3
)y3· + (−1

3
)y4· + (−1

3
)y5·

= (
1

2
)8.45 + (

1

2
)8.42 + (−1

3
)9.33 + (−1

3
)10.68 + (−1

3
)9.28

= 8.43− 9.76

= −1.33 (5.17)

Ĉ2 = (1)y1· + (−1)y2· + (0)y3· + (0)y4· + (0)y5·

= (1)8.45 + (−1)8.42 + (0)9.33 + (0)10.68 + (0)9.28

= 0.03 (5.18)

Ĉ3 = (0)y1· + (0)y2· + (
1

2
)y3· + (

1

2
)y4· + (−1)y5·

= (0)8.45 + (0)8.42 + (
1

2
)9.33 + (

1

2
)10.68 + (−1)9.28

= 10.00− 9.28

= 0.72 (5.19)

Ĉ4 = (0)y1· + (0)y2· + (1)y3· + (−1)y4· + (0)y5·

= (0)8.45 + (0)8.42 + (1)9.33 + (−1)10.68 + (0)9.28

= −1.35 (5.20)

The estimated variances of the estimated contrasts are from 5.11:

s2{Ĉ1} = (1.44)(
(1/2)2

6
+

(1/2)2

6
+

(−1/3)2

6
+

(−1/3)2

6
+

(−1/3)2

6
)

= 0.20

s2{Ĉ2} = (1.44)(
(1)2

6
+

(−1)2

6
+

(0)2

6
+

(0)2

6
+

(0)2

6
)
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= 0.48

s2{Ĉ3} = (1.44)(
(0)2

6
+

(0)2

6
+

(1/2)2

6
+

(1/2)2

6
+

(−1)2

6
)

= 0.36

s2{Ĉ4} = (1.44)(
(0)2

6
+

(0)2

6
+

(1)2

6
+

(−1)2

6
+

(0)2

6
)

= 0.48

The small and large classes will be compared first. The null and alternative
hypotheses are

H0 : C1 = 0

Ha : C1 ̸= 0

The observed value of the test statistic is t = Ĉ1

s{Ĉ1}
= −1.33√

0.20
= −2.97. For

a significance level of 0.05 the upper 0.05/2 probability point is tα/2;N−t =
t0.05/2;30−5 = 2.060. Since |−2.97| ≥ 2.060, the alternative hypothesis is ac-
cepted and it is concluded that there is a difference in mean satisfaction be-
tween the small and large classes. The 95 percent confidence interval for C1 is
−1.33± (2.060)(

√
0.20) or −1.33± 0.92 or

−2.25 ≤ C1 ≤ −0.41

Thus we are 95% confident that small classes result on average anywhere be-
tween 0.41 and 2.25 points higher on the satisfaction scale compared to large
classes.

The second comparison is a comparison between the large classes for problem
session effect. The null and alternative hypotheses are:

H0 : C2 = 0

Ha : C2 ̸= 0

The observed value of the test statistic is t = Ĉ2

s{Ĉ2}
= 0.03√

0.48
= 0.04. Since

|0.04| < 2.060 there is not enough evidence of an effect of problem session on
student satisfaction among the large class methods. The 95% confidence interval
for C2 is 0.03± (2.060)(

√
0.48) or 0.03± 1.43 or

−1.40 ≤ C2 ≤ 1.46

The interval includes 0, indicating a possibility of no difference in mean satis-
faction between the large classes with and without the problem sessions.

The contrast C3 is a comparison of satisfaction among the small classes,
those with all group work versus those with some group work and no group
work.
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H0 : C3 = 0

Ha : C3 ̸= 0

The observed value of the test statistic is t = Ĉ3

s{Ĉ3}
= 0.72√

0.36
= 1.20. Since

|1.20| < 2.060 there is not enough evidence of a difference in satisfaction between
those small classes doing all group work and those small classes doing some or
no group work. The 95% confidence interval for C3 is 0.72± (2.060)(

√
0.36) or

0.72± 1.24 or

−0.52 ≤ C3 ≤ 1.96

The interval includes 0, indicating a possibility of no difference in mean satis-
faction between the small classes with all group work and those with some or
no group work.

The contrast C4 is a comparison of satisfaction among the small classes,
those with all lecture versus those with some lecture or no lecture.

H0 : C4 = 0

Ha : C4 ̸= 0

The observed value of the test statistic is t = Ĉ4

s{Ĉ} = −1.35√
0.48

= −1.95. Since

|−1.95| < 2.060 there is not quite enough evidence of a difference in satisfaction
between those small classes doing all lecture and those doing some lecture or
none. The 95% confidence interval for C4 is from −1.35 ± (2.060)(

√
0.48) or

−1.35± 1.43 or

−2.78 ≤ C4 ≤ 0.08

The interval includes 0, indicating a possibility of no difference in mean
satisfaction between the small classes with all lecture versus those with some
lecture and none.

5.3 Effect of Multiple Testing on Type I Error
Rate and Confidence Levels

In the procedures described in the last section α represents the pre-assigned
probability of making a Type I error for a particular test, called the significance
level of the test. Recall that a Type I error is made by concluding that the
alternative hypothesis is true when in fact the null hypothesis is true. 1 − α
is the pre-assigned confidence level associated with each confidence interval.
Recall that the confidence level is the pre-assigned probability of the interval
containing the population parameter that the interval is estimating.
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Of interest in multiple testing is the overall or experimentwise signifi-
cance level, denoted by αe and the overall or experimentwise confidence
level denoted by CLe.

The experimentwise wise significance level αe is defined to be the probability,
assuming that all true means are the same, of at least one Type I error among
the m tests. It can be shown that if each of the m hypothesis tests is carried
out at the α level, then

αe ≤ mα

In the context of multiple testing α is now called the comparison wise
Type I error rate or significance level. Thus if each ofm = 6 tests is conducted
at the α = 0.05 comparison wise significance level then the experimentwise
error rate αe ≤ (6)(0.05) = 0.3. The probability of at least one Type I error
among the 6 tests can be as high as 0.3. If there are t = 5 treatments and all
m = 10 tests are conducted then the experimentwise error rate can be as high
as 10(0.05) = 0.5. This is the price one pays for multiple testing. The more
tests that one performs the greater the likelihood of concluding at least one
significant result if in fact there are no differences among the treatment means.

A similar situation holds for confidence interval estimation. If m confidence
intervals are calculated for differences in population means, then the experi-
mentwise or overall confidence level, CLe, is defined to be the probability
that all m confidence intervals are correct. If the m confidence intervals are
conducted, each at confidence level (1− α) then it can be shown that

CLe ≥ 1−mα

In this context (1 − α) is called the comparison wise confidence level.
So for example if m = 6 and the 95% confidence level is used for each of the
6 intervals, then the probability that all 6 intervals are correct is not 95%, but
can be as low as 1− (6)(.05) = 0.7 or 70%.

There are several methods that have been proposed to reduce the size of
the experimentwise error rate, αe when conducting several tests (or to increase
the experimentwise confidence level, CLe, when constructing several intervals).
Two of these methods are discussed in Sections 5.4 and 5.5.

5.4 Bonferroni method

The Bonferroni approach can be used for general contrasts as well as for pairwise
comparisons. The Bonferroni approach recognizes that the experimentwise error
rate is

αe ≤ mα

where α is the comparison wise significance level used for each test. So suppose
we want the experimentwise error rate to be at most α, rather than mα. Then
clearly if we carry out each test at comparison level of α

m rather than α we have
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αe ≤ m
α

m
= α

So if we want the experimentwise error rate to be at most 0.05, then choose
the comparison wise level to be 0.05/m. If m = 6 then each t test should be
carried out at the comparison wise error rate of 0.05

6 = 0.008. Thus in general to
insure that the experimentwise error rate is at most some pre-specified α level
for m tests use α

m for the comparison wise error rate.

5.4.1 Set of m Contrasts

According to the Bonferroni method, for a set of m pre-planned contrasts,
C1, C2, ..., Cm the null hypothesis H0 : Ci = 0 would be rejected in favor of
the alternative H0 : Ci ̸= 0 if |t| ≥ tα/2m;N−t where

t =
Ĉi√
s2{Ĉi}

(5.21)

Or equivalently reject the null hypothesis for a contrast if P-value ≤ α/2m.
These m tests would have an experimentwise error rate αe ≤ α.

The endpoints for the Bonferroni adjusted confidence intervals are:

Ĉi ± tα/2m;N−t

√
s2{Ĉi} (5.22)

These m confidence intervals would have an experimentwise confidence level of
at least 1− α.

Note that the t percentile is t α
2m ;N−t, the upper α

2m percentile from a t
distribution with N − t degrees of freedom. The necessary t probability point
for the Bonferroni procedures will not generally be found in the usual t table,
Table A.2, since the right tail probability α

2m will usually not correspond to one
of the listed right tail probabilities. The appropriate t probability points for the
Bonferroni procedures can be obtained from either Table A.3 or Table A.4. Use
Table A.3 if the desired experimentise error rate, αe is to be at most 0.05 (or the
desired experimentwise confidence level is to be at least 0.95). Use Table A.4
if the desired experimentise error rate, αe is to be at most 0.01 (or the desired
experimentwise confidence level is to be at least 0.99). Enter either table with
the appropriate degrees of freedom N − t for MSE and m equal to the number
of comparisons.

The instruction example (Example 5.2) will be reconsidered here. There
were m = 4 contrasts of interest. Thus to ensure that the experimentwise error
rate is at most 0.05 the values of the test statistics need to be compared to
t0.05/2(4);30−5 = 2.69 from Table A.3. Note that the value 2.69 is greater than
the critical value used previously of 2.069, and thus the Bonferroni procedure
is more conservative. The values of the t statistics for the four contrasts C1,
C2, C3, and C4, respectively, were -2.97, 0.04, 1.20, and -1.95. As before only
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the comparison of satisfaction for the small and large classes, C1, is significant.
Since the Bonferroni t probability point is different it is possible for different
conclusions to be reached. The Bonferroni confidence intervals for the contrasts
C1, C2, C3, and C4 with experimentwise confidence level of at least 95% are

(−1.33) ± 2.69(
√
0.20)

(0.03) ± 2.69(
√
0.48)

(0.72) ± 2.69(
√
0.36)

(−1.35) ± 2.69(
√
0.48)

or

−1.33 ± 1.20
0.03 ± 1.86
0.72 ± 1.61
−1.35 ± 1.86

Thus the four Bonferroni intervals with experimentwise confidence level of at
least 95% are

−2.53 ≤ C1 ≤ −0.13
−1.83 ≤ C2 ≤ 1.89
−0.89 ≤ C3 ≤ 2.33
−3.21 ≤ C4 ≤ 0.51

These intervals are wider than unadjusted intervals, again illustrating the con-
servative nature of the Bonferroni procedure.

5.4.2 All Pairwise Comparisons

For all pairwise comparisons of means using the Bonferroni method and exper-
imentwise error rate of at most α one rejects the null hypothesis Ho : µi = µj

if

|yi· − yj·| ≥ t α
2m ;ν

√
MSE

√
1

ni
+

1

nj

If one wants to ensure that m confidence intervals have an experimentwise
confidence level of at least 1 − α then the comparison wise confidence level for
each interval should be 1− α

m . The form of the Bonferroni confidence intervals
is

(yi· − yj·)± (t α
2m ;ν)

√
MSE

√
1

ni
+

1

nj

Determination of the appropriate t probability point is illustrated in Example
5.3.
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Example 5.3 The Bonferroni confidence intervals will be illustrated with the
sales data from Example 5.1. If an experimentwise confidence level of at least
95% is desired for the three intervals then from Table A.3 with ν = 15 and
m = 3, the appropriate t percentile t 0.05

2(3)
;15 = 2.69. Thus the endpoints of the

Bonferroni confidence intervals with experimentwise confidence level of at least
95% are:

(51.00− 46.90) ± 2.69
√
2.26

√
1
6 + 1

6

(51.00− 48.42) ± 2.69
√
2.26

√
1
6 + 1

6

(46.90− 48.42) ± 2.69
√
2.26

√
1
6 + 1

6

or

4.10 ± 2.33
2.58 ± 2.33
−1.52 ± 2.33

Thus the three intervals are:

1.77 ≤ µ1 − µ2 ≤ 6.43
0.25 ≤ µ1 − µ3 ≤ 4.91

−3.85 ≤ µ2 − µ3 ≤ 0.81

Note that the t probability point used for the Bonferroni intervals, 2.69, is
larger than the t probability point used for the usual t intervals, 2.131. This
results in larger error margins for the differences in the sample means and thus
wider confidence intervals for the Bonferroni intervals. In general wider confi-
dence intervals might result in different conclusions because wider intervals are
more likely to include 0. However for this example the conclusions are the same.
The box cover with the sports hero results in the greatest mean sales. There
is no evidence of a difference in mean sales between the box cover with a child
and that with a bowl of cereal. We are at least 95% confident in this set of
conclusions being correct. A comparison of the unadjusted t and Bonferroni
procedures for pairwise comparisons is made in Section 5.6.

5.5 Tukey-Kramer Method for Pairwise Com-
parisons

The Bonferroni method uses a larger t percentile to ensure that the experimen-
twise error rate is at most some prescribed value. The Tukey-Kramer multiple
comparison method also uses a larger percentile, but one from an entirely dif-
ferent distribution, called the Studentized Range distribution.

The null hypothesis Ho : µi = µj for a pairwise comparison is rejected if

|yi· − yj·| ≥
qα;ν,t√

2

√
MSE

√
1

ni
+

1

nj
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where qα;ν,t is the upper α probability point from the Studentized Range Dis-
tribution, tabulated in Tables A.5 (α = 0.01) and A.6 (α = 0.05). The tables
depend upon a degrees of freedom parameter, ν, which for the one-way ANOVA
is degrees of freedom associated with MSE and t, the number of means being
compared.

If the group sizes ni are all equal, then the experimentwise error rate for the
set of all pairwise comparisons is exactly α, that is αe = α. If the group sizes
are not equal then αe ≤ α. Thus one can prescribe the experimentwise error
rate or an upper bound for it.

The Tukey-Kramer confidence intervals for the differences µi − µj are

(yi· − yj·)±
qα;ν,t√

2

√
MSE

√
1

ni
+

1

nj

The confidence intervals have an experimentwise confidence level, CLe of exactly
(1− α) if the group sizes are identical. If the group sizes are not identical then
the CLe ≥ (1− α).

Example 5.4 The Tukey-Kramer confidence intervals will be illustrated with
the sales data from Example 5.1. If an experimentwise confidence level of 95%
is desired then Table A.6 has for ν = 15 and t = 3, q0.05;15,3 = 3.67. Thus the
endpoints of the Tukey-Kramer confidence intervals are

(51.00− 46.90) ± 3.67√
2

√
2.26

√
1
6 + 1

6

(51.00− 48.42) ± 3.67√
2

√
2.26

√
1
6 + 1

6

(46.90− 48.42) ± 3.67√
2

√
2.26

√
1
6 + 1

6

or

4.10 ± 2.25
2.58 ± 2.25
−1.52 ± 2.25

Thus the three intervals are:

1.85 ≤ µ1 − µ2 ≤ 6.35
0.33 ≤ µ1 − µ3 ≤ 4.83

−3.77 ≤ µ2 − µ3 ≤ 0.73

Notice that the multiplier, 3.67√
2
= 2.60, for the Tukey intervals, is larger than the

multiplier of 2.131 for the t intervals of Example 5.1, but slightly smaller than
the multiplier of 2.69 used in the Bonferroni intervals. Thus the Tukey-Kramer
intervals are wider than those for the unadjusted or usual t procedure but not
as wide as those for the Bonferroni procedure. The conclusions are the same as
for the unadjusted t and Bonferroni procedures. However the conclusions can
be different than the two other procedures. A comparison is made between the
three procedures in Section 5.6.
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5.6 Summary and Comparison of the Three Meth-
ods

1 Depending upon the research objectives, comparisons among means fol-
lowing a significant F ratio may involve all pairwise comparisons or more
general comparisons among the means (contrasts). The type of compar-
ison to be made is specified in the research protocol before the data is
collected.

2 A multiple comparison procedure refers to a procedure for making multi-
ple comparisons of means. One possible procedure is to perform a series
of t tests for the comparisons. (See sections 5.2.1, 5.2.2). The t tests can
be used to make the set of all pairwise comparisons or to make a set of
more general comparisons which might include some pairwise comparisons.
The usual t tests do not control or adjust for the experimentwise signif-
icance level. Subsequently these procedures will be called unadjusted t
procedures. The Bonferroni procedure controls or adjusts for the exper-
imentwise significance level and can be used if the set of comparisons is
all pairwise or some other set of more general contrasts. The group sizes
do not have to be of equal size. The Tukey-Kramer procedure is used
to control or adjust the experimentwise significance level when the set of
comparisons is all pairwise. The group sizes do not have to be of equal
size. When the group sizes are the same the Tukey-Kramer procedure is
then called the Tukey procedure.

3 Suppose that the set of comparisons of interest is the set of all pairwise
comparisons. Then the confidence intervals for all three methods (unad-
justed t, Bonferroni, and Tukey-Kramer) can be written as

estimate ±(margin of error)
estimate ±(multiplier)× SE(estimate)

where estimate = yi· − yj· and SE(estimate) =
√
MSE

√
1
ni

+ 1
nj
.

Table 5.6 provides the multipliers for the three methods for the set of
all pairwise comparisons for α = 0.05, when there are t = 3 treatments
(m = 3 comparisons) comparisons and when there are t = 4 treatments
(m = 6 comparisons) for various degrees of freedom ν.

Note that the unadjusted t procedure multiplier is smallest and the Bon-
ferroni procedure multiplier is largest, with Tukey-Kramer procedure mul-
tiplier in between. Thus if used with the same set of data (same MSE),
the Bonferroni and Tukey-Kramer procedures will have wider intervals
than those for the unadjusted t procedure. The Bonferroni intervals will
be wider than the Tukey intervals but less so with increasing degrees of
freedom. Wider intervals are more likely to include 0 and thus less likely
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Table 5.6: Multipliers for Multiple Comparison Procedures

Multiplier for α = 0.05
t m ν Unadjusted t Bonferroni Tukey-Kramer
3 3 6 2.45 3.29 3.07

9 2.26 2.93 2.79
12 2.18 2.78 2.67
15 2.13 2.69 2.60
18 2.10 2.64 2.55
21 2.08 2.60 2.52
24 2.06 2.57 2.49
27 2.05 2.55 2.48

4 6 8 2.31 3.48 3.20
12 2.18 3.15 2.97
16 2.12 3.01 2.86
20 2.09 2.93 2.80
24 2.06 2.88 2.76
28 2.05 2.84 2.73

to conclude significance difference in means. The Bonferroni and Tukey-
Kramer procedures are thus more conservative than the unadjusted t pro-
cedure with the Bonferroni procedure being more conservative than the
Tukey-Kramer procedure. Being more conservative is a good characteris-
tic of a procedure if in fact there are no differences among the means, but
not good if there are differences among the means. If there are differences
among the means somewhere then the Bonferroni and Tukey-Kramer will
have less statistical power to detect those differences than the unadjusted t
procedure. Thus a balance has to be struck between Type I error rate and
statistical power. The Tukey-Kramer procedure is often used because it
offers better protection against the Type I error rate than the unadjusted t
test but has better statistical power than the Bonferroni procedure. How-
ever a researcher might use the unadjusted t procedure if the purpose of
the study is to select among several proposed treatments a few for further
study. The Type I error rate may not of major concern in this situation.
The Tukey-Kramer or the Bonferroni procedures would be used in future
studies of the selected treatments.

5.7 P-values for Bonferroni and Tukey Methods

Computer programs, such as SAS and SPSS will report t statistics and two-
sided P-values for the Bonferroni and Tukey procedures as well as confidence
intervals. The P-values have been adjusted so that conclusions based on these
are equivalent to conclusions based on the confidence intervals. The t statistics
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Table 5.7: P-values for Pairwise Comparisons of Box Covers

Cover Cover Mean Diff Std.Error DF t Value P-value Bonf P Tukey P

1 2 3.1 0.87 15 4.73 0.0003 0.0008 0.0007
1 3 2.58 0.87 15 2.98 0.0094 0.0281 0.0239
2 3 -1.52 0.87 15 -1.75 0.1007 0.3020 0.2201

along with P-values are given in Table 5.7 for the cereal data. “P-value” refers
to the unadjusted P-value, while “Bon P” and “Tukey P” refer to the Bonferroni
and Tukey-Kramer adjusted P-values.
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5.8 SAS Code for Chapter 5

5.8.1 Example 5.1

* Input sales (number of boxes) for

three types of box covers;

data CEREAL;

input BoxCover $ NumberBoxes;

datalines;

SportsHero 52.4

SportsHero 47.8

SportsHero 52.4

SportsHero 51.3

SportsHero 50.0

SportsHero 52.1

Child 50.1

Child 45.2

Child 46.0

Child 46.5

Child 47.4

Child 46.2

CerealBowl 49.2

CerealBowl 48.3

CerealBowl 49.0

CerealBowl 47.2

CerealBowl 48.6

CerealBowl 48.2

;

* Use proc glm to obtain results of F test

for overall differences in mean sales and

to obtain pairwise comparisons using

Multiple t, Bonferroni, and Tukey procedures;

proc glm data = CEREAL;

class BoxCover;

model NumberBoxes = BoxCover;

lsmeans BoxCover / cl pdiff t;

lsmeans BoxCover / cl pdiff t adjust = Bonferroni;

lsmeans BoxCover / cl pdiff t adjust = tukey;

run;
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Problems for Chapter 5

5.1∗ Suppose that there are t = 5 treatments in a study with 6 replications per
treatment. Suppose that the F test for overall differences is significant and
interest is in making all pairwise comparisons by constructing confidence
intervals for differences in pairs of means? Suppose that MSE is 36.

a. How many possible intervals are there? That is what is the value of
m?

b. What is the appropriate t percentile for the unadjusted t procedure
if the comparison wise error rate is set at 0.01. What is the margin of
error associated with each of the differences in sample means? What
is the lower bound on the the experimentwise confidence level?

c. Suppose that the Bonferroni procedure is to be used with the ex-
perimentwise confidence level required to be at least 0.99. What is
the appropriate t-percentile? What is the margin of error associated
with each of the differences in sample means?

d. Suppose that the Tukey procedure is to be used with experimentwise
confidence level specified to be exactly 0.99. What is the appropriate
probability point from the Studentized Range distribution? What is
the margin of error associated with each of the differences in sample
means?

e. Which procedure would result in the widest confidence intervals?
Which would result in the narrowest confidence intervals? Explain.

5.2∗ Two students, Cheryl Butterworth and Josh Hiller, performed an exper-
iment to study the effect of beverage type on the amount of time for ice
cubes to melt. Types of beverage were coca-cola, orange juice, and water.
The beverages were left out over night to set them at a constant temper-
ature. Fifteen ice cubes of approximately the same size were randomly
assigned to fifteen identical cups. Equal amounts of beverage, five of each
kind, were randomly assigned to the cups. The amount of time (minutes)
for the ice cubes to melt was recorded and given below.

1. Coca cola 19 17 15 14 18
2. Orange Juice 27 28 30 26 27
3. Water 10 11 13 7 9

This is the data from Problem 4.4 in the Chapter 4 exercises. The sample
mean melting times for the Coca-cola, orange juice, and water treatments,
are, respectively, 16.6, 27.6, and 10.0. The F test for overall differences
in the beverages on melting time is significant (F = 102.22, P < 0.0001).
Mean squared error from the ANOVA is 3.87.



125

a. Construct the Tukey-Kramer confidence intervals for all possible pair-
wise comparisons of the three population mean melting times. Use
an experimentwise confidence level of 99%. Which pairs of means are
significantly different?

b. What does the 99% experimentwise confidence level mean?

c. Would your confidence intervals be wider or narrower if the experi-
mentwise confidence level was 95%? Explain.

5.3∗ Suppose that a study has only t = 2 treatments and thus there is only
m = 1 pairwise comparison of interest. Then since α/2 and α/2m are the
same when m = 1 the t percentiles would be the same for the Multiple
t and Bonferroni procedures and thus the two procedures give the same
results. Show for the case when t = 2, comparison wise confidence of
0.95, and ν = 20 that the unadjusted t procedure and the Tukey-Kramer
procedure give the same multiplier on the standard error and thus the
same confidence interval.

5.4∗ In the article “Sex differences in viewing sexual stimuli: An eye-tracking
study in men and women” (Hormones and Behavior [2007]: Vol. 51,
pgs 524-533 ) researchers compared three groups of heterosexuals: males,
normal (menstrual) cycling females (NC), and oral contracepting females
(OC), on various responses to viewing sexual stimuli. Stimuli were sex-
ually explicit photos of heterosexual couples engaged in oral sex or in-
tercourse. Because researchers thought that any group differences found
in the current study could be due to differences in participants’ previous
experience viewing sexually explicit stimuli, sexual attitudes, sexual mo-
tivation, or comfort with visual sexual stimuli, they compared the three
groups on these variables using a one factor ANOVA. Only the results of
the comparison of the three groups on sexual motivation as measured by
the frequency of sexual thoughts and desire to engage in sexual activity
in the previous month is given here. The table below gives the means and
standard deviations of the sexual motivation variable for the three groups.

Group n Mean Standard Deviation
Men 15 5.2 0.71

NC Women 15 3.8 1.18
OC Women 14 4.64 0.73

The F ratio for comparing the means was statistically significant with F
= 8.72 and P = 0.001.

a. Use information provided in the table to calculate MSE (See Chapter
4).

b. Use Tukey-Kramer method to calculate all possible pairwise confi-
dence intervals with experiment-wise confidence level of at least 0.95.
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Use Table A.6 to obtain the upper 0.05 percentile from the Studen-
tized Range Distribution. Use the value corresponding to ν = 40 in
the table, approximating the true value of ν = 41.

c. Use your intervals from part(a) to determine which means are statis-
tically significantly different.

5.5∗ Dowdy andWearden ([9], page 316) describe an experiment comparing five
different types of toothpastes on abrasiveness. “The variable of interest
is the number of minutes until mechanical brushing of a material similar
to tooth enamel exhibits wear. The five toothpastes are all the same
except for the absence or presence of certain additives. The material is
assigned randomly to the treatments.” The additives for the five different
toothpastes are given below.

Toothpaste Additive
1 Whitener
2 None
3 Fluoride
4 Fluoride with freshener
5 Whitener with freshener

Group means are given below. Group sizes are all 4.

Toothpaste 1 2 3 4 5
Mean 49.4 49.8 52.8 54.0 46.6

An ANOVA table is given below.

Source of Variation df SS MS F P-value
Toothpaste 4 136.8 34.20 39.8

Error 15 13.0 0.86

The investigator planned the following contrasts:

• Mean of groups with additives (1,3,4,5) versus mean without additive
(2)

• Mean of groups with whitener (1,5) versus mean of groups with flu-
oride (3,4)

• Mean of group with Whitener (1) versus mean of group Whitener
with freshener (5)

• Mean of group Fluoride (3) versus mean of group Fluoride with fresh-
ener (4)

a. Write out the mathematical forms of the four contrasts describe
above, that is write out as linear combinations of population means.
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b. Determine the estimate of each contrast from part(a) along with the
standard error of the estimate.

c. Test each of the following contrasts using a two-sided t test. Be sure
to give the null and alternative hypotheses for each test in mathemat-
ical form. Give the value of the test statistic. Compare the absolute
value of the observed value of the test statistic to an appropriate Bon-
ferroni adjusted t percentile in order to obtain an experiment-wise
significance level of at most 0.05. In each case draw a conclusion in
context.

i. Mean of groups with additives (1,3,4,5) versus mean without
additive (2).

ii. Mean of groups with whitener (1,5) versus mean of groups with
fluoride (3,4).

iii. Mean of group with Whitener (1) versus mean of group Whitener
with freshener (5).

iv. Mean of group Fluoride(3) versus mean of group Fluoride with
freshener (4).

5.6∗ In the article “An Ex Vivo Study to Investigate Bond Strengths of Dif-
ferent Tooth Types” (Journal of Orthodontics [2001]: Vol. 28, pgs 59 -
65 ) researchers compared the shear bond strengths of orthodontic brack-
ets bonded to six types of teeth using the bonding agent Right-On. The
bonding tests were conducted using specimens of extracted human teeth.
The six types of teeth used were

A Upper incisors

B Upper canines

C Upper premolars

D Lower incisors

E Lower canines

F Lower premolars

A descriptive summary of the bond strengths (MPa = mega pascals) is
given in the table below.

Tooth Type n Mean SD
A 20 6.95 2.85
B 20 12.27 2.52
C 16 11.87 2.24
D 18 8.95 1.63
E 8 12.07 2.78
F 26 10.94 2.33

An ANOVA table is given below.
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Source of Variation df SS MS F P-value
ToothType 5 411.29 996.45 14.34 0.000

Error 102 585.16 5.74
Total 107 996.45

There is evidence at the 0.05 level of an effect of type of tooth on bonding
strength. The authors conducted Tukey-Kramer pairwise comparisons of
the 6 types of teeth using a 95% experiment-wise confidence level. End-
points for the confidence intervals are given in the table below.

Group Intervals for (column level mean) - (row level mean
A B C D E

B -7.529
-3.126

C -7.263 -1.935
-2.593 2.734

D -4.265 1.063 0.533
0.258 5.586 5.316

E -8.045 -2.717 -3.219 -6.087
-2.221 3.107 2.809 -0.171

F -6.068 -0.741 -1.282 -4.129 -1.680
-1.928 3.400 3.142 0.140 3.949

a. Do the calculation for the interval comparing types B and E and
compare with the tabled result. (Use ν = 100 from the appropriate
Studentized Range table.

b. The highest sample mean bonding strength occurred with tooth type
B. Use the results of the Tukey confidence intervals in the table
to compare bonding strength between tooth type B and bonding
strengths for all other possible tooth types. Draw conclusions.

c. In the context of this problem what does the 95% experiment-wise
confidence interval mean?

5.7 This example is based on data reported in Oehlert ([24], page 61) on
leaflet angle (degrees) from plants in the genus Albizzia after exposure
to red light. Certain plants from this genus have the ability to fold and
unfold their leaves under various light conditions. The researcher selected
15 leaves and subjected them to red light for 3 minutes. The leaves were
then divided at random into three groups with 5 leaves per group. The
groups were defined by the length of time, 30, 45, or 60 minutes after
exposure to the red light when leaflet angle was measured for the leaves.
The data are given below.

Delay (minutes) Angle (degrees)
30 140 138 140 138 142
45 140 150 120 128 130
60 118 130 128 118 118
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There is evidence of a difference in mean angle among the delay times
(F = 6.56, P = 0.0119) at the 5% significance level. Mean angle for the
three delay times of 30, 45, and 60, are respectively 139.6, 133.6, and 122.4
degrees. Construct Tukey confidence intervals for differences in mean angle
among all possible pairs of delay times. Use the 95% overall confidence
level. Draw conclusions within the context of this study.

5.8 Suppose that after a significant F ratio at the 0.05 level in a one factor
completely randomized design analysis with t = 4 treatments Bonferroni
confidence intervals are constructed to make all possible pairwise compar-
isons using an experiment-wise confidence level of (at least) 98%.

a. How many possible intervals are there?

b. What is the comparison-wise confidence level for each interval?
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Chapter 6

Two Factor Completely
Randomized Design - Equal
Replications

6.1 Introduction and Notation

In this chapter we will consider studies that employ two factors: factor A
with a levels denoted by A1, A2, . . . , Aa and factor B with b levels denoted
by B1, B2, . . . , Bb. The treatments given to the experimental units represent
all combinations of the levels of A and B and are said to be in a “factorial”
arrangement. For example, A may represent amount of water given to a plant
and B amount of fertilizer. Then the word “treatment” refers to a combination
of level of water and level of fertilizer.

If there are a = 2 levels of A and b = 3 levels of B then there are (2)(3) = 6
treatments which would be denoted by

A1B1, A1B2, A1B3, A2B1, A2B2, A2B3

In the completely randomized design studied in this chapter the 6 treatments
would be assigned completely at random to the N experimental units. It is
assumed in this chapter that the number of replications per treatment is the
same and equal to n.

6.2 Example and the No Interaction Model

Suppose that in an agricultural experiment factor A is type of fertilizer with
a = 2 levels and factor B is a second factor of interest, watering regimen, with
b = 2 levels. Thus the four treatments are denoted by

A1B1, A1B2, A2B1, A2B2
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Table 6.1: Sample Randomization

A1B2 A2B1 A1B1 A2B1

A2B2 A1B1 A2B2 A1B2

A1B2 A2B1 A1B1 A2B2

A2B1 A1B2 A2B2 A1B1

.
Suppose that these four treatments are to be assigned completely at random

to 16 plots laid out in a rectangular arrangement with each treatment being ap-
plied to 4 plots. A schematic of the resulting randomization is given in Table 6.1
The response variable is tomato production in pounds for a plant.

Let the true mean tomato production (in pounds) for the four treatments
be

µ11, µ12, µ21, µ22

where µij is the mean production for treatment AiBj .
We can apply the means model from Chapter 4 for each of the treatments

resulting in

y11k = µ11 + ϵ11k (6.1)

y12k = µ12 + ϵ12k (6.2)

y21k = µ21 + ϵ21k (6.3)

y22k = µ22 + ϵ22k (6.4)

for k = 1, . . . , 4. The errors ϵijk represent as in Chapter 4 the effects of extra-
neous variables on the tomato production of a plant, such as particular plot soil
fertility, genetic composition of the particular plant.

Suppose for the sake of discussion in this chapter that we know the true
treatment means to be

µ11 = 10, µ12 = 12, µ21 = 6, µ22 = 8

These values are given in Table 6.2 along with summaries of these treatment
means.

The true “marginal” mean production for fertilizer A1 averaged over the
two different watering regimens is µ1· = (10 + 12)/2 = 11. Similarly µ2· = 7
is the true “marginal” mean production for A2 averaged over the two water
regimens. The “grand mean” tomato production averaged over all 4 treatments
is µ·· = (10 + 12 + 6 + 8)/4 = 9. The true “main effect” of fertilizer A1 is
defined to be

α1 = µ1· − µ·· = 11− 9 = 2
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Table 6.2: Table of Treatment Means

Watering Regimen
B1 B2

Fertilizer
A1 µ11 = 10 µ12 = 12 µ1· = 11 α1 = 2
A2 µ21 = 6 µ22 = 8 µ2· = 7 α2 = −2

µ·1 = 8 µ·2 = 10 µ·· = 9
β1 = −1 β2 = 1

Similarly α2 = −2 is the true “main effect” of fertilizer A2. The true marginal
means for the watering regimens B1 and B2, denoted by µ·1 and µ·2, and the
true main effects of the watering regimens, β1 and β2, are defined similarly.

Note that each treatment mean can be written as the sum of the grand mean
+ main effect of fertilizer + main effect of watering regimen:

µ11 = 10 = µ·· + α1 + β1 = 9 + 2 + (−1) = 10

µ12 = 12 = µ·· + α1 + β2 = 9 + 2 + 1 = 12

µ21 = 6 = µ·· + α2 + β1 = 9 + (−2) + (−1) = 6

µ22 = 12 = µ·· + α2 + β2 = 9 + (−2) + 1 = 8

Thus each observed value of the response tomato production can be written

y11k = µ11 + ϵ11k = µ·· + α1 + β1 + ϵ11k

y12k = µ12 + ϵ12k = µ·· + α1 + β2 + ϵ12k

y21k = µ21 + ϵ21k = µ·· + α2 + β1 + ϵ21k

y22k = µ22 + ϵ22k = µ·· + α2 + β2 + ϵ22k

for k = 1, . . . , 4. This model is called the NO INTERACTION MODEL.
Two equivalent characterizations of this model are

• Each true treatment mean can be written as a sum of the grand mean,
factor A level main effect, and factor B level main effect.

• The difference between true treatment means at two levels of one factor
do not depend upon levels of the other factor. This is perhaps the more
intuitive condition.
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Figure 6.1: Interaction Plot: Tomato Production - No Interaction
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In the tomato production example, the difference between the true means
for B1 and B2 at level A1, µ12−µ11 = 12−10 = 2, is the same as the difference
between the true means for B1 and B2 at level A2, µ22 − µ21 = 8− 6 = 2.

Similarly the difference between the true means for A1 and A2 at level B1,
µ11 − µ12 = 10 − 6 = 4, is the same as the difference between the true means
for A1 and A2 at level B2, µ12 − µ22 = 12− 8 = 4.

In other words, the change in mean tomato production when going from one
watering regimen to the other does not depend on fertilizer or the change in
tomato production when going from one fertilizer to the other does not depend
on watering regimen.

The concept of no interaction can be demonstrated with a plot such as that in
Figure 6.1. The plot is simply a plot of the treatment means on the vertical axis
versus one of the factors on the horizontal axis. Lines are then drawn connecting
values having the same values on the 2nd factor. In Figure 6.1 Watering Regimen
was put on the horizontal axis and there are two lines corresponding to the two
levels of fertilizer. Fertilizer could just as well have been put on the horizontal
axis. If the factors do not interact then the lines will be parallel. If the factors
interact then the lines will not be parallel. We shall look at an example shortly
where interaction exists.

The tomato production example was a hypothetical example where it was
assumed that we knew the true means and could plot them. In practice one does
not know the true means and only has estimates of these, that is the sample
treatment means. Thus in practice one plots the sample means. If the lines are
approximately parallel then the no interaction assumption is plausible.
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Table 6.3: Table of Treatment Means

B1 B2

A1 µ11 = 10 µ12 = 16 µ1· = 13 α1 = 3
A2 µ21 = 6 µ22 = 8 µ2· = 7 α2 = −3

µ·1 = 8 µ·2 = 12 µ·· = 10
β1 = −2 β2 = 2

6.3 Interaction Model

Suppose that in the tomato production example the (true) treatment means are
instead as in Table 6.3.

The difference between the two treatment means at B1 and B2 for level A1 is
µ12 −µ11 = 16− 10 = 6, which is NOT equal to the difference between the true
treatment means at B1 and B2 for level A2, µ22−µ21 = 8−6 = 2. Similarly the
difference in true treatment means at A1 and A2 when watering regimen is at
B1, µ11 −µ21 = 10− 6 = 4 is NOT the same as the difference in true treatment
means at A1 and A2 when watering regimen is at B2, µ12 − µ22 = 16− 8 = 8.

Thus the change in tomato production when going from one fertilizer to an-
other DOES DEPEND upon the watering regimen and the change in tomato
production when going from one watering regimen to another depends on type
of fertilizer. A graphical representation is given in Figure 6.2. The lines corre-
sponding to the levels of fertilizer are NOT parallel.

Note also that the true treatment means CANNOT expressed as the sum of
the grand mean, fertilizer main effect, and watering regimen main effect:

µ11 ̸= µ·· + α1 + β1 or 10 ̸= 10 + 3 + (−2) = 11
µ12 ̸= µ·· + α1 + β2 or 16 ̸= 10 + 3 + 2 = 15
µ21 ̸= µ·· + α2 + β1 or 6 ̸= 10 + (−3) + (−2) = 5
µ22 ̸= µ·· + α2 + β2 or 8 ̸= 10 + (−3) + 2 = 9

Thus we need a more complex model to cover possible situations like this.
Note that in order for the first equation above to be true we could add (−1) on
the right side. Thus

10 = 10 + 3 + (−2) + (−1)

To get (−1), µ·· + α1 + β1 was subtracted from µ11. Thus the new equation
looks like

µ11 = µ·· + α1 + β1 + [µ11 − (µ·· + α1 + β1)] or 10 = 10 + 3 + (−2) + [−1]

The necessary adjustments are illustrated for all equations below:
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Figure 6.2: Tomato Production - Interaction between Watering Regimen and
Fertilizer
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µ11 = µ·· + α1 + β1 + [µ11 − (µ·· + α1 + β1)] or 10 = 10 + 3 + (−2) + [−1]
µ12 = µ·· + α1 + β2 + [µ12 − (µ·· + α1 + β2)] or 16 = 10 + 3 + 2 + [1]
µ21 = µ·· + α2 + β1 + [µ21 − (µ·· + α2 + β1)] or 6 = 10 + (−3) + (−2) + [1]
µ22 = µ·· + α2 + β2 + [µ22 − (µ·· + α2 + β2)] or 8 = 10 + (−3) + 2 + [−1]

The adjustments of -1, 1, 1, and -1 that are made to the above inequalities to
make them equalities are called INTERACTION EFFECTS and are denoted
by αβij .

Thus a more general expression for the relationship of the treatment means
to effects is given in Equations 6.5. These expressions allow for the possibility
of INTERACTION between the two factors A and B. A statistical test involv-
ing the αβij that we develop later may conclude that there is no evidence of
interaction.

µ11 = µ·· + α1 + β1 + [µ11 − (µ·· + α1 + β1)] (6.5)

µ11 = µ·· + α1 + β1 + αβ11

µ12 = µ·· + α1 + β2 + [µ12 − (µ·· + α1 + β2)]

µ12 = µ·· + α1 + β2 + αβ12
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µ21 = µ·· + α2 + β1 + [µ21 − (µ·· + α2 + β1)]

µ21 = µ·· + α2 + β1 + αβ21

µ22 = µ·· + α2 + β2 + [µ22 − (µ·· + α2 + β2)]

µ22 = µ·· + α2 + β2 + αβ22

Thus the “full” model, means and effects, for each of the treatments is:

y11k = µ11 + ϵ11k

= µ·· + α1 + β1 + αβ11 + ϵ11k

y12k = µ12 + ϵ12k

= µ·· + α1 + β2 + αβ12 + ϵ12k

y21k = µ21 + ϵ21k

= µ·· + α2 + β1 + αβ21 + ϵ21k

y22k = µ22 + ϵ22k

= µ·· + α2 + β2 + αβ22 + ϵ22k

(6.6)

In its most general form, the model for the two-factor completely ran-
domized design with interaction is:

yijk = µ·· + αi + βj + αβij + ϵijk (6.7)

where in general i = 1, . . . , a, j = 1, . . . , b, k = 1, . . . , n.
In practice the terms on the right side of the equation are unknown and

must be estimated based on the data to draw conclusions about these terms.
An assumption of the model is that the ϵijk

′s are independent normal random
variables each with mean 0 and unknown variance σ2.

6.4 Data Decomposition

When a two factor experiment is conducted the resulting data can be decom-
posed using the general interaction model (6.7) discussed in the last section.
Based on this decomposition an analysis of variable table similar to that in
Chapter 4 can be formed.

Suppose the tomato experiment was carried out with the results in Table 6.4
being tomato production in pounds for four replications per treatment combi-
nation.
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Table 6.4: Tomato Production with Means

B1 B2

A1 y11· = 9.25 8 y12· = 11.75 11 y1·· = 10.5 α̂1 = 1.81
8 11
9 12
12 13

A2 y21· = 5.75 5 y22· = 8.00 7 y2·· = 6.88 α̂2 = −1.81
6 8
6 8
6 9

y·1· = 7.50 y·2· = 9.88 y··· = 8.69

β̂1 = −1.19 β̂2 = 1.19

Note that y11· = 9.25, the average of the four treatment A1B1 observations,
is an estimate of the true treatment mean µ11. Similarly, y12· = 11.75, y21· =
5.75, and y22· = 8.00 are estimates of the true treatment means µ12, µ21, µ22,
respectively. The sample marginal means y1·· = 10.5, y2·· = 6.88, y·1· = 7.50,
and y·2· = 9.88 are sample estimates of true marginal means µ1., µ2., µ.1, µ.2,
respectively. The sample main effects α̂1 = 1.81 and α̂2 = −1.81 are estimates
of the true main effects α1 and α2. The sample main effects β̂1 = −1.19 and
β̂2 = 1.19 are estimates of the true main effects β1 and β2. Finally the sample
grand mean y··· = 8.69 is an estimate of the true grand mean µ...

We can write each observed tomato yield y in terms of the estimated param-
eters. As an example,

y111 = 8 = y11· + e111
= 9.25 + (8− 9.25)
= 9.25 + (−1.25)
= 8.69 + 1.81 + (−1.19) + [9.25− (8.69 + 1.81− 1.19)] + (−1.25)
= 8.69 + 1.81 + (−1.19) + (−0.06) + (−1.25)

= y··· + α̂1 + β̂1 + α̂β11 + e111

y123 = 12 = y12· + e123
= 11.75 + (12− 11.75)
= 11.75 + 0.25
= 8.69 + 1.81 + (1.19) + [11.75− (8.69 + 1.81 + 1.19)] + (0.25)
= 8.69 + 1.81 + 1.19 + 0.06 + 0.25

= y··· + α̂1 + β̂2 + α̂β12 + e123

The complete decomposition is given in Table 6.5. The interaction effect of
−0.07 is in theory the same as the other interaction effects in magnitude but
differs because of rounding.
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Table 6.5: Decomposition for Two Factor Model

yijk = y··· + α̂i + β̂j + α̂βij + eijk
8 = 8.69 + 1.81 + (-1.19) + (-0.06) + (-1.25)
8 = 8.69 + 1.81 + (-1.19) + (-0.06) + (-1.25)
9 = 8.69 + 1.81 + (-1.19) + (-0.06) + (-0.25)
12 = 8.69 + 1.81 + (-1.19) + (-0.06) + 2.75

11 = 8.69 + 1.81 + 1.19 + 0.06 + (-0.75)
11 = 8.69 + 1.81 + 1.19 + 0.06 + (-0.75)
12 = 8.69 + 1.81 + 1.19 + 0.06 + ( 0.25)
13 = 8.69 + 1.81 + 1.19 + 0.06 + (1.25)

5 = 8.69 + (-1.81) + (-1.19) + 0.06 + (-0.75)
6 = 8.69 + (-1.81) + (-1.19) + 0.06 + 0.75
6 = 8.69 + (-1.81) + (-1.19) + 0.06 + 0.25
6 = 8.69 + (-1.81) + (-1.19) + 0.06 + 0.25

7 = 8.69 + (-1.81) + (1.19) + -0.07 + (-1.00)
8 = 8.69 + (-1.81) + (1.19) + -0.07 + 0.00
8 = 8.69 + (-1.81) + (1.19) + -0.07 + 0.00
9 = 8.69 + (-1.81) + (1.19) + -0.07 + 1.00
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Table 6.6: Sums of Squares for Two Factor Example

SSTOT = 82 + 82 + . . .+ 92 = 1299
SSGM = 16(8.69)2 = 1208.26
SSA = 8(1.81)2 + 8(−1.81)2 = 52.42
SSB = 8(1.19)2 + 8(−1.19)2 = 22.66
SSAB = 4(−.06)2 + 4(.06)2 + 4(0.06)2 + 4(−0.07)2 = 0.0471
SSE = (−1.25)2 + . . .+ (1.00)2 = 16.25

In order to develop hypothesis tests to test for factor A, factor B, and in-
teraction effects, similar to Chapter 4, we will now calculate sums of squared
effects across the different observations. These sums of squared effects for the
tomato example are given in Table 6.6.

It can be shown that in general

SSTOT = SSGM + SSA+ SSB + SSAB + SSE

In this example because of rounding we have approximate equality:

1299 ≃ 1208.26 + 52.42 + 22.66 + 0.0471 + 16.25 = 1299.64

The degrees of freedom associated with the different sums of squares are
equal to the following:

SS Degrees of Freedom Degrees of Freedom - Tomato Example
SSTOT N 16
SSGM 1 1
SSA (a-1) 1
SSB (b-1) 1
SSAB (a-1)(b-1) 1
SSE N - ab 12

Note that the degrees of freedom are additive in that degrees of freedom for
SSGM, SSA, SSB, SSAB, and SSE add to degrees of freedom for SSTOT.

N = 1 + (a− 1) + (b− 1) + (a− 1)(b− 1) + (N − ab)

or in this example,

16 = 1 + 1 + 1 + 1 + 12

Typically in computer calculations the grand mean is subtracted from each
value of the response y and this difference or deviation from the mean appears
on the left side of the decomposition. Then the relevant total sum of squares
is the “corrected” total sum of squares, which is the summing of the squares of
the deviations. The corrected total sum of squares would then equal
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Table 6.7: ANOVA Table for Two Factor Completely Randomized Design

Source of Variation df SS MS F E[MS]
A a - 1 SSA MSA MSA/MSE E[MSA]
B b - 1 SSB MSB MSB/MSE E[MSB]

A*B (a-1)(b-1) SSAB MSAB MSAB/MSE E[MSAB]
Error ab(n-1) SSE MSE E[MSE]

SSTOTC = SST − SSGM

Degrees of freedom associated with SSTOTC = N − 1. In this example,
SSTOTC = 1299 − 1208.26 = 90.74 and df = N − 1 = 16 − 1 = 15. When
correcting for the grand mean the sums of squares decomposition is

SSTOTC = SSA+ SSB + SSAB + SSE

Mean squares are defined as in Chapter 4 by dividing sums of squares for
effects by their corresponding degrees of freedom. Thus for the tomato example,
MSA = 52.42/1 = 52.42, MSB = 22.66/1 = 22.66, MSAB = 0.0471/1 = 0.0471,
and MSE = 16.25/12 = 1.35.

6.5 F ratios and Hypothesis Testing

In this section we consider three hypothesis tests that can be conducted in a
two factor study: a test for interaction between factors A and B, a test for A
main effects, and a test for B main effects. The logic proceeds as in Chapter 4.
For example, if there are truly no effects of a factor then the size of the mean
square for that effect (such as MSA,MSB, or MSAB) based on the data should
be roughly the same magnitude as the size of mean squared error (MSE). If
there truly are effects of a factor then the mean square of that effect should be
larger than mean squared error.

The general form of the ANOVA table for a two factor completely random-
ized design with expected mean squares, EMS, is given in Table ??

Formulas for the sums of squares (SS) and mean squares (MS) in Table 6.7
are provided in Section 6.5.1. Expected values of the various mean squares,
E[MS] in Table 6.7 can be shown to be

E[MSE] = σ2 (6.8)

E[MSA] = σ2 +
nb

∑a
i=1 α

2
i

a− 1
(6.9)

E[MSB] = σ2 +
na

∑b
j=1 β

2
j

b− 1
(6.10)
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E[MSAB] = σ2 +
n
∑a

i=1

∑b
j=1(αβ)

2
ij

(a− 1)(b− 1)
(6.11)

Thus if there are no main effects for A, that is all αi are 0, then E[MSA] and
E[MSE] are both equal to σ2, and we would expect the observed values ofMSA
and MSE to be about the same. If there are main effects of A, that is not all
of the αi are 0, then E[MSA] > E[MSE] and we would expected the observed
value of MSA to be larger than the observed value of MSE. Comparisons like this
form the basis for hypothesis testing in the two factor completely randomized
design. We first consider the hypothesis test for interaction between A and B
since the significance or lack thereof affects the interpretation of the test for A
and B main effects.

6.5.1 F test for AB interaction

The null and alternative hypotheses for the test of interaction between factors
A and B in general form are

Ho : αβij = 0 for each pair i, j

and

Ha : αβij ̸= 0 for some pair i, j

The test statistic is

F =
MSAB

MSE
=

SSAB/(a− 1)(b− 1)

SSE/(N − ab)

where

SSAB = n
a∑

i=1

b∑
j=1

(α̂β)2ij = n
a∑

i=1

b∑
j=1

[yij. − (y... + α̂i + β̂j)]
2

and

SSE =

a∑
i=1

b∑
j=1

n∑
k=1

[eijk]
2 =

a∑
i=1

b∑
j=1

n∑
k=1

[yijk − yij.]
2

The F statistic measures variation in the treatment means from what is expected
under the assumption of no interaction, relative to the variation within groups.

If the null hypothesis is true and the assumption of independent, normally
distributed errors with mean 0 and common standard deviation holds, the F
ratio above has the “F” distribution with ν1 = (a− 1)(b− 1) numerator degrees
of freedom and ν2 = (N − ab) denominator degrees of freedom.

At a significance level of α the null hypothesis would be rejected if the
observed value of the test statistic, Fo, is larger than Fα;(a−1)(b−1),N−ab, the
upper α probability point from the appropriate F distribution.

We will usually use a statistical package to obtain a P-value and use that
to make the decision. The null hypothesis is then rejected if the P-value ≤ α,
where P-value = P [F ≥ Fo].
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6.5.2 F test for A main effects

The null and alternative hypotheses for the test of A main effects are

Ho : α1 = α2 = . . . = αa = 0

or equivalently in terms of A main effect or marginal means,

H0 : µ1· = µ2· = . . . = µa·

The alternative hypothesis is

Ha : not all α′
is = 0

or equivalently,

Ha : not all µ′
i·s are equal

The test statistic is

F =
MSA

MSE
=

SSA/(a− 1)

SSE/(N − ab)

where SSA = nb
∑a

i=1 α̂
2
i = nb

∑a
i=1(yi·· − y···)

2 and SSE is as in the test for
interaction. Note that F measures variation in the Factor A level marginal
means (between group variation) relative to the variation within groups. That
is the test statistic is comparing sample marginal means for factor A.

If the null hypothesis is true and the assumption of independent, normally
distributed errors with mean 0 and common standard deviation holds, the F
ratio above has the“F” probability distribution with ν1 = (a − 1) numerator
degrees of freedom and ν2 = (N − ab) denominator degrees of freedom.

At a significance level of α the null hypothesis would be rejected if the
observed value of the test statistic, Fo, is larger than Fα;(a−1),N−ab, the upper α
probability point from the appropriate F distribution or equivalently if P-value
≤ α, where P-value = P [F ≥ Fo].

6.5.3 F test for B main effects

The null and alternative hypotheses for the test of B main effects are

Ho : β1 = β2 = . . . = βb = 0

or equivalently in terms of B main effect or marginal means,

H0 : µ·1 = µ·2 = . . . = µ·b

The alternative hypothesis is

Ha : not all β′
js = 0
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or equivalently,
Ha : not all µ′

·js are equal

The test statistic is

F =
MSB

MSE
=

SSB/(b− 1)

SSE/(N − ab)

where SSB = na
∑b

j=1 β̂
2
j = na

∑b
j=1(y·j· − y···)

2 and SSE is as in the test
for interaction. Note that F measures variation in the Factor B level marginal
means (between group variation) relative to the variation within groups.

If the null hypothesis is true and the assumption of independent, normally
distributed errors with mean 0 and common standard deviation holds, the F
ratio above the “F” probability distribution with ν1 = (b−1) numerator degrees
of freedom and ν2 = (N − ab) denominator degrees of freedom.

At a significance level of α the null hypothesis would be rejected if the
observed value of the test statistic, Fo, is larger than Fα;(b−1),N−ab, the upper α
probability point from the appropriate F distribution or equivalently if P-value
≤ α, where P-value = P [F ≥ Fo].

6.5.4 Testing Strategy

Typically the F test for interaction is conducted first. If the F test for interaction
is not significant at some prescribed α level then the F test for each of factor
A and B main effect (marginal) means µi· and µ·j is conducted at prescribed
α levels. If the F test for factor A (or B) main effects is significant then a
multiple comparison procedure might be used to determine which of the main
effect (marginal) means are different.

If the F test for interaction is significant and the interactions are deemed to
be important then the conclusion is that differences in main effect (marginal)
means for levels of one factor are not representative of differences in those levels
across all levels of the other factor. Comparisons of treatment combination
means, µij , rather than main effect means are more appropriate. For example
treatment combination means involving levels of A are compared at each level
of factor B. Or treatment combination means involving levels of B are compared
at each level of A. Examples are provided in subsequent sections.

Some practitioners use a liberal significance level for the F test for interac-
tion, such as 0.10 or 0.15, instead of the usual 0.05 level. This increase in the
Type I error rate decreases the Type II error rate. The philosophy is that the
Type II error rate is more serious. The Type II error would be concluding no
interaction when there is interaction. A conclusion of no interaction would then
result in comparison of main effect (marginal) means for levels of a factor when
these comparisons are not representative of comparisons at the different levels
of the other factor. The Type I error would perhaps not be regarded as serious.
This would mean concluding interaction and thus comparing treatment combi-
nation means when in fact there is no interaction and one could have simplified
results by comparing main effect marginal means. The 0.10 level will normally
be used for testing interaction in this text unless otherwise stated.
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Table 6.8: ANOVA Table for Tomato Example

Source of Variation Df SS MS F P-value

Fert 1 52.56 52.56 38.82 <.0001
Water 1 22.56 22.56 16.66 0.0015

Fert*Water 1 0.06 0.06 0.05 0.8335
Error 12 16.25 1.35

Total (Corrected) 15 91.44

6.6 Examples

6.6.1 Tomato Weight Example

Table 6.8 gives an ANOVA table for the tomato example based on computer
software. Note that the numbers in this table differ slightly from those of Ta-
ble 6.6 because of rounding used for that table. The interaction effect is not
significant at the α = 0.10 level with (F = 0.05, P-value = 0.8335), providing no
evidence of the effects of fertilizer depending upon water (or the effects of water
depending upon fertilizer). There is evidence at α = 0.05 that both fertilizer
(F = 38.82, P-value < 0.0001) and water (F = 16.66, P-value = 0.0015) affect
tomato production.

6.6.2 Paper Towel Example - No Interaction

Kim Cartwright (Spring 2001) conducted an experiment to compare the amounts
of three liquids absorbed by three brands of paper towels. The three liquids
(Factor A) were

• Water

• Dishwashing Detergent

• Vegetable oil

The three brands of paper towels were

• Coronet

• Kleenex

• Scott

Each liquid was tested with each brand three times for a total of N = 27 ob-
servations on amount of liquid absorbed. The testing was conducted as follows:
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Table 6.9: Paper Towel Example: Amount of Liquid Absorbed (mL)

Liquid
Water Dishwashing Detergent Vegetable Oil

Paper Towel
Coronet 26 19 22

22 16 25
22 15 29

Kleenex 43 33 39
41 38 41
41 38 45

Scott 27 21 27
26 20 25
25 21 25

Fifty milliliters of each liquid was poured/measured into a graduated cylinder
and then poured into a container. The paper towel was then submerged in the
container. After 1 minute had passed, the paper towel was removed, letting
the excess liquid drip off the towel for 30 seconds. The remaining liquid in the
container was then poured back into the graduated cylinder. This remaining
amount was then subtracted from 50 to get the amount of liquid absorbed.
This was done 27 times, at each time randomly choosing a liquid and brand
to use. The amount of liquid absorbed (mL) for the various liquid and brand
combinations is given in the Table 6.9

Figure 6.3 is a plot of the amounts of liquid absorbed versus the treatment
combination of brand of towel and liquid. A few observations can be made
based on the plot. Kleenex appears to have been most absorbent regardless of
type of liquid used. The comparison of liquid types is similar across the brands,
with the amount of detergent absorbed being less than similar amounts of water
and oil. Thus there does not appear to be any evidence of interaction between
brand and liquid used.

Mean absorption for the nine treatments is given in Table 6.10 and an in-
teraction plot is given in Figure 6.4.

An interaction plot with Liquid on the horizontal axis and lines for the three
brand of paper towel is given in Figure 6.4. Note that the lines are approximately
parallel, indicating that the difference in amount absorbed by two paper towel
brands is about the same regardless of the liquid.

The model for the data is given by

yijk = µ·· + αi + βj + αβij + ϵijk (6.12)

with

i = 1, 2, 3 representing the ith level (Coronet, Kleenex, Scott) of Paper Towel
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Figure 6.3: Amount of Liquid Absorbed versus Towel/Liquid
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Table 6.10: Means of Amount Absorbed (mL): Paper Towel Example

Liquid
Water Dishwashing Detergent Vegetable Oil Marginal Mean

Paper Towel
Coronet 23.3 16.7 25.3 21.8
Kleenex 41.7 36.3 41.7 39.9
Scott 26.0 20.7 25.7 24.1

Marginal Mean 30.3 24.6 30.9
y... = 28.6
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Figure 6.4: Mean Amount of Liquid Absorbed versus Liquid by Brand
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j = 1, 2, 3 representing the jth level (water, detergent, oil) of Liquid

k = 1, 2, 3 is an index on a particular amount of liquid absorbed for the ith

paper towel and jth liquid

yijk represents the kth observation on amount absorbed for towel i and liquid
j

µ·· = the true grand mean of amount absorbed

αi = the true main effect of the ith level of paper towel on amount absorbed

βj = the true main effect of the jth level of liquid on amount absorbed

αβij = the true interaction effect of the ith level of paper towel and jth level
of liquid on amount absorbed

ϵijk = the effects of extraneous variables on the kth amount at the ith paper
towel and jth liquid

It is assumed that the 27 errors, ϵijk, are values of independent normal
random variables, each with mean of 0 and variance σ2.

The ANOVA table for the Paper Towel example is given in Table 6.11. There
is no evidence of interaction between Towel Brand and Liquid at the 0.10 level
of significance with F = 0.65, P-value = 0.6350. There is evidence at the 0.05
level of both brand effects (F = 180.05, P-value < .0001) and Liquid effects
(F = 22.82, P-value < .0001).
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Table 6.11: ANOVA Table for Paper Towel Example

Source of Variation Df SS MS F P-value

Towel 2 1747.19 873.59 180.05 <.0001
Liquid 2 221.41 110.70 22.82 <.0001
Towel*Liquid 4 12.59 3.14 0.65 0.6350
Error 18 87.33 4.85

Total (Corrected) 26 2068.5

Since there is no evidence of interaction between brand and liquid, marginal
means of amount absorbed will be compared among the three brands using
Tukey-Kramer simultaneous confidence intervals. The marginal means of amount
absorbed (mL) for the Coronet, Kleenex, and Scott brands, are respectively,
y1·· = 21.8, y2·· = 39.9, and y3·· = 24.1

For two levels i and i′ of Towel Brand, the general form of the interval for
µi· − µi′· and simultaneous confidence level of 95% is

yi·· − yi′·· ±
q0.05;ν,a√

2

√
MSE

√
1

bn
+

1

bn

where yi·· and yi′·· refer, respectively, to the marginal means of amount absorbed
for levels i and i′ of brand of towel. The denominator bn = (3)(3) in the
denominators refer to the number of observations used to calculate the marginal
means. The value of MSE is 4.85 with ν = 18 degrees of freedom. From Table
A.6 with ν = 18 and t = a = 3 the upper 0.05 probability point q0.05;18,3 is 3.61.

Thus the endpoints of the simultaneous 95% Tukey-Kramer confidence in-
tervals are

21.8− 39.9 ± 3.61√
2

√
4.85

√
1
9 + 1

9

21.8− 24.1 ± 3.61√
2

√
4.85

√
1
9 + 1

9

39.9− 24.1 ± 3.61√
2

√
4.85

√
1
9 + 1

9

or

−18.1 ± 2.7
−2.3 ± 2.7
15.8 ± 2.7

Thus the three intervals are:

−20.8 ≤ µ1· − µ2· ≤ −15.4
−5.0 ≤ µ1· − µ3· ≤ 0.4
13.1 ≤ µ2· − µ3· ≤ 18.5



150

The Kleenex brand results in higher absorption than either of the other
two brands. The mean absorption for Kleenex is estimated to be between 15.4
and 20.8 milliliters higher than that for Coronet and between 13.1 and 18.5
milliliters higher than that for Scott. There is no evidence of a difference in
mean absorption between the Coronet and Scott brands. These conclusions are
based on an experimentwise confidence level of 95%.

Since the F test for overall differences in liquids is significant, a set of si-
multaneous 95% Tukey-Kramer confidence intervals will be used to compare
the three liquids. The marginal means of amount absorbed (mL) for Water,
Detergent, and Oil, are, respectively, y·1· = 30.3, y·2· = 24.6, and y·3· = 30.9

The general form of the interval for µ·j − µ·j′ is

y·j· − y·j′· ±
q0.05;ν,b√

2

√
MSE

√
1

an
+

1

an

where y·j· and y·j′· refer, respectively, to the marginal means of amount absorbed
for levels j and j′ of the factor liquid. The value an = (3)(3) in the denominators
refer to the number of observations used to calculate the marginal means. The
value of MSE is 4.85 with ν = 18 degrees of freedom. From Table A.6 with
ν = 18 and t = b = 3 the upper 0.05 probability point q0.05;18,3 is 3.61.

Thus the endpoints of the simultaneous 95% Tukey-Kramer confidence in-
tervals are

30.3− 24.6 ± 3.61√
2

√
4.85

√
1
9 + 1

9

30.3− 30.9 ± 3.61√
2

√
4.85

√
1
9 + 1

9

24.6− 30.9 ± 3.61√
2

√
4.85

√
1
9 + 1

9

or

−18.1 ± 2.7
−2.3 ± 2.7
15.8 ± 2.7

Thus the three intervals are:

3.0 ≤ µ·1 − µ·2 ≤ 8.4
−3.3 ≤ µ·1 − µ·3 ≤ 2.1
−9.0 ≤ µ·2 − µ·3 ≤ −3.6

On average less detergent was absorbed than either water or oil. It is es-
timated that the mean amount of detergent absorbed is between 3.0 and 8.4
milliliters less than that of water and between 3.6 and 9.0 milliliters less than
than of oil. There was no significant difference between the mean amounts of
water and oil absorbed. These conclusions are made with an experimentwise
confidence level of 95%.
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Table 6.12: Yield Data

Variety
V1 V2 V3 V4 V5

Method
A 22.1 27.1 22.3 19.8 20.0

24.1 15.1 25.8 28.3 17.0
19.1 20.6 22.8 26.8 24.0
22.1 28.6 28.3 27.3 22.5
25.1 15.1 21.3 26.8 28.0
18.1 24.6 18.3 26.8 22.5

B 13.5 16.9 15.7 15.1 21.8
14.5 17.4 10.2 6.5 22.8
11.5 10.4 16.7 17.1 18.8
6.0 19.4 19.7 7.6 21.3
27.0 11.9 18.2 13.6 16.3
18.0 15.4 12.2 21.1 14.3

C 19.0 20.0 16.4 24.5 11.8
22.0 22.0 14.4 16.0 14.3
20.0 25.5 21.4 11.0 21.3
14.5 16.5 19.9 7.5 6.3
19.0 18.0 10.4 14.5 7.8
16.0 17.5 21.4 15.5 13.8

6.6.3 Example with Interaction

This example is taken from Littel, Stroup, and Freund [17]. An experiment was
conducted to compare three seed growth-promoting methods (A,B,C) for five
different varieties of turf grass (V1,V2,V3,V4,V5). Seeds from each variety and
method combination were planted in 6 pots. The resulting 90 pots were placed
in a growth chamber and after four weeks the dry matter was measured for each
pot. The resulting yields are given in Table 6.12.

A plot of the yields versus treatment combinations is given in Figure 6.5.

Note that seed growth-promoting method A appears to be the best regardless
of the variety. The comparison of methods B and C seems to depend upon the
variety. Also variability in yields appear not to depend much on treatment
combination.

Mean yield for the nine treatment combinations of method and variety along
with marginal means corresponding to levels of each factor are given in Ta-
ble 6.13. Note that the marginal mean yields and treatment mean yields for
method A are consistently higher than the corresponding values for Methods
B and C. The marginal and treatment mean yields for method B are all lower
than that for method C except for variety V5, indicating possible interaction.

An interaction plot is given in Figure 6.6



152

Figure 6.5: Plot of Yield versus Method/Variety
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Table 6.13: Yield Means: Grasses Example

Variety
V1 V2 V3 V4 V5 Marginal Mean

Method
A 21.8 21.8 23.1 26.0 22.3 23.0
B 15.1 15.2 15.4 13.5 19.2 15.7
C 18.4 19.9 17.3 14.8 12.6 16.6

Marginal Mean 18.4 19.0 18.6 18.1 18.0
y... = 18.4
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Figure 6.6: Interaction Plot Grass Data
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The interaction plot more clearly shows evidence of interaction between
method and variety as noted in Figure 6.5.

The population (effects) model for the data is given by

yijk = µ·· + αi + βj + αβij + ϵijk (6.13)

where

i = 1(A), 2(B), 3(C) indexes the seed growth promoting method

j = 1(V 1), 2(V 2), 3(V 3), 4(V 4), 5(V 5) indexes the variety of turf grass

k = 1, 2, 3, 4, 5, 6 indexes the yield of dry matter for a particular combination
(i, j)

yijk represents the kth observation on yield of dry matter for method i and
variety j

µ·· = the true grand mean of yield of dry matter

αi = the true main effect of the ith method on yield

βj = the true main effect of the jth variety on yield

αβij = the true interaction effect of the ith level of method and jth variety
level on yield

ϵijk = the effects of extraneous variables on the kth yield at the ith method
and jth variety, such as variations in seeds, pot characteristics, etc.

It is assumed that the 90 errors, ϵijk, are values of independent normal
random variables, each with mean of 0 and variance σ2.

The ANOVA table for the Grasses example is given in Table 6.14. There
is evidence of interaction at the 0.10 level of significance (F = 2.38, P-value
= 0.0241) consistent with the interaction plot.

When there is interaction comparison of marginal means of levels of a factor
may be misleading since this would imply that the comparison of those levels
is similar across all levels of the other factor. The appropriate follow-up is a
comparison of treatment means rather than marginal means. Treatment means
for the 3 methods could be compared for each variety or treatment means for
the 5 varieties could be compared for each method. The former comparison
will be carried out here using the Tukey-Kramer method. Simultaneous 95%
Tukey-Kramer confidence intervals will be calculated for differences in popula-
tion treatment means µij of the 3 methods at each of the 5 levels of variety.

The Tukey-Kramer confidence intervals for differences in population treat-
ment mean yields for methods A (i = 1), B (i = 2), C (i = 3) when variety is
V 1(j = 1) , with overall confidence level 0.95 are
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Table 6.14: ANOVA Table for Grasses Example

Source of Variation Df SS MS F P-value

Method 2 953.16 476.58 24.25 <.0001
Variety 4 11.38 2.85 0.14 <.0001
Method*Variety 8 374.49 46.81 2.38 0.0241
Error 75 1473.77 19.65

Total (Corrected) 89 2812.79

y11· − y21· ± q0.05;ν,t√
2

√
MSE

√
1
n + 1

n

y11· − y31· ± q0.05;ν,t√
2

√
MSE

√
1
n + 1

n

y21· − y31· ± q0.05;ν,t√
2

√
MSE

√
1
n + 1

n

where q0.05;ν,t is the upper 0.05 probability point from the Studentized range
distribution. From the ANOVA table ν = 75 is the degrees of freedom associated
with MSE = 19.65. The value n = 6 is the number of observations contributing
to a method mean at a particular variety. Thus the standard error of the

difference between two method (sample) means is
√

2(19.65)
6 = 2.56. Table A.6

does not have a value for ν = 75 degrees of freedom associated with error;
we will use the conservative value of ν = 50. Thus with t = 3 levels for the
method factor at a particular variety V 1, Table A.6 gives q0.05;50,3 = 3.42 for
the upper 0.05 probability point from the Studentized Range distribution. Thus
the multiplier on the standard error is 3.42√

2
= 2.42. The margin of error for a

difference in sample means is thus (2.42)(2.56) = 6.20. Thus, using means from
Table 6.13, the endpoints of the intervals for the differences µ11−µ21, µ11−µ31,
and µ21 − µ31 are:

(21.8− 15.1)± 6.20 (21.8− 18.4)± 6.20 (15.1− 18.4)± 6.20

The simultaneous 95% confidence intervals for the family of comparisons of
the three methods for variety V 1 are:

0.5 ≤ µ11 − µ21 ≤ 12.9
−2.8 ≤ µ11 − µ31 ≤ 9.6
−9.5 ≤ µ21 − µ31 ≤ 2.9

Thus for variety V 1(j = 1) only method A results in significantly higher yield
compared to method B.

The simultaneous 95% confidence intervals for the family of comparisons of
the three methods for variety V 2(j = 2) are:
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0.4 ≤ µ12 − µ22 ≤ 12.8
−4.3 ≤ µ12 − µ32 ≤ 8.1
−10.9 ≤ µ22 − µ32 ≤ 1.5

Comparisons of the method means for variety V 2 are similar to those of variety
V 1.

The simultaneous 95% confidence intervals for the family of comparisons of
the three methods for variety V 3 are:

1.5 ≤ µ13 − µ23 ≤ 13.9
−0.4 ≤ µ13 − µ33 ≤ 12.0
−8.1 ≤ µ23 − µ33 ≤ 4.3

Comparisons of the method means for variety V 3 are similar to those of variety
V 1 and V 2.

The simultaneous 95% confidence intervals for the family of comparisons of
the three methods for variety V 4(j = 4) are:

6.3 ≤ µ14 − µ24 ≤ 18.7
5.0 ≤ µ14 − µ34 ≤ 17.4

−7.5 ≤ µ24 − µ34 ≤ 4.9

For variety V 4, method A results in significantly higher yields when compared
to both methods B and C.

The simultaneous 95% confidence intervals for the family of comparisons of
the three methods for variety V 5(j = 5) are:

−3.1 ≤ µ15 − µ25 ≤ 9.3
3.5 ≤ µ15 − µ35 ≤ 15.9
0.4 ≤ µ25 − µ35 ≤ 12.8

For variety V 5 the mean yield for method A is not significantly higher than for
method B as it was for the other four varieties. Method A results in significantly
higher yield when compared to C, similar to variety V 4. Method B results in
significantly higher yield when compared to method C, unlike the insignificant
comparisons between these two methods for the other varieties.
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6.7 SAS Code for Chapter 6

6.7.1 Paper Towel Example

* Paper Towel Example;

* Input data;

data PaperTowel;

input Towel $ Liquid $ Treatment $ AmountAbsorbed;

datalines;

Coronet Water CW 26

Coronet Water CW 22

Coronet Water CW 22

Coronet Detergent CD 19

Coronet Detergent CD 16

Coronet Detergent CD 15

Coronet Oil CO 22

Coronet Oil CO 25

Coronet Oil CO 29

Kleenex Water KW 43

Kleenex Water KW 41

Kleenex Water KW 41

Kleenex Detergent KD 33

Kleenex Detergent KD 38

Kleenex Detergent KD 38

Kleenex Oil KO 39

Kleenex Oil KO 41

Kleenex Oil KO 45

Scott Water SW 27

Scott Water SW 26

Scott Water SW 25

Scott Detergent SD 21

Scott Detergent SD 20

Scott Detergent SD 21

Scott Oil SO 27

Scott Oil SO 25

Scott Oil SO 25

;

run;

* Calculate and print means for amount absorbed;

proc means data = PaperTowel;

class Towel Liquid;

var AmountAbsorbed;

output out = Summary mean = MeanAbsorbed;

run;

proc print data = Summary;
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run;

* Proc glm for obtaining ANOVA table and Tukey-Kramer pairwise comparisons;

proc glm data = PaperTowel;

class Towel Liquid;

model AmountAbsorbed = Towel Liquid Towel*Liquid;

lsmeans Towel Liquid / pdiff cl t adjust = tukey;

run;
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Problems for Chapter 6

6.1∗ This example is based on an experiment described in Saliva [26], page
382. The effects of two constituents of fertilizers, Potash and Nitrogen, on
the yield of tomato plants (pounds per plant) were studied. The yields for
three tomato plants are measured at each combination of 2 levels of Potash
and 4 levels of Nitrogen. The mean yields at the different combinations
are given in the table below.

Nitrogen
5% 10% 15% 20%

Potash
10% 10.0 10.3 12.7 8.3
15% 8.3 12.3 16.0 12.7

Suppose that MSE is 3.625.

a. Determine the estimated main effects of Potash

b. Determine the estimated main effects of Nitrogen

c. Determine the estimated interaction effects of Potash and Nitrogen

d. Carry out an F test to determine if there are true interaction effects.
Use α = 0.10.

e. Carry out an F test to determine if there are true Potash main effects.
Use α = 0.05.

f. Carry out an F test to determine if there are true Nitrogen main
effects. Use α = 0.05.

6.2∗ The author’s son used his Nerf gun to shoot at a target on a glass door.
The target was a circle having roughly the same diameter of the Nerf
bullet. He shot the gun from three ranges:

• Short: 5 feet from the door

• Medium: 10 feet from the door

• Long: 15 feet from the door

He also shot the gun using both his dominant right hand and his left
hand. He started each shooting by holding the gun in an upright
position. He was then instructed to aim and then after two seconds
was instructed to shoot at the target. There were 5 replications of
each combination of shooting distance and hand assigned completely
at random through time. Thus this is a two-factor completely ran-
domized design.

Accuracy was measured by how far away (to the nearest 1/8 inch)
the closest edge of the bullet was from the closest edge of the target.
If the bullet touched the target at all, then the accuracy was 0. So
smaller values of accuracy here denote closer shots to the target.
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Left Hand Right Hand
Accuracy Time Order Accuracy Time Order

Shooting Distance
Short 0 3 3.375 1

1.500 7 0.375 10
0.000 13 2.125 16
0.625 15 0.250 24
2.000 19 0.500 29

Medium 3.500 5 1.000 2
3.250 9 4.875 18
0.125 17 1.000 20
3.250 21 3.250 23
2.125 26 4.625 28

Long 13.250 4 3.125 12
7.000 6 1.125 14
8.125 8 14.375 22
7.750 11 3.375 27
8.750 25 9.125 30

a. Construct an interaction plot putting HAND on the horizontal
axis. Describe what you see in the plot. Is there evidence of
interaction between hand used and distance.

b. Conduct a test of interaction between hand used and distance
using a significance level of 0.10.

i. If the interaction term is significant, use simultaneous 95%
Tukey-Kramer confidence intervals to make pairwise com-
parisons of the mean accuracies of the three distances when
using the left hand. Repeat this procedure for the right hand.

ii. If the interaction term is not significant, test for differences
in distance main effect means. Also test for differences in
hand main effect means. Make pairwise comparisons using
simultaneous 95% Tukey-Kramer confidence intervals where
appropriate.

6.3∗ Alissa Wunder (2005) did an experiment to study the effect of heat in
a microwave on the expansion of a marshmallow. Marshmallows were
placed at the bottom of a mug and the mug placed in a microwave
at one of two settings, medium and high. Three different brands of
marshmallows were also studied (Food Lion, Walmart, and Kraft Jet
Puff). The experiment was replicated four times at each combina-
tion of microwave setting and brand for a total of 24 marshmallow
roastings. Marshmallows were tested one at a time with the particu-
lar setting and brand being randomly selected. Thus the experiment
is a two factor completely randomized design. The data from the
experiment is given in the following table.
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Time Order Brand Level Amount of Time(seconds)

2 Food Lion Medium 16
8 37
14 15
19 16
1 Food Lion High 19
11 18
18 18
23 23
3 Jet Puff Medium 39
10 38
17 39
20 37
6 Jet Puff High 16
9 17
15 18
21 17
4 WalMart Medium 15
12 44
16 44
22 43
5 WalMart High 16
7 19
13 22
24 20

a. Construct a plot of amount of time versus combination of brand
and microwave level. Draw conclusions based on the plot.

b. Give a model for the data and describe the terms of the model
in context.

c. Use a statistical program to obtain an ANOVA table with P-
values.

i. What is the estimate of the variance of the error terms?

ii. If the interaction term is significant at the 0.10 level, use
simultaneous 95% Tukey-Kramer confidence intervals at each
level of microwave to make pairwise comparisons of the mean
times of the store brands.

iii. If the interaction term is not significant at the 0.10 level of
significance perform the F test for differences in main ef-
fect mean amount of time across brands. Also perform the
F test for differences in main effect mean amount of time
across microwave level. Make pairwise comparisons using
simultaneous 95% Tukey-Kramer confidence intervals where
appropriate.

6.4∗ Annie Hambrick and Kristen Haug in 2004 compared the melting
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times of different brands of butter. The brands used were Land
O’Lake, Great Value (Walmart), and Cabot. They were also in-
terested in comparing melting times for different heat sources and
thought that perhaps heat source would have an effect on the com-
parison of the brands. So another factor, heat source, was studied:
burner on a stove or toaster oven. The stove burner and toaster oven
were turned on at the start of the experiment and remained on dur-
ing the entire time of the experiment. The heat settings for the two
sources were set so that in theory roughly the same temperature was
produced. A replication involved the selection of a brand at random
and then the selection of a heat source. One tablespoon of the se-
lected brand of butter was then put in a sauce pan if the stove was
used or put on a foil covered tray if the toaster oven was selected.
The sauce pan was put on the burner for two minutes before placing
the butter in it. The saucepan was washed between replications with
soap and hot water to prevent the pan from cooling down completely.
In the event that the saucepan cooled down, it was left on the burner
for two minutes before moving on to the next replication. The tray
remained in the toaster oven the entire experiment - only the piece
of foil with the butter was removed. The amounts of time to butter
meltdown are given in the following table.

Time Order Brand Method Amount of Time(secs)
1 Land-O-Lakes Stove 173
2 Cabot Stove 97
3 Great Value Stove 150
4 Land-O-Lakes Stove 125
5 Great Value Stove 154
6 Land-O-Lakes Toaster Oven 166
7 Land-O-Lakes Toaster Oven 179
8 Great Value Stove 157
9 Land-O-Lakes Stove 158
10 Great Value Toaster Oven 206
11 Cabot Stove 110
12 Great Value Toaster Oven 195
13 Cabot Toaster Oven 177
14 Cabot Toaster Oven 197
15 Land-O-Lakes Toaster Oven 203
16 Cabot Toaster Oven 183
17 Cabot Stove 126
18 Great Value Toaster Oven 205

a. Construct a plot of amount of time versus combination of brand
and heat source. Is there evidence of a brand effect? heat source
effect?

b. Give a model for the data and describe the terms of the model
in context.

c. Conduct a test of interaction between heat source and brand
using a significance level of 0.10.

i. If the interaction is significant, use simultaneous 95% Tukey-
Kramer confidence intervals to make pairwise comparisons
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of the levels of brands only for the oven heat. Repeat this
procedure when heat source is the stove. Draw conclusions.

ii. If the interaction term is not significant, then use the F test
to test for differences in sources of heat. Use the F test
to test for differences in main effect means across brands.
Make appropriate pairwise comparisons using Tukey-Kramer
simultaneous confidence intervals.

6.5∗ Consider the following incomplete ANOVA table for a two factor
completely randomized design.

Source of Variation Df SS MS F

A 3 310
B 2
A*B 80
Error 24 400

Total (Corrected) 35 890

a. How many levels of A are there? How many levels of B?

b. What is the total number of observations on the response vari-
able?

c. At a significance level of α = 0.05 is the interaction significant?
Use a critical F value from Table A.7.

d. At a significance level of α = 0.05 are the A main effects signifi-
cant? Use a critical F value from Table A.7 to make a decision.

e. At a significance level of α = 0.05 are the B main effects signifi-
cant? use a critical F value from Table A.7 to make a decision.

6.6∗ In the article “Lipid Pattern in Experimental Canine Atheroscle-
rosis” (Circular Research [1964]: Vol. XIV, pgs 61-72) researchers
investigated the effects on total serum lipids (mg/100 ml serum) of
the addition of cholesterol and thiouracil to the diets of canines. The
treatment group sizes, means, and standard deviations are given in
the following table.

Diet n Mean Standard Deviation
Basal 4 556 93.8

Basal + Cholesterol 6 879 357.6
Basal + Thiouracil 6 1807 497.2

Basal + Cholesterol + Thiouracil 6 3393 967.5

Explain how the four diets can be regarded as a factorial structure
involving two factors.

6.7 Rebecca Aaron and Rebecca Redman in 2014 conducted an experi-
ment to study the effects of brand of rubber band and temperature
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conditioning of the rubberband on how far a rubber band would
stretch until breaking. The two brands of rubberbands were Staples
and CLI (Douglas Stewart Company). Both brands were approxi-
mately 9 cm in length and 0.32 cm in width. Prior to stretching
rubberbands were exposed to either cold (freezer for 24 hours), heat
(microwave for 1 minute), or room temperature. Rubberbands were
tested/stretched one a time. The procedure was as follows. A combi-
nation of brand and temperature was randomly selected. A rubber-
band of the randomly selected brand and temperature conditioning
was selected. An apparatus was used to stretch the rubber-band until
it broke with a tape measure below the rubberband to measure the
stretched length. The stretching was videotaped to aid in the mea-
surement. This process was repeated for a total of 30 rubberbands, 5
for each of the combinations of brand and temperature conditioning.
The design is a completely randomized design.

Staples CLI
Length Time Order Length Time Order

Temperature
Freezer 71.1 1 73.5 12

74.0 6 66.0 13
76.2 18 78.5 14
73.6 22 69.1 23
75.0 26 72.0 27

Room 77.2 5 67.5 2
80.0 8 76.8 9
75.0 19 69.5 15
69.5 24 63.5 16
72.5 28 70.3 20

Heated 72.6 3 72.5 7
76.2 4 75.5 10
79 25 59.2 11
66.6 29 70.5 17
72.5 30 69.0 21

a. What are the experiment units?

b. It is most likely that the 15 rubberbands that required cold con-
ditioning were all put in the freezer at the same time. Discuss
any potential biases that occur as a result of this.

c. Construct an interaction plot putting Temperature on the hori-
zontal axis. Describe what you see in the plot. Is there evidence
of interaction between temperature and brand.

d. Use software to conduct a test of interaction between tempera-
ture and brand using a significance level of 0.10.

i. If the interaction term is significant, use simultaneous 95%
Tukey-Kramer confidence intervals to make pairwise compar-
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isons of the mean accuracies of the three temperatures with
the Staples rubberbands. Repeat this procedure for the CLI
rubberbands.

ii. If the interaction term is not significant, test for differences in
brand main effect means. Also test for differences in temper-
ature main effect means. Make pairwise comparisons using
simultaneous 95% Tukey-Kramer confidence intervals where
appropriate.

6.8 Rand Abdulrazaq and Mabel Adubofour in 2014 conducted an ex-
periment to study the effects of type of liquid and amount of salt
on the buoyancy of an egg. The two liquids were water and Sprite.
The amounts of salt were 6, 8, and 14 tablespoons. One trial of the
experiment was conducted as follows. A combination of liquid type
and amount of salt was randomly selected. Four hundred and sev-
enty (470) milliliters of the chosen liquid was poured into a graduated
beaker. The selected amount of salt was added to the beaker and the
contents were mixed for one minute. Ann egg was put into the solu-
tion and the distance from the bottom of the egg to the bottom of
the cup was measured (cm). This process was repeated for a total of
30 trials, 5 replicates per each of the 6 combinations of liquid type
and Sprite. The same egg and beaker were used for all 30 trials. The
design is a completely randomized design. The distances measuring
solubility are provided in the table below.

Water Sprite
Distance Time Order Distance Time Order

Amount of Salt(Tbs)
6 1.5 4 2.2 5

1.4 9 2.2 8
1.5 15 2.4 16
1.5 23 2.1 21
1.6 25 2.1 28

8 2.2 1 2.6 11
2.3 2 2.9 14
2.2 3 2.8 18
2.2 12 2.7 20
2.0 19 2.7 26

14 2.9 7 2.8 6
3.1 17 2.8 10
2.5 22 3.0 13
2.5 24 3.1 29
2.9 27 2.8 30

a. What are the two factors in this study? What are the levels of
each factor?

b. What are the treatments in this study? How many treatments
are there?

c. What are the experimental units?

d. Give two extraneous variables that are being directly controlled
in the study.
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e. What is the purpose of randomizing the treatments across time?
Give an example in your discussion.

f. Construct a dot plot putting combination of liquid type and
amount of salt on the horizontal axis and distance on the vertical
axis. Comment within the context of this study.

g. Construct an interaction plot putting type of liquid on the hori-
zontal axis. Is there evidence of interaction between liquid type
and amount of salt? Yes or no and explain within the context of
this study.

h. Give the population effects model for this data. Describe all
terms in the model within the context of this study. Be sure
to give the assumptions associated with the errors. Give two
extraneous variables whose effects are part of the error term.

i. Use software to obtain an ANOVA table.

j. Use software to conduct a test of the interaction between liquid
type and amount of salt on buoyancy using a significance level
of 0.10.

i. If the interaction term is significant, use simultaneous 95%
Tukey-Kramer confidence intervals to make pairwise compar-
isons of the mean buoyancies/distances of the three amounts
of salt assuming liquid type is Sprite. Repeat this proce-
dure assuming liquid type is water. In all cases provide the
treatments means that are being compared.

ii. If the interaction term is not significant, test for differences
in liquid type main effect means. Also test for differences
in amount of salt main effect means. Make pairwise com-
parisons using simultaneous 95% Tukey-Kramer confidence
intervals where appropriate. In all cases provide the main
effect means that are being compared.

6.9 Refer to the paper towel absorption data given in Table 6.8.

i. Decompose each of the 27 absorptions according to the two fac-
tor model for the completely randomized design and put your
decompositions into tabular form similar to Table 6.5, not cor-
rected for the grand mean.

ii. Based on your decomposition in part (i), calculate the various
sums of squares for the absorptions (uncorrected for the grand
mean), grand mean, towel effects, liquid effects, towel by liquid
interaction effects, and errors. Compare your calculated sums
of squares for towel effects, liquid effects, liquid interaction ef-
fects, and errors to the same sums of squares given in Table 6.10
obtained by statistical software. Do you agree?

iii. Find the total sum of squares for the absorptions corrected for
the grand mean using your calculated total sum of squares for
absorptions not corrected for the grand mean and sum of squares
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for the grand mean in part (ii). Compare this result to the sum
of squares for absorptions corrected for the grand mean given in
Table 6.10.
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Chapter 7

Blocking and the
Randomized Complete
Block Design

7.1 Blocking Designs Compared to Completely
Randomized Designs

Recall from Chapter 1 that there are three ways that researchers “control” for
the potentially biasing effects of extraneous variables.

a. Randomization

b. Blocking

c. Direct Control

Randomization means assigning the treatments to the experimental units
at random so as to balance out the effects of extraneous variables among the
treatment groups. It is important to note that the effects of extraneous variables
balanced out by randomization are not eliminated altogether. In fact for small
group sizes randomization may not work well at all. Any designs which employ
only randomization are called completely randomized designs.

Direct control means that we only use experimental units which have con-
stant values with regard to some extraneous variable. For example, if gender
is an extraneous variable, then we might only use females in the study. In this
form of control the effects of the extraneous variable are eliminated altogether
but of course, the scope of the conclusions are limited.

Blocking is a form of control whereby experimental units are “blocked” or
grouped into homogeneous sets and treatments are then assigned at random
within each block. By grouping the units into sets, we can in the analysis
remove the effects of the blocking variables from experimental error and thus
make for a more precise comparison of treatments. More precisely, the purpose

169
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of blocking is to reduce the standard deviation, σ, of experimental error. In
theory blocking will eliminate altogether the effects of an extraneous variable–
in practice the effect may not be eliminated altogether, but reduced to a certain
extent.

As an example of blocking suppose that a researcher wants to compare four
brands of tires for treadwear by having the tires put on cars and driven. Suppose
that there are four cars available with thus 16 tire positions. One possible design,
the completely randomized design, randomly assigns 16 of the tires, 4 of
each brand, to the 16 tire positions on the four cars in a completely randomized
fashion. The resulting assignment could turn out as follows:

Left Front Right Front Left Rear Right Rear
Car 1 A C A A
Car 2 C B A B
Car 3 D C B D
Car 4 C B D D

To emphasize: this is the result of assigning the brands completely at ran-
dom to the 16 tire positions, that is a completely randomized design.

Intuitively, the completely randomized design is not a very good design for
this experiment. It is possible, like in this design, that three tires of the same
brand get put on the same car (Car 1, Brand A) and if car is a significant
extraneous variable, then the resulting comparison between brands would be
biased in favor or disfavor of brand A. Numerically, the mean treadwear for
Brand A might be smaller/larger than the mean treadwear for the other brands,
but it may be due to the effects of Car/Driver 1.

A more intuitively appealing design is a block design. The 16 tire positions
are naturally grouped by car. Thus use car as a block and assign the four brands
within each block or car. Note that randomization is still possible with
blocking. The brands can be randomly assigned to the 4 tire positions within
each car or block. The purpose of the randomization within each car is to
balance out the effects of other extraneous variables such as position effects.
The random assignment for a block design in this example with cars serving as
blocks or groups of tire positions could result as follows:

Left Front Right Front Left Rear Right Rear
Car 1 A C B D
Car 2 C B A D
Car 3 D B A C
Car 4 A D C B

Notice with this design and random assignment that each brand is exposed
to all four cars so comparison of brands will not be unduly influenced by effects
of cars. It is possible with the above randomization that all tires of a brand are
put on the same wheel position and this could have a confounding effect on the
comparison of brands. An alternative blocking design, called the Latin Square
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Design, with two blocking criteria, can be used in this situation. A discussion
of the Latin Square blocking design will be discussed in Section 7.8.

Blocking is a restricted form of randomization. This is different
than the completely randomized design where there are no restric-
tions on the randomization. Determining the kind of randomization can aid
in determining the kind of design.

7.2 Types of Blocking

Recall in Chapter 3 that we learned how to analyze block designs with only two
treatments using the paired samples t test. We also learned about the different
types of blocking. Listed again below are the different types reflecting the fact
that in this chapter there may be more than two treatments of interest.
Types of Blocking

A. Group/sort subjects or objects into blocks, each block containing t sub-
jects, with t being equal to the number of treatments. This would include
natural groupings such as twins or litters of animals, tire positions on a
car, etc. The t treatments are assigned completely at random to the t
subjects within each block. Experimental units in this type of blocking are
the subjects or objects that have been grouped.

B. Reuse each subject at different occasions or time slots. There are two types
of reusing.

i. Each subject is reused at t time slots in order to receive different
treatments at the time slots, the number of treatments being equal to
the number of time slots. The order of the treatments is random.

ii. Each subject is reused to obtain multiple measurements on the re-
sponse variable at the different time slots in order to study a time
profile. The “factor” in this case would be a time variable associated
with the time slots. There would be no randomization of levels of the
time variable to the time slots. case.

Experimental units for the reusing type of blocking (i. or ii.) are the
time slots or occasions for each subject. The grouping is of time slots or
occasions by subject.

C. Split chunks of material such as a batch of milk, plot of land, etc. into
t parts, the number of parts equal to the number of treatments. The t
treatments are assigned completely at random to the t parts. Experimental
units in this type of blocking are the parts.

In all cases above there is some grouping, whether it is of persons, time slots,
or parts of batches of some substance.

It is assumed in this chapter that the number of experimental units within
a block is equal to the number of treatments, t, and that the treatments are
assigned at random to the experimental units with each block independently
of other blocks. The design is then called a randomized complete block



172

design. The word complete refers to the fact that all treatments are used in
a block. This is not always the case. Then the design would be an incomplete
block design, a design not covered in this text.

In some designs subjects are randomly assigned to treatments in a completely
randomized design, but then are re-used as in Blocking Type B(ii) to obtain
multiple measurements on the response variable. Interest would be in the time
profiles of individual treatments and comparing the time profiles for different
treatments. Subjects serve as blocks of time slots since they are being reused.
For example, .... Designs which use Type B (ii) blocking will be referred to
as repeated measures designs in this text. The analysis deserves special
consideration and will be the subject of Chapter 10. Note that some textbooks
refer to a repeated measures design as any design which uses Type B(i) or Type
B(ii) blocking.

7.2.1 Examples of Type A Blocking

a. The tire brand example of the last section is an example of this type of
blocking. This is a natural grouping–the blocks of 4 tire positions come
naturally by car. Other examples of this type of blocking would be where
litters of animals are used as blocks. Each animal in a litter gets a treatment
(assigned at random) and several litters are used. The experimental units
are animals within the litters.

b. A study was conducted to investigate the effects of adding the amino acid
lysine to the diets of growing kittens. Twenty kittens were weighed, sorted
by increasing weight, and then divided into 4 blocks, each block with 5
kittens of similar weight. Within each block the five kittens were assigned
at random to one of 5 diets with varying levels of lysine. Kittens were fed
individually. Kittens are the experimental units.

c. Cobb ([4], page 247) describes a study of the effect of vitamin B6 on the
severity of symptoms of premenstrual syndrome. Subjects were sorted
into pairs or blocks based on similar responses to a questionnaire com-
pleted before the study regarding the severity of their symptoms. Within
each block one subject was randomly assigned vitamin B6 and the other a
placebo. Experimental units are the subjects since the treatments (vitamin
B6, placebo) are assigned to the subjects.

7.2.2 Examples of Type B Blocking

a. To compare three drugs A, B, and C, for their effectiveness in relieving an
allergy, each of 10 subjects receives all three drugs in a random order in
different time periods. Experimental units are time slots/periods.

The blocking/grouping here is of time slots by person and then random-
ization is undertaken within each group of time slots.

One version of the completely randomized version of this study would be
where the treatments are assigned to the 30 time slots at random. Thus
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in theory one person could get drug A for all three of his/her time slots.
Of course this would not make sense, just as it would not make sense to
randomly assign brands to the 16 wheel positions on four cars.

An alternative version of the completely randomized design, but that does
not reuse subjects is as follows: thirty subjects are assigned completely
at random, ten getting drug A, ten different subjects getting drug B, and
ten different subjects getting drug C. Experimental units are persons
here, not time slots. Thus any differences in persons would be a part
of experimental error and thus may not be a very good design, that is we
may have imprecise comparisons of the drugs.

b. In the article “Effects of a fibre-enriched milk drink on insulin and glucose
levels in healthy subjects” (Nutrition Journal [2009], 8:45 ) researchers
compared the effects of three drinks: 1) a lactose-free milk drink, 2) a
novel fibre-enriched, fat- and lactose-free milk drink, and 3) normal fat-free
milk, on serum glucose and insulin levels and satiety using a randomized
complete block design. After fasting overnight, each of the 26 volunteers
ingested 200 ml of one of the three drinks on three separate days, the
order of the drinks being randomly determined. This is a re-using type
of blocking. Each subject is being re-used on three different days. The
experimental units are the time slots/days on which the subjects ingested
the drinks.

c. Before and After Studies. A popular type of block design which reuses
subjects is the before and after study. A person is measured on the
response variable before a treatment is given, a treatment is given, and
then the person is measured again on the response variable after the treat-
ment. This is a special case of the repeated measures design with only two
observations on the response variable for each subject. Interest is in the
time profile of the response, before the treatment to after the treatment,
or the change in the response that might result from the treatment.

An example of this comes from Moore and McCabe ([22], page 560). A
bank wonders whether eliminating the annual fee on its credit card cus-
tomers will increase the amount that the customers charge. A random
sample of 100 customers is selected and told that they would not have to
pay the fee this year. The amounts that they charged last year (before
elimination of fee) and the amounts charged this year (after elimi-
nation of the fee) are compared. This is a block design whereby each
customer is used/measured twice. Each subject provides two time slots,
two consecutive years. The factor is place in time of the years, “before”
and “after,” which are not assigned to years.

d. It is claimed that an industrial safety program is effective in reducing the
loss of working hours due to accidents. The following data are collected
concerning the weekly loss of working hours due to accidents in six plants
both before and after the safety program is instituted.
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Plant
1 2 3 4 5 6

Before 12 29 16 37 28 15
After 10 28 17 35 25 16

This is a block design whereby each plant/set of employees is used/measured
twice. Each plant provides two time slots, two different week periods. The
factor is point in time of the weeks, “before” and “after,” which are not
assigned to weeks. This is an example of a repeated measures design.

e. Suppose that 50 high school students agree to take the SAT test twice,
once before a special prep course advertised to improve your score, and
then again after taking the prep course. The two tests are different ver-
sions. Each student serves as a block of two time periods/occassions. The
response variable is SAT score. The factor of interest is place in time for
the two periods in which the tests are taken, “before” and “after,” which
are not assigned to the periods.

Note that the above described before and after studies are similar to the
drug example in that time slots are experimental units. However in the
drug example the treatments/conditions of drug A, B, and C are randomly
assigned to time slots. This is to balance out any time effects for the
measurements on A, B, and C. Some of the A measurements are taken 1st,
some are taken 2nd, some 3rd, etc.

In the before and after study, a comparison is made of before time slot
measurements and after time slot measurements. However, there is one
big difference. The conditions before and after are not assigned (at ran-
dom) to the time slots, like drugs are. They are inherent characteristics
of the time slots in which the measurements are taken. Thus there is no
balancing out of time effects among the before measurements and the after
measurements. All of the before measurements are taken 1st in time, all
of the after measurements are taken 2nd in time. Thus if there are any
extraneous variables which are time related they will be confounded with
the before and after measurements.

In the bank study, any effects on amount of money spent related to time,
would be confounded with the effects of the no fee option. For example,
when the “after no fee option” amounts were recorded, perhaps the econ-
omy was more prosperous than when the “before no fee option” amounts
were recorded.

In the SAT study, perhaps when students took the test a 2nd time, they
may have done better, because they had more experience (practice effect)
with this kind of test than when they took it the first time.

7.2.3 Examples of Type C Blocking

a. In agricultural studies blocks may represent different parts of fields getting
different amounts of moisture which is associated with growth of plants. A
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block would correspond to a part of field or plot which is split into subplots
and the subplots would have about the same amount of moisture. For
example, there might be 5 plots with each plot being split into 3 subplots.
The subplots within each of the 5 plots have about the same moisture. The
treatments, which might be 3 types of fertilizer, are applied within each
plot to the 3 subplots.

b. (Johnson & Sui,[13]). A food scientist wants to study whether quality
differences exist between yogurt made from skim milk with and without
the pre-culture of a particular type of bacteria, called Psychotrops(PC).
Samples of skim milk are procured from seven dairy farms. One half of
the milk sampled from each farm is inoculated with PC, and the other half
is not. After yogurt is made with these milk samples, the firmness of the
curd is measured, and those measurements are given below.

Dairy Farm
A B C D E F G

With PC 68 75 62 86 52 46 72
Without PC 61 69 64 76 52 38 68

A block corresponds to a pair of milk samples from a farm. The two sam-
ples arose as a result of splitting a larger portion of milk. The blocking
eliminates the effects of different farms from the comparisons of the firm-
ness with PC and without PC.

c. In the article “Effect of Rapid Thawing on the Meat Quality Attributes
of USDA Select Beef Strip Loin Steaks” (Journal of Food Science, [2011]:
Vol. 76, Issue 2, pages S156-S162) researchers compared three methods
for thawing frozen beef strip loin steaks on various quality characteristics
of the meat. Each of 24 beef strip loins were cut into 3 steaks. The
three steaks from each strip loin were randomly assigned to three thawing
methods. There was one conventional method (18 to 20 hrs, 4 degrees
C), and two rapid thawing methods (20 min, 20 degrees C) or very fast
(11 min, 39 degrees C). The rapid thawing methods were conducted in a
circulating water bath. The factor of interest is thawing method. The 24
strip loins serve as blocks. The randomization of the thawing methods was
done independently from block (loin) to block to the steaks cuts from the
strip loins. The experimental units are the steaks. The response variables
are the quality characteristics.



176

7.3 Model and Analysis for the Randomized Com-
plete Block Design

7.3.1 Block Design Analysis as Analysis for Two Factor
Study

Think of the levels of a single blocking variable as levels of one of the two factors,
say A, in a two factor study. If there are a levels of the blocking variable A and
b levels of the factor of interest B, then let µij be the true mean of the response
variable at the ith level of the blocking variable A and jth level of factor B.
Then the model from Chapter 6 is

yij = µij + ϵij

= µ·· + ρi + τj + (ρτ)ij + ϵij (7.1)

where

• µ·· represents the true grand mean

• ρi (i = 1, ..., a) represents the true effect of ith level of the blocking variable

• τj (j = 1, ..., b) represents the jth level of the factor of interest

• (ρτij) represents the interaction between the ith level of the blocking vari-
able and the jth level of the factor of interest, B, and

• ϵij represents as usual the effects of extraneous variables on the observation
of y at the ijth combination of the blocking variable and factor of interest.

Note that the subscript k has been dropped because there is only one ob-
servation at the ith level of the blocking variable and jth level of the factor of
interest. Note also the difference in notation this model uses compared to the
two factor model of Chapter 6. The symbol ρ is being used instead of α for the
effect of a level of the blocking variable. Also the symbol τ is being used instead
of the symbol β for the factor of interest, A. Otherwise the model is the same
as that in Chapter 6.

Let us think about estimating parameters in this model. We may proceed
as in Chapter 6. Letting

ϵij = yij − µij

it is natural to estimate ϵij with yij − yij· where yij. is the sample mean at the

ith level of the blocking variable and jth level of the factor of interest. However
there is only one observation at the ith level of the blocking variable and jth

level of A. Thus yij· would be the same as yij and the estimate of the error
term would be 0. Obviously this will not give a legitimate estimate of error and
hence of MSE. The problem is that there is not enough data “to go around”
and estimate all of the parameters in the model.
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Note that if we assume that there is no interaction between blocks and
treatments, then the model simplifies to

yij = µ·· + ρi + τj + ϵij

If we solve this equation for ϵij we get

ϵij = yij − (µ·· + ρi + τj)

This suggests estimating the error term ϵij with

eij = yij − (y·· + ρ̂i + τ̂j)

The right side is how we estimated in Chapter 6 the interaction effect of the
ith level of one factor and the jth level of the other factor (with yij replaced
with yij·). So to estimate error in the block design with only one replication per
block and treatment combination we use a value that served as interaction effect
in Chapter 6. This is legitimate assuming there is no true interaction between
blocks and treatments.

7.3.2 Model for the One Factor Randomized Complete
Block Design

The model for the one factor randomized complete block design with no inter-
action is summarized below.

yij = µ·· + ρi + τj + ϵij (7.2)

where

• µ·· represents the true grand mean

• ρi (i = 1, ..., a) represents the true effect of ith level of the blocking variable

• τj (j = 1, ..., b) represents the jth level of the factor of interest

• ϵij represents as usual the effects of extraneous variables on the observation
of y at the ijth combination of the blocking variable and factor of interest.

It is assumed in the model that the ϵij are independent normal random
variables each with mean 0 and standard deviation σ.

The model assumes no interaction between the blocking variable and the
factor of interest. Thus this condition needs to be checked. If this assumption
if not reasonable then a transformation of the data may be helpful.

The F test for treatments compares the sample treatment means averaged
over levels of the blocks which is appropriate only if there is no interaction.

To illustrate the ideas consider the following example taken from Kutner,
Nachtsheim, Neter, and Li [15].
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Example 7.1 An accounting firm, prior to introducing in the firm widespread
training in statistical sampling for auditing, tested three training methods:

1. study at home with programmed training materials

2. training sessions at local offices conducted by local staff

3. training sessions in Chicago conducted by national staff

Thirty auditors were grouped into 10 blocks of 3, according to time elapsed
since college graduation, and the auditors in each block were randomly assigned
to the 3 training methods. Block 1 consists of auditors graduated most recently,
..., block 10 consists of those graduated most distantly. At the end of the training,
each auditor was asked to analyze a complex case involving statistical applica-
tion; a proficiency measure based on this analysis was obtained for each auditor.
The results are given in Table 7.1

The model used for the analysis of this example is given below:

yij = µ·· + ρi + τj + ϵij (7.3)

where

• µ·· represents the true grand mean of proficiency measure

• ρi (i = 1, ..., a = 10) represents the true effect of ith level of the blocking
variable time elapsed since college graduation on the proficiency measure

• τj (j = 1, ..., b = 3) represents the true effect of the jth level of training
method on the proficiency measure

• ϵij represents as usual the effects of extraneous variables on the observation
of y, proficiency measure at the ij combination of the blocking variable time
elapsed since graduation and training method.

The model assumes no interaction between the blocking variable, time elapsed
since college graduation, and training method.

Figure 7.1 provides a plot of the proficiency measures versus Block by Method.
Note that Method 3 results in the highest measures regardless of the amount
of time elapsed since college graduation. Also there is no strong evidence of
interaction between block and method.

Let us find the estimate of the error associated with the proficiency measure,
y11 = 73, for block 1, training method 1.

The grand mean proficiency measure is y·· = 77.0. The marginal mean
proficiency for block 1 is y1· = 82 and the marginal mean proficiency for training
method 1 is y·1 = 70.6. Thus block 1 effect is ρ̂1 = 82− 77 = 5 and the training
method 1 effect is τ̂1 = 70.6 − 77 = −6.4. Hence the estimate of error, e11, for
77 is

e11 = 73− (77 + 5 + (−6.4)) = −2.6.

Hence we can decompose y11 = 73 in the following manner:
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Table 7.1: Auditor Proficiency Measures with Marginal and Grand Means

Training Method j
Block i 1 2 3 yi·
1 73 81 92 82
2 76 79 89 81.3
3 75 76 87 79.3
4 74 77 90 80.3
5 76 71 88 78.3
6 73 75 85 77.7
7 68 72 88 76
8 64 71 82 72.3
9 65 73 81 73
10 62 69 78 69.7
y·j 70.6 74.4 86.0

y·· = 77.0

Figure 7.1: Plot of Proficiency Measure versus Block by Treatment
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y11 = 73 = 77 + 5 + (−6.4) + (−2.6).

Similarly we can do this for the other 29 proficiency measures. Table 7.2
provides the complete decomposition.

If we square the effects in the various columns and add we get the following
sums of squares:

• SSTOT with degrees of freedom = ab

• SSGM with 1 degree of freedom

• SSBL(Blocks) with degrees of freedom = a− 1, number of blocks minus 1

• SSTR(Treatments) with degrees of freedom = b− 1, number of treatments
minus 1

• SSE with degrees of freedom = (a− 1)(b− 1).

Note that degrees of freedom associated with the errors is the same as that
used for interaction in Chapter 6. We will use a statistical program to obtain the
sums of squares, degrees of freedom, and mean squares for the auditor example.
Table 7.3 gives the ANOVA table for the auditor example. Note in the table
that total sum of squares corrected for the grand mean is given instead of total
sum of squares.

There is evidence of a difference in training method. There is also evidence
of a difference in blocks but this is not unexpected since the blocking variable
was included to control for differences in experience.

Pairwise comparisons can be made using one of the methods discussed in
Chapter 5. The Tukey-Kramer method of multiple comparison is used here.
Tukey-Kramer adjusted P-values and simultaneous 95% confidence intervals are
in given in Table 7.4. All pairwise comparisons of means are significant at the
0.05 experimentwise level of significance.

The model upon which the inferences is based assumes that there is no
interaction between block and method, that is the effect of method does not
depend upon the number of years since graduation. One way of checking this
assumption is as in Chapter 6, to plot scores versus block and check to see if
the graphs representing the different treatments are roughly parallel. Figure 7.1
indicates that the assumption of no interaction between blocks and methods is
reasonable for the auditor example.

The method for calculating errors for the block design can be thought of as
an adjustment on the errors calculated under the assumption of a completely
randomized design of Chapter 4. Consider the proficiency measure of 73 in block
1, training method 1, for Example 7.1. The following equations start with a
decomposition of 73 along the lines of Chapter 4 and ends with a decomposition
of 73 according to the block design.

73 = 77 + (70.6− 77) + (73− 70.6)
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Table 7.2: Decomposition Table - Auditor Data

i (block) j(method) yij = y·· + ρ̂i + τ̂j + eij
1 1 73 = 77 + 5 + (-6.4) + (-2.6)
1 2 81 = 77 + 5 + (-2.6) + 1.6
1 3 92 = 77 + 5 + 9.0 + 1.0
2 1 76 = 77 + 4.3 + (-6.4) + 1.1
2 2 79 = 77 + 4.3 + (-2.6) + 0.3
2 3 89 = 77 + 4.3 + 9.0 + (-1.3)
3 1 75 = 77 + 2.3 + (-6.4) + 2.1
3 2 76 = 77 + 2.3 + (-2.6) + (-0.7)
3 3 87 = 77 + 2.3 + 9.0 + (-1.3)
4 1 74 = 77 + 3.3 + (-6.4) + 0.1
4 2 77 = 77 + 3.3 + (-2.6) + (-0.7)
4 3 90 = 77 + 3.3 + 9.0 + 0.7
5 1 76 = 77 + 1.3 + (-6.4) + 4.1
5 2 71 = 77 + 1.3 + (-2.6) + (-4.7)
5 3 88 = 77 + 1.3 + 9.0 + 0.7
6 1 73 = 77 + 0.7 + (-6.4) + 1.7
6 2 75 = 77 + 0.7 + (-2.6) + (-0.1)
6 3 85 = 77 + 0.7 + 9.0 + (-1.7)
7 1 68 = 77 + (-1) + (-6.4) + (-1.6)
7 2 72 = 77 + (-1) + (-2.6) + (-1.4)
7 3 88 = 77 + (-1) + 9.0 + 3.0
8 1 64 = 77 + (-4.7) + (-6.4) + (-1.9)
8 2 71 = 77 + (-4.7) + (-2.6) + 1.3
8 3 82 = 77 + (-4.7) + (9.0 + 0.7
9 1 65 = 77 + (-4) + (-6.4) + (-1.6)
9 2 73 = 77 + (-4) + (-2.6) + 2.6
9 3 81 = 77 + (-4) + (9.0) + (-1.0)
10 1 62 = 77 + (-7.3) + (-6.4) + (-1.3)
10 2 69 = 77 + (-7.3) + (-2.6) + 1.9
10 3 78 = 77 + (-7.3) + 9.0 + (-0.7)

Table 7.3: ANOVA Table for Auditor Example

Source of Variation Df SS MS F P-value

Method 2 1287.2 643.6 114.2 <.0001
Block 9 465.3 51.7 9.17 <.0001
Error 18 101.5 5.6

Total (Corrected) 29 1854.0
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Table 7.4: Tukey Pairwise Comparisons of Methods

Method Method Mean Difference Std.Error DF t Value P-value LCL UCL

1 2 -3.89 1.06 18 -3.58 0.0058 -6.51 -1.09
1 3 -15.40 1.06 18 -14.50 <.0001 -18.11 -12.69
2 3 -11.60 1.06 18 -10.92 <.0001 -14.31 -8.89

= 77 + (−6.4) + 2.4

= 77 + (−6.4) + (5) + (2.4− 5)

= 77 + (−6.4) + (5) + (−2.6)

The training 1 method effect of (−6.4) is the same for the two models. The
error under a completely randomized design is 2.4, which is the difference be-
tween 73 and the mean proficiency measure for training method 1. Subtracting
5 (block 1 effect) from 2.4 (and adding 5in the equation) results in an error of
(−2.6), which is the error for the block design.

In the model for the completely randomized design there is no term for block
effect and thus block effect is contained in the error. In the block design block
effects can be estimated and then “removed” (subtracted) from the errors that
would normally occur with the completely randomized design, in theory, making
the errors for the block design smaller.

7.3.3 Summary of F test for Treatment Effects in the Ran-
domized Complete Block Design

The null and alternative hypotheses for the test of treatment effects for b treat-
ments are

Ho : τ1 = τ2 = . . . = τb = 0

or equivalently,

Ho : µ·1 = µ·2 = . . . = µ·b

The alternative hypothesis is

Ha : not all τj
′s = 0

or equivalently,
Ha : not all µ.j

′s are equal

The test statistic is

F =
MSTR

MSE
=

SSTR/(b− 1)

SSE/(a− 1)(b− 1))
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where

SSTR = a
b∑

j=1

τ̂2j = a
b∑

j=1

(y.j − y..)
2

and

SSE =

a∑
i=1

b∑
j=1

[eij ]
2 =

a∑
i=1

b∑
j=1

[yij − (y.. + ρ̂i + τ̂j)]
2

Note that SSTR is a comparison of the marginal means of the response
variable for the treatments which is only appropriate if there is no interaction
between the blocking variable and the factor of interest.

If the null hypothesis is true and the assumption of independent, normally
distributed errors with mean 0 and common variance holds, then MSTR/MSE
has the “F” probability distribution with ν1 = (b − 1) numerator degrees of
freedom and ν2 = (a− 1)(b− 1) denominator degrees of freedom.

At a significance level of α the null hypothesis would be rejected if the
observed value of the test statistic, Fo, is larger than Fα;(b−1),(a−1)(b−1), the
upper α probability point from the appropriate F distribution or equivalently if
P-value ≤ α, where P-value = P [F ≥ Fo]. Probability points for α = 0.05 and
α = 0.01 are given in Tables A.7 and A.8, respectively. P-values can only be
approximated using Table A.7 or A.8. More precise P-values can be obtained
using statistical computing software.

A test of block effects is also available although it is not usually of main
interest. It is expected that there are block effects since the purpose of block-
ing is to reduce experimental error associated with the presumed relationship
between the blocking variable and the response.

The null and alternative hypotheses for the test of block effects for the a
blocks are

Ho : ρ1 = ρ2 = . . . = ρa = 0

or equivalently,

Ho : µ1· = µ2· = . . . = µa·

The alternative hypothesis is

Ha : not all ρi
′s = 0

or equivalently,
Ha : not all µi·

′s are equal

The test statistic is

F =
MSBL

MSE
=

SSBL/(a− 1)

SSE/(a− 1)(b− 1))

where
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SSBL = b

a∑
i=1

ρ̂2i = b

a∑
i=1

(yi· − y..)
2

and

SSE =

a∑
i=1

b∑
j=1

[eij ]
2 =

a∑
i=1

b∑
j=1

[yij − (y.. + ρ̂i + τ̂j)]
2

If the null hypothesis is true and the assumption of independent, normally
distributed errors with mean 0 and common variance holds, then MSBL/MSE
has the “F” probability distribution with ν1 = (a − 1) numerator degrees of
freedom and ν2 = (a− 1)(b− 1) denominator degrees of freedom.

At a significance level of α the null hypothesis would be rejected if the
observed value of the test statistic, Fo, is larger than Fα;(a−1),(a−1)(b−1), the
upper α probability point from the appropriate F distribution or equivalently if
P-value ≤ α, where P-value = P [F ≥ Fo]. Probability points for α = 0.05 and
α = 0.01 are given in Tables A.7 and A.8, respectively. P-values can only be
approximated using Table A.7 or A.8. More precise P-values can be obtained
using statistical computing software.

The expected values of the various mean squares can be shown to be

E[MSE] = σ2 (7.4)

E[MSBL] = σ2 +
b
∑a

i=1 ρ
2
i

a− 1
(7.5)

E[MSTR] = σ2 +
a
∑b

j=1 τ
2
j

b− 1
(7.6)

These are the same expected mean squares as those in Chapter 6 under the
assumption that there is no interaction between the two factors A and B and
that the number of replications is 1 for every treatment combination.

7.3.4 Pairwise Comparisons Using the Tukey-Kramer Pro-
cedure

The general form of endpoints for the Tukey-Kramer confidence interval for the
difference of two treatment means µ·j − µ·j′ , adapted from Chapter 6, is

y·j − y·j′ ±
qα;ν,b√

2

√
MSE

√
1

a
+

1

a

where y·j and y·j′ refer, respectively, to the marginal means of y for levels j and
j′ of the factor of interest B. The number of levels of the blocking factor a in the
denominators refer to the number of observations used to calculate the marginal
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means. The degrees of freedom ν refers to degrees of freedom associated with
MSE. The set of intervals have an experiment-wise confidence level of 1−α. The
percentile qα;ν,b can be found in Table A.5 or A.6 with t in the table equalling
the number of levels, b, of the factor of interest.

7.4 More on Block Designs and Analysis

The following are additional items worth noting regarding the RCBD.

a. Missing Observations

It was assumed that there was a complete set of observations on the treat-
ments for each block, that is no missing observations on the response. If
there are missing observations then the analysis is more complex. For a
discussion of this situation see [14], page 287, or [24], page 324.

b. Time Order and Interference Effects

In the reusing type of blocking where individuals are given all treatments
at different time slots there is the possibility of order effects, that is a ten-
dency for earlier observations to be higher (or lower) than later observations
regardless of the treatments. Randomizing the order of the treatments will
at least tend to balance out such effects among the treatments and make
the errors approximately independent.

Also for these types of studies the effect of a treatment in one time slot
could in theory carry over to the next time slot where the individual is given
another treatment. A solution to this potential ”carry-over effect“ is to
allow a sufficient amount of time after one treatment application before
beginning another treatment.

c. Loss of Degrees of Freedom The degrees of freedom or amount of
information for estimating error is smaller for the randomized complete
block design as compared to the completely randomized design with the
same number of observations in the treatment groups. However MSE with
the block design may be smaller than that for the completely randomized
design ultimately resulting in more precise comparisons of the treatments,
which is one reason for using a block design.

d. Multiple Observations on the Experimental Unit

In some situations there may be multiple observations on the response
variable for each of the experimental units within a block, that is there
is subsampling. For example in an animal health study pens of animals
may be the experimental units and pens are blocked according to similar
weight distribution within the pen. Observations on individual animals
within the pen constitutes subsampling. The analysis of the randomized
complete block design with subsampling is considered in Chapter 10.

e. Multiple Experimental Units within Blocks

In some situations it may be desirable to have more than one replicate
of each treatment in a block. The design is then called a generalized
randomized complete block design and is considered in Section 7.6.
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f. Random Block Effects

It has been assumed up to this point that the levels of the blocks and block
effects are “fixed.” This means that the levels of the blocking variable
are of particular interest and if the experiment were to be repeated the
same levels would be used. Suppose in the auditor example that the actual
elapsed times since graduation from college were, respectively, 1, 2, ..., 10
years, corresponding to the 10 blocks. Fixed block effects means that if
the experiment were repeated, while the subjects might be different, the
elapsed times would be the same.

In many blocking scenarios blocks might represent a random sample of
blocks from some population of blocks. The particular blocks used are not
of particular interest and interest is in generalization to the population of
all blocks. If the experimenter had the opportunity to repeat the experi-
ment he or she would select a different random sample of blocks. In this
situation blocks and block effects are “random” rather than “fixed,”.
The analysis would assume that the block effects are values of random
variables analagous to the assumption of errors being random variables.
Good examples are where blocks are persons who have been randomly se-
lected from some population. Inference would normally not be in those
particular subjects but in the population of all subjects from which the
random sample was selected.

Unlike for the fixed block effects case, two models may be considered with
random block effects, one with random blocks without interaction (addi-
tive model) and another with random block and interaction effects. If
block effects are considered random then any interaction effects would be
also random. Kutner and others ([15], pages 1060 - 1065) gives a detailed
discussion of the two models. Standard errors associated with estimates
of treatments would not be the same as for the fixed block effects model.
However comparisons of treatments use the same F statistic (MSTR and
MSE) and degrees of freedom as used for the fixed effects model. The
decision to use the additive model or the model with interaction could be
based on plots. Regardless of which model is used comparisons of treat-
ments under a model with random block effects are for the population of
blocks.

7.5 Paired Samples t test Revisited

Recall from Chapter 3 that when there are two treatments and observations
are paired (blocks of size 2) the paired samples t test can be used for analysis.
Differences between the response values for the two treatments are calculated
within each block and then a single sample t test is performed on the differences
(See Section 3.2). It will be illustrated in this section that a two-sided compar-
ison using the paired samples t test is equivalent to analysis with ANOVA for a
block design using the F test. An example follows.
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Table 7.5: ANOVA Table for Word Recall Example

Source of Variation Df SS MS F P-value

List 1 0.075 0.075 0.01 0.9110
Student 59 1044.425 17.702 2.97 <.0001
Error 59 351.425 5.956

Total (Corrected) 119 1395.925

The equivalence will be illustrated with the word recall example from Chap-
ter 3. In Section 3.2 the paired samples t test was used to compare the numbers
of words recalled by students after studying two lists of words. One list con-
sisted of 25 concrete words and the other list 25 abstract words. The mean of
the differences in numbers of words recalled was d = 0.05 with sd = 3.45. The
observed value of the t test statistic was 0.11 and P-value = 0.9910 based on
df = 59. Thus there was no evidence that recall of these words depended upon
list.

In the context of this chapter student is the blocking variable and list (A or
B) is the factor of interest. The response variable is number of words recalled.
An ANOVA table for this example is given in Table 7.5.

Note that the P-value for the effect of list, 0.9110 is identical to the P-value
obtained from the paired samples t test. What is not obvious is the relation
between the values of the t statistic and the F statistic. It can be shown that
the square of the t statistic is equal to the F ratio. Note here that 0.112 = 0.01.
Also note that the degrees of freedom for the t statistic, 59, is the same as the
degrees of freedom for error with the ANOVA. This equivalence between the
two methods only holds for the two sided test.

7.6 Generalized Randomized Complete Block De-
sign

7.6.1 Replication Within Blocks and Reasons for Use

In some studies the blocking factor is such that the number of subjects available
or that can be recruited within each block exceeds the number of treatments.
Thus the treatments may be assigned to more than one unit within each block.
The blocking factor in these situations would typically be natural groupings
(Type A) of the subjects such as gender, or type of pain. Kutner, Nachtsheim,
Neter, and Li ([15], page 907) provide an example of a study comparing the
effects of distraction (low distraction, high distraction) on the time required to
complete a task, using eight men and eight women. Gender is the blocking
variable regarded as fixed. Within each gender the eight persons are assigned
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at random to the two types of distraction, with four person assigned to each
treatment. Presumably gender is an extraneous variable and blocking was used
to reduce the size of error. The effects of gender might also be of interest in and
of itself.

One benefit to using multiple units within each block for each treatment is
the ability to study possible interaction between the blocking variable and the
treatment factor. Recall that with the usual block design it is assumed that
there is no interaction which may or may not be the case. This assumption
however allows an estimate of experimental error. So in the distraction example
above interaction between gender and distraction type may be studied.

Suppose that as before there are a fixed blocks but now there are sb exper-
imental units available for each block. The sb experimental units are assigned
at random to the b treatments with s units assigned to each treatment. In the
distraction example, there are a = 2 gender blocks and 8 subjects within each
gender block are assigned at random to the two distraction levels with 4 subjects
per distraction level.

The design is referred to as aGeneralized Randomized Complete Block
Design or GCBD. The analysis can be conducted in a manner similar to the
analysis of the two factor completely randomized design of Chapter 6. The F
tests for block, treatment, and interaction effects compare mean squares asso-
ciated with these effects to MSE as in Chapter 6. The model and assumptions
for the GCBD with fixed block effects are given in the next section.

In other situations researchers may have some control over how blocks are
formed, such as sorting based on physical characteristics and thus the number
of units within each block could be increased. While this would allow for the
testing of interaction the units within a block might be less homogeneous than
compared to the standard block design and defeat the purpose of blocking. Thus
the generalized randomized block design might not be recommended unless the
no interaction assumption is not reasonable and there is a desire to test for it.

Recall in the auditor example (Example 7.1) that there were three auditors
in each block equalling the number of treatments. The auditors were blocked
according to the number of years since graduation. It is not hard to imagine
a situation where the homogeneity could still be retained with multiple units
within a block and thus allowing for the formal study of interaction. For example
there may be enough auditors available for the study so that blocks could be
formed with 6 auditors per block, and for each set of 6 auditors, the elapsed
amount of time since graduation from college being the same number of years.

In a study a student wanted to compare the amount of juice that could be
obtained from fruit when rolling the fruit as compared to not rolling before
squeezing. She recognized that the amount of juice from fruit varies with the
type of fruit and considered type as a blocking variable. She also wanted to
draw more general conclusions that would apply to many types of fruit. It
would perhaps not be difficult to obtain more than two pieces of fruit of the
same type and roughly of the same size by weighing them at purchase. She
obtained 6 oranges, 6 lemons, and 6 limes from the supermarket. She weighed
the fruit so that they were similar in size within each type. The 6 oranges, 6
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lemons, and 6 limes were then randomly assigned to the two treatments, rolling
and not rolling. The 6 pieces of each type were processed on the same day.
Thus there are 3 experimental units within each combination of fruit type and
treatment.

When experimental units are physical entities it might be possible to retain
the homogeneity within blocks with multiple units as in the fruit example. In
other cases it might not be possible to achieve homogeneity and then it is ad-
visable to use single replicates within blocks rather than stacking blocks with
multiple units that are not homogeneous.

7.6.2 Model and Analysis: Fixed Block Effects

A generalized randomized complete block (GRCBD) design is a block design
where the number of experimental units within each block is a multiple of the
number of treatments. The model below assumes fixed blocks.

The model is

yijk = µ·· + ρi + τj + (ρτ)ij + ϵijk (7.7)

where

• µ·· represents the true grand mean of the response

• ρi (i = 1, ..., a) represents the true fixed effect of ith level of the blocking
variable

• τj (j = 1, ..., b) represents the true effect of the jth level of the factor of
interest

• (ρτij) represents the interaction effect between the ith level of the blocking
variable and the jth level of the factor of interest, and

• ϵijk represents as usual the effects of extraneous variables on the kth ob-
servation of y at the ij combination of the blocking variable and factor of
interest.

The model assumes that the errors are independent normal random variables
each with mean 0 and common variance σ2.

The formulas for the various sums of square are the same as that for the two
factor completely randomized factorial design discussed in Chapter 6.

7.6.3 GRCBD Analysis: Random Block Effects

In some experiments it is reasonable to assume that the blocks are random with
interest not being in the particular blocks used in the study but in a population
of blocks from which the blocks were selected. When the blocks are random
and multiple experimental units are possible, that is a generalized block design,
then the F test for treatment effects using MSE as the denominator is no longer
appropriate. The appropriate F test for treatment effects compares mean square
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for treatments with mean square for interaction (See Lawson, [16], page 185).
Conclusions regarding treatment differences, interaction or no interaction, are
general conclusions about the treatments in the population of blocks.

Lawson [16], page 128 gives an example of the comparison of three golf
tee heights on distance when driving a golf ball. The blocks are 9 golfers and
experimental units are different drives by a golfer. The standard block design
would have three drives for each golfer, one drive for each tee height, in a random
order. Lawson argues that driving a golf ball does not take a lot of exertion so
that homogeneity of drives would still exist if each golfer drove 15 balls, 5 per
tee height, instead of 3 balls, 1 per tee height, that is a GRCBD. Golfers are
considered random since conclusions are to be drawn about the population of
golfers rather than just the particular golfers used in the study.

The model and analysis for the GRCBD with random block effects can be
can be found in Lawson ([16], page 185)

7.6.4 Subsampling in a RCBD - Not a GRCBD

In some studies there are multiple observations at each block by treatment com-
bination, but the multiple observations do not correspond to different experi-
mental units, but are observations on measurement units of the same experiment
unit.

A researcher compared the heights of cupcakes using three different levels
of baking powder (low, medium, high). Three batches of cupcake batter were
prepared using the same recipe except that the three differed in the level of
baking powder used. Six cupcakes were made from each of the batches and
put on a tray. The three trays were placed in the oven on randomly located
shelves. After baking the cupcakes height was measured for each. This process
of cupcake batter preparation and oven run was repeated for 10 different oven
runs of the same oven.

Oven run is a blocking factor which might be regarded as random. The
treatments are the levels of baking powder. The experimental units within each
oven run are the three batches of cupcake mix, that is three experimental units
per block. The number of measurements of cupcake height for each experimental
unit is 6 per batch for a total of 18 measurements on height for each oven run.
Thus there multiple observations per baking powder treatment but these do
not correspond to multiple experimental units per treatment. There is only one
experimental unit per treatment per block so the GRCBD analysis does not
apply. Mean height could be calculated for each set of 6 cupcakes at each oven
run by baking powder combination and the resulting means analyzed with the
RCBD.

7.7 Factorial Treatment Structure in a RCBD

In some studies there is a single blocking variable with two factors in a factorial
treatment structure. In the basic design there is only one replicate of each
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treatment combination in each block.
Brianna Itkin, Jenna Clough, and Derek Wilus (Fall, 2014) studied the ef-

fects of boiling status of water (boiled, not boiled) used to make ice cubes and
shape of ice cubes (semi-circular, cube, cylindrical) on the amount of time for
a tray of ice to melt. Six ice trays, one for each combination of boiling status
and shape were filled with the same amount of water and then placed into the
freezer. When the water was frozen the six trays were placed upside down on a
wire mesh and the cubes allowed to melt. The response variable was the amount
of time (in minutes and seconds) that the entire tray of cubes took to melt. This
process was repeated on each of 5 days.

The blocking variable is Day with 5 levels. The treatments are combinations
of the two factors of interest, boiling status and shape of cube.

The analysis of the RCBD with two factors will not be considered in this
text. The interested reader may refer to Kutner, Nachtsheim, Neter, and Li (
[15], page 909 ) or Kuehl ( [14], page 289 ).

7.8 Two Blocking Variables – Latin Square De-
sign

Consider the earlier example involving the comparison of the four brands of tires
using the 16 tire positions of 4 cars. Suppose car is regarded as the blocking vari-
able and the 4 brands are assigned completely at random to the 4 tire positions
within each car. An example of a resulting randomization is the following:

Left Front Right Front Left Rear Right Rear
Car 1 A C B D
Car 2 C B A D
Car 3 A B D C
Car 4 A D C B

With the above design the effect of wheel position is part of experimental error.
When randomly assigning tire brands within each car, it is possible that brand
A gets put mostly on the Left Front wheel. This might bias the comparison
between brands if location is an extraneous variable.

An alternative design in this experiment would be a block design which
consists of two blocking variables: car and wheel position, in general called the
row and column blocking variables. In this design all four brands are used for
each car and simultaneously all four brands are used at each wheel position as
in the following diagram.

Left Front Right Front Left Rear Right Rear
Car 1 A B C D
Car 2 B C D A
Car 3 C D A B
Car 4 D A B C
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Since each wheel position is exposed to all four brands we will be able to
estimate in an unbiased fashion the true effects of wheel position and remove
this effect from experimental error.

The Latin Square design given above is called the Standard Latin Square
Design. In the standard Latin Square Design the letters A, B, C, ... used to
denote the treatments are written in the first row of the row blocking variable
and then the remaining rows are obtained by shifting the letters to the left once.

Randomization of treatments for the Latin Square Design is achieved as
follows

a. Start with the standard Latin Square Design

b. Randomly permute/arrange the rows: For example after randomly per-
muting the rows of the standard Latin Square design we may have the
following:

Left Front Right Front Left Rear Right Rear
Car 1 D A B C
Car 2 B C D A
Car 3 A B C D
Car 4 C D A B

Note that the first row of the square was the old fourth row and so on.

c. Randomly permute/arrange the columns of this square, for example

Left Front Right Front Left Rear Right Rear
Car 1 B C A D
Car 2 D A C B
Car 3 C D B A
Car 4 A B D C

Note that the first column is the old third column and so on.

d. Now randomly assign the treatments to the letters. For example suppose
the actual tire brands are Firestone, Goodyear, Goodrich, and UniRoyal.
Put these four names on slips of paper and then pull one out at a time.
The first one gets assigned to the letter A, the 2nd to the letter B, and so
on.

The general properties of the Latin Square Design are as follows:

a. There are two blocking variables, in general a row blocking variable and a
column blocking variable.

b. The number of levels of the row blocking variable is equal to the number
of levels of the column blocking variable, which is equal to the number of
treatments.

c. Latin Square Designs can be repeated with additional experimental units
to obtain more replications of the treatments.
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7.8.1 Another Example

Cobb ([4], page 247) describes the following experiment. A study compares
recall of words for different learning/recall environments. The subjects in the
study are 4 members of a diving club. The treatments are dry/dry, dry/wet,
wet/dry, and wet/wet. For example, dry/wet means the word list was studied
while the diver was on land and was recalled when the diver was in the water.

This experiment could be carried out using a randomized complete block
design with the one blocking variable being subject. Each subject receives all
four treatments using different word lists for the treatments. The word lists are
randomly assigned to the four treatments to ensure that the treatments are not
always assigned to the same word list and to ensure that the effects of word list
are random. The treatment/word list is randomly assigned to time slots so that
effects of time period is random. In this design the effects of word list is part of
experimental error.

The experiment could also be conducted as a Latin Square design. Not only
does each person get all four treatments but each list is exposed to all four
treatments in the following manner.

List 1 List 2 List 3 List 4
Diver 1 dry/dry dry/wet wet/dry wet/wet
Diver 2 dry/wet wet/dry wet/wet dry/dry
Diver 3 wet/dry wet/wet dry/dry dry/wet
Diver 4 wet/wet dry/dry dry/wet wet/dry

The above design is a standard Latin Square Design. An alternative design can
be obtained by the previously described randomization process. With the Latin
Square design, there is a balance in that each list is used with all treatments
and thus comparison of list averages would be unbiased estimates of list effect.
Thus we can remove list effect from experimental error.

7.8.2 Model and Analysis for Latin Square Design

The model for the Latin Square Design is

yijk = µ··· + ρi + κj + τk + ϵijk (7.8)

where

• µ··· represents the true grand mean

• ρi (i = 1, ..., r) represents the true main effect of the ith level of the row
blocking variable

• κj (j = 1, ..., r) represents the true main effect of the jth level of the column
blocking variable

• τk (k = 1, ..., r) represents the true main effect of the kth level of the factor
of interest
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Table 7.6: ANOVA Table for Latin Square Design

Source of Variation df SS MS F EMS
Row r - 1 SSROW MSROW MSROW/MSE σ2 +Q1

Column r - 1 SSCOL MSCOL MSCOL/MSE σ2 +Q2

Treatment r -1 SSTR MSTR MSTR/MSE σ2 +Q3

Error (r-1)(r-2) SSE MSE σ2

Total r2 − 1 SSTOTC

• ϵijk represents as usual the experimental error, the effects of extraneous
variables on the observation of y at the ijk combination of the blocking
variables and factor of interest.

It is assumed that the errors are values of independent normal random variables
each with mean 0 and variance σ2. The model also assumes that there is no
interaction between the two blocking variables and the factor of interest.

The ANOVA table is derived in a manner similar to how the ANOVA table is
derived for other designs. The observed responses can be partitioned into parts
representing the grand mean, the effect of the particular level of the row blocking
variable, the effect of the particular level of the column blocking variable, the
effect of the particular level of the factor of interest, and experimental error.
The sum of squares of the deviations of the observed responses from the grand
mean can be partitioned into sums describing variability in the effects of the
row blocking variable, the column blocking variable, the factor of interest, and
the experimental unit effects (error).

SSTOTC = SSROW + SSCOL+ SSTR+ SSE

The general form of the ANOVA table is given in Table 7.6
In Table 7.6 the sums of squares for the various effects are given without

formulas. We will rely on computer software to calculate these. Also the values
Q1, Q2, and Q3 in the EMS column are, respectively, functions of the true row
block main effects, true column block main effects, and true treatment main
effects, all of which are zero if the corresponding effects are 0. The column
EMS gives the expected or population average mean squares.

Let us consider testing for treatment effects. Under the null hypothesis,
the expected mean square for treatments would be identical to the expected
mean square for error. Thus under the null hypothesis we would expect the
ratio MSTR/MSE to be approximately 1. If the alternative hypothesis is true,
then the expected mean square for the treatment factor would be larger than
MSE. In this case we would expect the ratio MSTR/MSE to be larger than 1.
The test statistic for testing for treatment effects is the F ratio MSTR/MSE.
Assuming the model assumptions hold and the null hypothesis of no treatment
effects is true, then the ratio MSTR/MSE has an F probability distribution
with numerator degrees of freedom ν1 = r − 1 and denominator degrees of
freedom ν2 = (r− 1)(r− 2). We will rely on computer software to calculate the
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Table 7.7: Means for Job Satisfaction Scores

Group Mean
A: 4-day week, day shift yA = 14.8
B: 4-day week, evening shift yB = 13.0
C: 5-day week, day shift yC = 9.5
D: 5-day week, evening shift yD = 6.25

F ratio and obtain a P-value for hypothesis testing and for obtaining multiple
comparisons of the treatments.

To illustrate the ideas consider the following example taken from Weber and
Skillings ([29], page 406).

Example 7.2 Four work schedules are compared to see which leads to the best
job satisfaction for a group of technicians. The four work schedules studied
were:

1. A: 4-day week, day shift

2. B: 4-day week, evening shift

3. C: 5-day week, day shift

4. D: 5-day week, evening shift

Four technicians served as one blocking variable and week was the other
blocking variable. The results are given in the table below.

Week
Technician 1 2 3 4

1 18 (B) 7 (D) 13 (A) 10 (C)
2 8 (C) 15 (A) 6 (D) 11 (B)
3 18 (A) 10 (C) 10 (B) 5 (D)
4 7 (D) 13 (B) 10 (C) 13 (A)

Table 7.7 provides the marginal means of the job satisfaction scores for the
four work schedules. The ANOVA table is given in Table 7.8.

The Tukey-Kramer method of multiple comparisons is used to make pairwise
comparisons of the four work schedules. Tukey-Kramer adjusted P-values and
simultaneous 95% confidence intervals are given in Table 7.9. The A-C, A-D, and
B-D work schedule pairwise comparisons are significant at the 0.05 experiment-
wise level of significance.
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Table 7.8: ANOVA Table for Work Schedule Example

Source of Variation df SS MS F Pvalue
Technician 3 8.25 2.75 0.60 0.6382

Week 3 24.75 8.25 1.80 0.2473
Work Schedule 3 171.25 57.08 12.45 0.0055

Error 6 27.5 4.58
Corrected Total 15 231.75

Table 7.9: Tukey Pairwise Comparisons of Work Schedules

Schedule Schedule Mean Difference Std.Error DF t Value P-value LCL UCL

A B 1.75 1.06 6 1.16 0.6724 -3.49 6.99
A C 5.25 1.06 6 3.47 0.0496 0.01 10.49
A D 8.50 1.06 6 5.61 0.0055 3.26 13.74
B C 3.50 1.06 6 2.31 0.1971 -1.74 8.74
B D 6.75 1.06 6 4.46 0.0168 1.51 11.99
C D 3.25 1.06 6 2.15 0.2399 -1.99 8.49

Problems for Chapter 7

7.1∗ This example is based on a study from Cobb( [4], page 300). Each of 8
premature infants was monitored during sleep during two six-hour periods
under one of two conditions: 1) sleeping on a regular bassinet mattress
(control) and 2) sleeping on a waterbed. The response variable was the
number of interruptions in breathing per hour of sleep during the 6-hour
period. The data are given in the table below.

Waterbed 0.89 0.77 0.00 0.65 0.88 1.36 1.22 0.30
Control 1.36 1.66 0.11 1.44 1.63 1.52 1.53 0.48

a. The above design is a block design. What are the experimental units?
What are the blocks?

b. Explain how the above experiment could have been conducted using a
completely randomized design.

7.2∗ Hicks ([10], page 120) describes a study designed to compare ash content in
coal as reported by two laboratories. Each of 10 coal samples were split in
half and the halves assigned at random to the two laboratories for analysis.
Ash contents reported by the two laboratories are given in the table below.
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Sample Lab 1 Lab 2
1 5.47 5.13
2 5.31 5.46
3 5.46 5.54
4 5.55 5.54
5 5.93 6.00
6 5.97 5.99
7 6.32 6.43
8 6.09 6.13
9 5.87 5.87
10 5.58 5.60

a. What type of blocking is this? What are the blocks?

b. What are the experimental units?

c. Explain what the randomization would have been in a completely ran-
domized design.

7.3∗ This example is taken from Walpole and Myers ([28]). Each of six subjects
were given all three diets (see below) in a random order, each diet lasting
3 days.

Diet 1: mixed fat and carbohydrates
Diet 2: high fat
Diet 3: high carbohydrates

At the end of the 3 day period on a diet the subject was put on a treadmill
and time to exhaustion, in seconds, was measured. The times for each
subject and diet are given below.

Diet
Subject 1 2 3

1 84 91 122
2 35 48 53
3 91 71 110
4 57 45 71
5 56 61 91
6 45 61 122

a. What is the response variable? What are the treatments? What are
the experimental units?

b. What is the blocking variable and what extraneous variable is the
blocking intended to control?

c. Explain how the above experiment could be carried out using a com-
pletely randomized design.

7.4∗ Ruth Lawlor and Richard Miller (Fall,2002) wanted to determine if color (or
the chemicals associated with the colors) were related to the burning rate
of candles. Eight-inch candles of four colors: blue, tan, purple, and white
were used. The response variable was the amount of time (in minutes) that
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it took a candle to burn down 3 inches from the top. Four candles, one of
each color, were burned on each day and this was repeated over 7 days. On
a particular day the one candle of each color was randomly selected from
a pool of available candles. The order in which the candles were lit was
random and the candles were placed in random positions on a table. The
burning times (to the nearest minute) are given in the following table:

Color of Candle
Replication/Day Tan Blue Purple White

1 201 217 184 167
2 213 206 158 227
3 183 116 273 273
4 300 174 277 271
5 299 190 228 237
6 196 159 199 208
7 259 227 243 262

a. This is a block design. What are the blocks.

b. What are the experimental units?

c. What are some extraneous variables that are being controlled by the
randomization in each block?

d. Using the same number of observations per color explain how this
experiment would be carried out in a completely randomized design.

e. Give the population effects model for the data and describe the terms
in the model in context. Give the assumptions associated with the
error terms.

f. Construct an ANOVA table. Use it to determine if there are signif-
icant differences in burn time among the colors using a 0.05 level of
significance. If there are significant differences use the Tukey-Kramer
multiple comparison procedure with experiment-wise significance level
of 0.05 to rank the colors on burn time.

7.5∗ Morris ([23], p. 52) describes an experiment where each of four groups
of laying hens (each group with 48 birds) were given four different diets
over several weeks. The diets varied according to the concentrations of
molasses (0, 70, 140, and 210 g/kg). The purpose of the experiment was
to determine the effects that the molasses concentrations had on weights
of eggs produced by the birds. The table gives the mean egg weight by the
group in a period. The The letters A, B, C, and D represent, respectively,
the levels 0, 70, 140, and 210 g/kg.

Period
Group 1 2 3 4

1 53.5 (D) 55.4(A) 55.1 (B) 53.6 (C)
2 56.1 (B) 54.8(C) 53.9 (D) 55.0 (A)
3 53.8 (C) 54.1(D) 55.2 (A) 52.9 (B)
4 53.1 (A) 54.4(B) 53.0 (C) 51.1 (D)
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a. The design is a Latin Square design. What are the blocking variables?

b. What are the experimental units?

c. Give the population effects model for the data and describe the terms
in the model. Give the assumptions associated with the error terms.

d. Use appropriate software to obtain an ANOVA table for the data. Use
information from the ANOVA table to determine if there is a significant
difference in mean egg weights among the diets. Use a significance level
of α = 0.05.

e. If your test in part (d) was significant obtain Tukey-Kramer pairwise
confidence intervals to determine which diets differ with regard to egg
weight. Use an experiment-wise confidence level of 95%.

7.6∗ Tire wear for the experiment described in Section 7.1 is given below.

Position
Car 1 2 3 4
1 30 (B) 36 (A) 25 (C) 22 (D)
2 24 (D) 34 (C) 18 (A) 15 (B)
3 35 (A) 30 (D) 15 (B) 28 (C)
4 32 (C) 24 (B) 13 (D) 14 (A)

a. Use appropriate software to obtain an analysis of variance table for the
data. Use information from the ANOVA table to determine if there is
a significant difference in tire wear among the brands. (Use α = 0.05.)

b. If your test in part (a) was significant obtain Tukey-Kramer pairwise
confidence intervals to determine which brands differ with regard to
treadwear. Use an experiment-wise confidence level of 95%.

7.7∗ In the article “Dose response effects of a caffeine-containing energy drink
on muscle performance: a repeated measures design”(Journal of the In-
ternational Society of Sports Nutrition [2012], 9:21) researchers compared
the effects of three levels of caffeine (0, 1, 3, mg per kg body weight) in a
100 mL energy drink of the same brand on resting metabolic rate, heart
rate and blood arterial pressure for one hour after subjects consumed the
drink. Each of twelve subjects consumed all drinks with the three different
doses of caffeine on three different days, the order of which was randomly
determined.

The design of the experiment is a one factor randomized complete block
design.

a. Identify the blocks, treatments, and experimental units.

b. What type of blocking is this? Explain. What is the reason for the
randomization of the order of the caffeine doses?

c. The means with standard deviations for the heart rates for the twelve
subjects at the three different dose levels of caffeine is given in the
table below.
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MeanHeartRate± SD
0 mg/kg 1 mg/kg 3 mg/kg
57± 7 59± 8 61± 8

i. Calculate MSTR for an ANOVA.

ii. Is it possible to determine MSE? If yes, then do so. If not possible
then explain why, that is what information would still be needed?

7.8 Casella ([2], page 130) describes an experiment conducted by a poultry
scientist to investigate the effects of three diets with differing levels of
protein (L = low, M = medium, H = High) on the amount of food intake
of leghorn chickens. Ninety chickens were randomly assigned to 9 cages,
with 10 chickens per cage. Because of space limitations the 9 cages were
stacked 3 high and 3 deep with space between the cages. Differing heights
of cages was important because of environmental temperature variation
which affects food intake. Depth was important because there was only
one light source at the front of the cages. A Latin Square design was used
to assigned the three treatments to the cages. The food intakes along with
the diets assigned to the cages are given in the table below.

Height of Cage
Depth of Cage Bottom Row Middle Row Top Row
Front Stack (96) (M) (81)(H) (106) (L)
Middle Stack (94) (H) (116)(L) (114)(M)
Back Stack (100)(L) (91)(M) (89) (H)

a. The design is a Latin Square design. What are the blocking variables?

b. What are the experimental units?

c. Give the population effects model for the data and describe the terms
in the model. Give the assumptions associated with the error terms.

d. Use appropriate software to obtain an analysis of variance table for the
data. Use information from the ANOVA table to determine if there is
a significant difference in pen total food intake among the diets. Use
a significance level of α = 0.05.

e. If your test in part (d) was significant obtain Tukey-Kramer pairwise
confidence intervals to determine which diets differ with regard to food
intake. Use an experiment-wise confidence level of 95%.

7.9∗ Ashlee Schenk and Tanya Blackburn (Fall 2004) conducted an experiment
to study the effects of type of container (styrofoam, glass, plastic) and
type of liquid (cola, water, juice) on the melting time (seconds) of an
ice cube placed into the liquid. Five replications for each combination of
container and liquid type were conducted. Because of time constraints
the experiment had to be conducted over the course of 5 days with one
replication of the 9 combinations on each day. On a given day melting of
cubes was done one cube at a time as follows. A combination of type of
container and type of liquid was randomly selected. One cup of the liquid
was poured into the selected container and then a randomly selected ice
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cube was added. The amount of time (mins) for the cube to melt was
recorded and then this process was repeated until all combinations were
done on the given day. This process was repeated on four other days.

a. What are the two factors in the study? What is the response variable?

b. What are the treatments in the study? How many treatment are there?

c. What are the experimental units in the study? How many total ex-
perimental units are there?

d. Give two extraneous variables and explain how the effects of these are
being controlled.

e. The design is a block design. What are the blocks?

7.10 Consider the infant sleep interruption rate data from Problem 7.1.

a. Use statistical software to give an ANOVA table corresponding to the
block model described in Chapter 7. The table should be similar to
Table 7.5. Is there evidence of a difference in sleep interruption rates
between the two types of mattresses? Use a significance level of 0.05.
Give an appropriate null hypothesis, value of test statistic, and P-
value. Draw a conclusion.

b. Use statistical software to derive results for a two-sided paired samples
t test to compare interruption rates for the two mattresses. Give an
appropriate null hypothesis, value of test statistic, and P-value. Draw
a conclusion.

c. Compare the results from the two testing procedures in parts (a) and
(b) in terms of values of test statistic, P-value, degrees of freedom.

7.11∗ Devore and Peck ([11], page 635) described a study comparing electricity
usage (in KWh) for four different residential air-conditioning systems being
proposed for use in tract homes. Twenty homes selected for the experiment
were grouped into 5 blocks according to floor space, type of insulation,
directional orientation and type of roof and exterior with 4 homes in each
block. Within each of the blocks the four homes were randomly assigned to
the four systems. The electricity usage during a 1-month period is recorded
below.

System
Block 1 2 3 4
1 116 171 138 144
2 118 131 131 141
3 97 105 115 115
4 101 107 93 93
5 115 129 110 99

a. What is the factor of interest?

b. What are the experimental units?

c. What is the response variable?

d. What is the purpose of blocking the homes on the given variables?
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e. Using the same number of observations per treatment explain how
this experiment would be carried out using a completely randomized
design.

f. Give the population effects model for the data and describe the terms
in the model in context. Give the assumptions associated with the
errors.

g. Use statistical software to construct an analysis of variable table. Use
it to determine if there are significant differences in electricity usage
among the four systems. Use a significance level of 0.05. If there
are significant differences use the Tukey-Kramer multiple comparison
procedure with experiment-wise significance level of 0.05 to rank the
systems.

h. Suppose that the data had been incorrectly analyzed as a completely
randomized design, disregarding the blocking. What would the incor-
rect error be for the home getting System 1 with electricity usage of
116? Determine the correct error for this home (if the correct block de-
sign analysis had been used) using the incorrect error obtained above
and the block 1 effect.

7.12 For each of the following, describe the design that was used: a) one or
two factor completely randomized, b) one or two factor block design with
one blocking variable, c) Latin Square Design. In each case give the factor
or factors of interest, blocking variable(s)with Type (A,B,C), experimental
units, and response variable(s). Indicate whether sub-sampling was present
and what are the subsamples are.

a. In the article “A prospective study of patients with chronic back pain
randomized to group exercise, physiotherapy or osteopathy” (Physio-
therapy 94 (2008) 21-28 ) researchers compared three therapy regimes
for chronic back pain. Two hundred and thirty-nine subjects were ran-
domly assigned to group exercise (80), physiotherapy (80), or osteopa-
thy (79) with 32, 59, and 63 completing the therapy. Main outcomes
of interest were the Oswestry Disability Index (ODI), EuroQol-5D,
shuttle walking test and patients’ responses to pain and treatment.

b. Michael Pulomena and Nick Zurlo (Spring 2014) conducted an exper-
iment to compare three brands of dish soap (Gain, Dawn, Ajax) for
removing three different types of condiments (ketchup, mustard, bar-
becue sauce) after the condiments had been applied to a plate and
then dried in a microwave for 1 minute and 45 seconds. The response
variable was the amount of time (seconds) to completely “clean” the
plate. The experiment was conducted as follows. A dish soap and type
of condiment was randomly selected. The selected condiment was ap-
plied to a clean plate, put in the microwave to dry, and then the plate
was cleaned with the selected dish soap. This procedure was repeated
for a total of 5 replications per combination of dish soap and type of
condiment.
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c. A study was conducted to compare two different types of cups, styro-
foam and paper, on the ability of the cup to retain heat. Twenty-four
ounces of water was heated in a pot to 160◦ Fahrenheit. The water
was then poured into two cups, with half (12 ounces) going into a sty-
rofoam cup and the other half into a paper cup. The water in the two
cups was allowed to cool for 10 minutes and the temperature of the
water in each cup measured. This process was repeated for 9 other
pots of 24 ounces of water and two new cups.

d. A study was conducted to compare a caffeinated energy drink with a
placebo drink on jump performance of adolescent basketball players.
Each of 30 players was tested on two different days, on one day 60
minutes after ingesting the caffeinated drink and the other day 60
minutes after ingesting a placebo drink. The order of the drinks was
random. At each testing session each player performed a series of 15
jumps using a force platform, being instructed to jump as high as
possible on each jump. Height (cm) was measured for each jump.
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Chapter 8

Checking Assumptions of
Errors

8.1 Assumptions

In the models that we have considered there has always been an error term
ϵ representing the effects of extraneous variables which have not been explic-
itly accounted for in the design. For example in the model for the one factor
completely randomized design,

yij = µi + ϵij

= µ+ αi + ϵij (8.1)

where ϵij = yij−µi is the deviation of the jth observation from the ith treatment
mean and represents the effects of extraneous variables.

The validity of the P-values associated with the F tests and testing of con-
trasts depends on the errors satisfying certain statistical assumptions. The
assumptions are given below in the order in which they should be assessed.

• The errors are statistically independent.

• The error random variables have the same variance/standard deviation.

• The errors are values of normal random variables.

While yij is observed the error ϵij is not actually observed since it depends
upon the mean of yij , µi. So how do we check the assumptions of the errors if
we don’t actually observe them. We do this by estimating the errors and then
using the estimates of the errors to check the assumptions.

The estimates of the errors depend upon the model for the data.
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8.1.1 Residuals for One Factor Completely Randomized
Model

For the one factor completely randomized design of Chapter 4 the error is

ϵij = yij − µi

The obvious estimate of ϵij is obtained by substituting for µi, the estimate
yi., and obtaining the estimate of the error, eij , called the residual, that is

eij = yij − yi·

Note that eij is not the same as ϵij . The estimated error eij can be calculated
– the true error ϵij cannot. Since yi. can be thought of as a prediction for the
mean of treatment level i we can think of the estimate of the error as

eij = yij − yi·

= observed− predicted (8.2)

8.1.2 Residuals for Two Factor Completely Randomized
Design

The means model for the two factor completely randomized design from Chapter
6 is:

yijk = µij + ϵijk (8.3)

and thus the true error is

ϵijk = yijk − µij (8.4)

Estimating µij , the population treatment mean, with the sample treatment
mean or predicted Y , yij. then the estimate eijk of ϵijk is

eijk = yijk − yij· (8.5)

A residual for the two factor completely randomized model is the difference
between an observed value of the response and the mean of the response in the
respective treatment group.
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8.1.3 Residuals for One Factor Randomized Complete Block
Design

The model for the one factor block design (only one blocking variable) with only
one replication per combination of block and treatment is from Chapter 7,

yij = µ·· + ρi + τj + ϵij

If we solve this equation for ϵij we get

ϵij = yij − (µ·· + ρi + τj)

This suggests estimating the error term ϵij with

eij = observed− predicted

eij = yij − (y·· + ρ̂i + τ̂j) (8.6)

where ρ̂i = yi· − y··, the block effect for the ith block, and τ̂j = y·j − y··, the

treatment effect for the jth treatment.

8.2 Checking for Independence

The ϵij ’s are independent if the value of one tells you nothing about the value
of another error. The most likely cause of lack of independence or dependence
are experimental units close in time or space.

If an experiment is conducted through time or arranged in some spatial pat-
tern, then a plot of the estimated errors against time order or spatial arrange-
ment will indicate whether or not the errors are independent or dependent.
If the errors are independent then in this plot the estimated errors should be
randomly scattered about 0 with no discernible pattern.

Example 8.1 This example is taken from Dean and Voss ([6], page 27). The
purpose of the study was to compare the life times of four different kinds of
batteries:

• Battery Type 1: alkaline, name brand

• Battery Type 2: alkaline, store brand

• Battery Type 3: heavy duty, name brand

• Battery Type 4: heavy duty, store brand

There were 4 replications per treatment. The experimental units were time
slots for battery testings with 16 batteries, 4 of each kind, being tested in a
random order.

The data with the time order and the residuals are given in Table 8.1:
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Table 8.1: Lifetime Data

Battery Type Lifetime(minutes) Time Order Residual
1 602 1 39.5
2 863 2 58.25
1 529 3 -33.5
4 235 4 -10.75
1 534 5 -28.5
1 585 6 22.5
2 743 7 -61.75
3 232 8 6.5
4 282 9 36.25
2 773 10 -31.75
2 840 11 35.25
3 255 12 29.5
4 238 13 -7.75
3 200 14 -25.5
4 228 15 -17.75
3 215 16 -10.5

Table 8.2: Means and Standard deviations for Lifetime Data

Battery Type Mean Standard Deviation
1 562.50 36.52
2 804.75 58.25
3 225.50 23.61
4 245.75 24.53
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Figure 8.1: Scatterplot of Lifetime Residuals versus Time Order

Note from the Table 8.1 that a battery of type 1 was tested first, a battery
of type 2 was tested next, and so on.

The sample means and standard deviations of lifetimes are given in Table 8.2.
The F test for overall differences in lifetime among the battery types was

significant at the 0.05 level with F = 217.53, P < 0.0001.
The residual corresponding to the first observation would be 602− 562.50 =

39.5. The other residuals are in Table 8.1.
A plot of the residuals versus time order is given in Figure 8.1 Note that

the residuals appear to be randomly scattered about 0 providing no evidence of
dependence.

Example 8.2 An experiment (Dean and Voss [6], page 62)) involved an in-
dividual blowing up different colored balloons in a random order to compare
inflation times. The colors of the balloons used were pink, yellow, orange, and
blue. The purpose of the experiment was to see if color affected the amount of
time required to blow up the balloons.

The inflation times with the time orders are given in Table 8.3

The sample means and standard deviations for the inflation times are given
in Table 8.4.

The F test is significant (F = 3.85, P = 0.0200) at the 0.05 level of signif-
icance indicating a differences somewhere among mean inflation times among
the colors.

A plot of the residuals for inflation times versus time order of the observations
is given in Figure 8.2

Note the negative linear relationship between the residuals and time order
of the testing with residuals generally being positive for the early trials and
negative for the later trials. Thus the inflation times were higher than predicted
for the early trials and lower than predicted for the later trials regardless of
color, indicating that the experimenter took less time to inflate the balloons as
time progressed. One possible solution to this problem is to take account of
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Table 8.3: Inflation Times Data

Time Order Color Inflation Time (secs)
1 pink 22.4
2 orange 24.6
3 pink 20.3
4 blue 19.8
5 blue 19.8
6 yellow 22.2
7 yellow 28.5
8 yellow 25.7
9 orange 20.2
10 pink 19.6
11 yellow 28.8
12 blue 24.0
13 blue 17.1
14 blue 19.3
15 orange 24.2
16 pink 15.8
17 yellow 18.3
18 pink 17.5
19 blue 18.7
20 orange 22.9
21 pink 16.3
22 blue 14.0
23 blue 16.6
24 yellow 18.1
25 yellow 18.9
26 blue 16.0
27 yellow 20.1
28 orange 22.5
29 orange 16.0
30 pink 19.3
31 pink 15.9
32 orange 20.3

Table 8.4: Means and Standard Deviations for Balloon Inflation Time Data

Balloon Color Mean Standard Deviation
Blue 18.4 2.9

Orange 21.5 3.0
Pink 18.4 2.4
Yellow 22.6 4.5
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Figure 8.2: Scatterplot of Inflation Time Residuals versus Time Order

order in the statistical model. In theory we could expand our model to include
not only color effects but time order as well. The resulting model is called an
analysis of covariance model. This approach and other approaches to handling
dependent errors will not be considered in this text.

Note how important the randomization was in this example. While there is
a problem, the problem could have been even bigger. If the experimenter had
not randomized the order of the colors and blown up balloons by color group,
such as first all pink, followed by all orange, then yellow, then blue, then any
color effects would have been confounded with order effects.

Example 8.3 This example uses the data from the two factor study in Prob-
lem 6.2 in Chapter 6. The factors are Shooting Distance from a target (Short,
Medium, Long) and Hand (Right,Left) used to fire a Nerf bullet from a gun.
The response variable is accuracy defined as the absolute distance from a target
(to the nearest 1/8 inch).

The accuracies along with the time order, residuals, and predicted accuracies
are provided in Table 8.5.

A plot of the accuracies versus the combination of distance and hand is given
in Figure 8.3

Treatment means and standard deviations for accuracy are provided in Ta-
ble 8.6.

Notice that the predicted accuracies in Table 8.5 are just the treatment
means as noted earlier. A residual is just the difference between an accuracy
and a predicted accuracy or treatment mean. For example the residual of 2.050
associated with the accuracy of 3.375 at time order 1 in the Short,Right group
is 3.375 minus the Short,Right mean of 1.325.

Figure 8.4 provides a plot of the residuals versus time order. Note that
there is no evidence of a relationship of the residuals with time and thus the
assumption of independent errors appears to be satisfied. The plot does indicate
one accuracy being slightly outlying.
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Table 8.5: Nerf Gun Data

Distance Hand Accuracy TimeOrder Predicted Residual
Short Left 0.000 3 0.825 -0.825
Short Left 1.500 7 0.825 0.675
Short Left 0.000 13 0.825 -0.825
Short Left 0.625 15 0.825 -0.200
Short Left 2.000 19 0.825 1.175
Short Right 3.375 1 1.325 2.050
Short Right 0.375 10 1.325 -0.950
Short Right 2.125 16 1.325 0.800
Short Right 0.250 24 1.325 -1.075
Short Right 0.500 29 1.325 -0.825

Medium Left 3.500 5 2.450 1.050
Medium Left 3.250 9 2.450 0.800
Medium Left 0.125 17 2.450 -2.325
Medium Left 3.250 21 2.450 0.800
Medium Left 2.125 26 2.450 -0.325
Medium Right 1.000 2 2.950 -1.950
Medium Right 4.875 18 2.950 1.925
Medium Right 1.000 20 2.950 -1.950
Medium Right 3.250 23 2.950 0.300
Medium Right 4.625 28 2.950 1.675
Long Left 13.250 4 8.975 4.275
Long Left 7.000 6 8.975 -1.975
Long Left 8.125 8 8.975 -0.850
Long Left 7.750 11 8.975 -1.225
Long Left 8.750 25 8.975 -0.225
Long Right 3.125 12 6.225 -3.100
Long Right 1.125 14 6.225 -5.100
Long Right 14.375 22 6.225 8.150
Long Right 3.375 27 6.225 -2.850
Long Right 9.125 30 6.225 2.900

Figure 8.3: Plot of Accuracy versus Treatment
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Table 8.6: Nerf Gun Data Means and Standard Deviations

Distance Hand n Mean Standard Deviation
Short Left 5 0.825 0.900
Short Right 5 1.325 1.377

Medium Left 5 2.450 1.405
Medium Right 5 2.950 1.885
Long Left 5 8.975 2.472
Long Right 5 6.225 5.445

Figure 8.4: Plot of Nerf Gun Residuals versus Time Order
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8.3 Assessing the Assumption of Homogeneous
Error Variances

It is assumed in the methods of analysis of variance that the variances of the
errors are identical, in particular, equal to some common value, σ2. This con-
dition is called homogeneity of error variances. Thus we need to check to
make sure this assumption holds true, at least approximately. The methods are
somewhat robust to deviations from this assumption especially when treatment
group sizes are identical. Violation of this assumption is called heterogeneity
of error variance.

8.3.1 Methods for Checking the Assumption of Homo-
geneity of Error Variance

1. Compare standard deviations of the observations on the response variable
for the different treatment groups. A rule of thumb is that the largest
standard deviation should be no more than roughly 3 times the smallest
standard deviation.

2. Plot the values of the response variable versus the treatments. The vertical
spread in the points for the different treatments should be about the same.
Recall that in a two-factor factorial treatment structure the treatments are
combinations of the levels of the two factors.

3. Plot the residuals or estimated errors from the fitted model against pre-
dicted values and treatments. Variation in residuals should be similar
across predicted values and treatments.

8.3.2 Checking Homogeneity of Variance for the Battery
Example

Recall the battery example from Example 8.1 and the means and standard
deviations from Table 8.2. A plot of the lifetimes versus battery types is given
in Figure 8.5. Note that the vertical spread of the points corresponding to the
lifetimes is similar for the four battery types.

The largest standard deviation is 58.25 and the smallest is 23.61. Thus the
ratio of the largest to the smallest standard deviation is 58.25/23.61 = 2.47 < 3.

A plot of the residuals from the model fit against the predicted lifetimes is
given in Figure 8.6.

Note the evidence of slightly greater variability of the residuals for the largest
predicted lifetime. Predicted lifetimes for this model are just treatment means
of the lifetimes. The largest predicted lifetime corresponds to the battery type
with the largest mean, which is battery type 2.

A plot of the residuals from the model fit against the treatments (battery
types) is given in Figure 8.7. In this example and for the one factor model the
plot of the residuals versus treatment is just the residual versus predicted plot
with the vertical columns of points in perhaps a different order. Here again
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Figure 8.5: Scatterplot of Lifetimes versus Battery Type

Figure 8.6: Scatterplot of Residuals versus Predicted Lifetimes
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Figure 8.7: Scatterplot of Residuals versus Battery Type

we see that the residuals corresponding to battery type 2 having slightly more
spread than the other battery types.

The slightly differing spreads among the lifetimes or residuals is of no prac-
tical concern. We will look at another example shortly where the spreads are
quite different.

8.3.3 Checking Homogeneity of Variance for the Paper
Towel Example

Recall the paper towel example from Chapter 6. There were two factors of
interest in a completely randomized design. One factor was brand of paper towel
with three levels: Coronet, Kleenex, and Scott. The other factor of interest was
Liquid with three levels: Water, Dishwashing Detergent, and Vegetable Oil.
There were 3 replications of each of the 9 treatment combinations of Brand
and Liquid. A plot of the response variable amount of liquid absorbed (mL)
versus treatment was given in Figure 6.3. Variation does not appear to differ
much among the treatments; however there are only 3 replications per treatment
combination.

The means and standard deviations for amount absorbed are given for the
treatment combinations in Table 8.7.

The ratio of the largest to the smallest standard deviation is 3.51/0.58 =
6.05, above our rule of thumb value of 3. Let’s also look at a plot of the residuals
versus predicted values and check to see if there is any evidence of a trend in
spread with increasing predicted amount absorbed.

Figure 8.8 gives a plot of residuals from the fit of the complete two factor
model versus predicted amount absorbed based on that model. For this model
predicted amount absorbed is just the mean amount absorbed for a treatment
combination of brand of paper towel and type of liquid. Note that there is no
discernible trend in spread as predicted amount increases. Since the standard
deviation ratio was not much larger than 3 (which could have occurred by chance
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Table 8.7: Means and Standard Deviations for Amount of Liquid Absorbed

Towel Liquid Mean Standard Deviation
Coronet Dishwashing Liquid 16.67 2.08
Coronet Vegetable Oil 25.33 3.51
Coronet Water 23.33 2.31
Kleenex Dishwashing Liquid 36.33 2.89
Kleenex Vegetable Oil 41.67 3.06
Kleenex Water 41.67 1.15
Scott Dishwashing Liquid 20.67 0.58
Scott Vegetable Oil 25.67 1.15
Scott Water 26.00 1.00

Figure 8.8: Scatterplot of Residuals versus Predicted Amount Liquid Absorbed
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Table 8.8: Lifetimes of a Resin Under Temperature Stress

Temperature (C)
175 194 213 231 250

110 46 34 14 18
81 51 35 17 7
100 26 24 15 12
83 58 20 14 10
71 46 22 16 12
91 41 19 19 11
76 35 18 15
79 46 24

Figure 8.9: Plot of Resin Lifetime versus Temperature

since group sizes was small) and since the residual plot showed no patterns, we
will assume that the homogeneity assumption holds approximately.

8.3.4 Checking Homogeneity of Variance Data - Resin Ex-
ample

This example is adapted from Oehlert ([24], page 32). The data given in Ta-
ble 8.8 represents lifetime in hours of a resin which is used to encapsulate gold-
aluminum bonds in integrated circuits when the resin was stressed at different
temperatures.

A plot of the resin lifetimes versus temperature is given in Figure 8.9.

Note that not only the average lifetime but also variability in lifetime is
affected by temperature violating the homogeneity of variance assumption.

Table 8.9 gives the means and standard deviations of the resin lifetimes at
the different temperatures.
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Table 8.9: Times to Failure: Means and Standard Deviations

Temperature (C)
175 194 213 231 250

Mean 86.4 43.6 24.5 15.7 11.7
StDev 13.1 9.8 6.5 1.8 3.6

Table 8.10: ANOVA Table for Resin Lifetime Data

Source of Variation Df SS MS F P-value

Temperatures 4 28066.8 7016.7 99.42 <.0001
Error 32 2258.5 70.6

Total (Corrected) 36 30325.3

The ratio of the largest to the smallest standard deviation is 13.1/1.8 = 7.3,
somewhat larger than the rule of thumb value of 3.

An ANOVA table for the data is given in Table 8.10. There is strong evidence
of a difference in lifetimes among the temperatures.

Figure 8.10 gives the residual plot of residuals versus predicted lifetimes.
Note the tendency for the residuals to become more variable as predicted values,
here temperature means, increase, creating a funneling effect. Again there is
evidence that the error variances are not constant across temperatures.

Figure 8.10: Resin Lifetime Data: Residuals versus Predicted
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Figure 8.11: Plot of Nerf Gun Residuals versus Treatment

8.3.5 Checking Homogeneity of Variance for the Nerf Gun
Example

A plot of the accuracies versus treatment was given in Section 8.2, Figure 8.3
Variation in accuracy appears to increase with distance regardless of the hand.

The means and standard deviations for the accuracies at the treatment com-
binations are given in Table 8.6. The ratio of the largest to the smallest stan-
dard deviation is 5.445/0.900 = 6.05, slightly above our rule of thumb value
of 3. Let’s also look at a plot of the residuals versus the treatments and also
residuals versus predicted values and check to see if there is any evidence of a
trend in spread with increasing predicted accuracy.

Figure 8.11 is a plot of the residuals versus the combination of distance and
hand. This plot reflects what was seen in Figure 8.3, some evidence of greater
variation in accuracies for the long distance.

Figure 8.12 is a plot of the residuals versus the predicted accuracies (treat-
ment means). Note that there is a tendency for the variation in the residuals
to increase with increasing predicted accuracy. So there is some evidence of
heterogeneity in the error variances.

8.3.6 Checking Homogeneity of Variance for a Block De-
sign Example

This example refers to the auditor example of Chapter 7 (Example 7.1, Section
7.3). The residuals are given in Table 7.2 in Chapter 7. Since there is only
one replication per combination of block and method then a plot of proficiency
measure versus treatment (combination of block and method) would not be
informative for checking variation in estimated residuals across combinations.
Alternative plots are the plotting of residuals against levels of the blocking factor
and against levels of the treatment factor, here method of training. Figures 8.13
and 8.14 provide these plots.

Figure 8.15 provides a plot of the residuals versus predicted measures.
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Figure 8.12: Plot of Nerf Gun Residuals versus Predicted Accuracies

Figure 8.13: Plot of Auditor Example Residuals versus Block
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Figure 8.14: Plot of Auditor Example Residuals versus Method

Figure 8.15: Plot of Auditor Example Residuals versus Predicted Measure
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There is no evidence of extreme deviations from the assumption of homoge-
neous error variances. There does appear to be one mildly outlying measure.

8.4 Assessing the Assumption of Normality

Recall that if the assumption of constant error variance appears to be satis-
fied then the analyst should check the assumption of normality of the error
terms. There are two graphical procedures that data analysts use to check the
assumption of normality of the errors. A histogram or stem and leaf plot of the
residuals can be viewed to check for an overall bell shaped distribution. While
a histogram is a good start it is not sensitive to departures in the tails of the
distributions and needs a relatively large sample size to give a good idea of the
true shape of the distribution. Another tool that analysts use is the normal
quantile-quantile or Q-Q plot.

Suppose that the residuals are ordered and represented as r1, r2, ..., rn where
n is the total number of residuals being investigated and ri represents the ith

smallest residual. Associated with each ri is zi, the “expected value” of the ith

smallest value in a sample of size n from a standard normal or z distribution.
For example if n = 28 and i = 14 then z14 would refer to the expected 14th
smallest z-score in a sample of n = 28 z or standard normal scores, which you
would expect to be about 0, since the 14th smallest z-score in 28 is about half-
way through all of the 28 z-scores in the sample. Similarly, if i = 7 then z7
would refer to the expected 7th smallest z-score in a sample of 28. Or z7 would
refer to that z-score for which about 7/28 = 1/4 = 0.25 of z-scores are smaller.
One could go to a standard normal table, such as Table A.1 and use for z7 the
0.25 quantile from that distribution (z score with upper 0.75 area in Table A.1).
Statistical programs will calculate the zi so we do not have to manually do these.
Also most programs use a slightly different formula than what we used, i/n, to
define the appropriate z quantile.

A normal quantile-quantile (Q-Q) plot is a plotting of the pairs (ri, zi) in a
Cartesian coordinate system. Thus a normal Q-Q plot is just a special kind of
scatterplot. If the errors are truly normally distributed with the same variance
then the normal probability plot should be roughly linear. If the errors are not
normally distributed then the plot should exhibit some type of curvature.

Some examples of typical Q-Q plots are given in the following figures.
Figure 8.16 and Figure 8.17 gives a typical histogram and normal Q-Q plot

when the error terms are truly normally distributed. Note the linear relationship
between the residuals and the expected standard normal quantiles.

Figure 8.18 and Figure 8.19 give a typical histogram and normal Q-Q plot
when the error terms have a “heavy tailed” distribution, that is the tails of the
distribution are more spread out than that for a normal distribution.

Figure 8.20 and Figure 8.21 give a typical histogram and and normal Q-Q
plot when the error terms have a symmetric “light tailed” distribution, that is
the tails of the distribution are less spread out than that for a normal distribu-
tion.
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Figure 8.16: Residual Histogram: Normal Distribution

Figure 8.17: Residual QQPlot: Normal Distribution

Figure 8.18: Residual Histogram: Heavy Tail Distribution
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Figure 8.19: Residual QQPlot: Heavy Tail Distribution

Figure 8.20: Residual Histogram: Light Tail Distribution

Figure 8.21: Residual Q-Q Plot: Light Tail Distribution
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Figure 8.22: Residual Histogram: Right Tail Distribution

Figure 8.23: Residual Q- Q Plot: Right Tail Distribution

Figure 8.22 and Figure 8.23 give a typical histogram and normal Q-Q Plot
when the error terms have an asymmetric “right skewed” distribution, that is
the right tail of the distribution is more spread out than the left tail.

Figure 8.24 and Figure 8.25 give a typical histogram and normal Q-Q Plot
when the error terms have an asymmetric “left skewed” distribution, that is the
left tail of the distribution is more spread out than the right tail.

Note that the QQ plots are nonlinear when the shape of the histogram is
not normal or bell-shaped and has various non-linear shapes.

8.4.1 Checking Normality of the Errors for the Battery
Example

Figures 8.26 and 8.27 provides a histogram and Q-Q plot of the residuals for
the battery lifetime data, respectively.

There are no major deviations from normality and so the assumption of
normality of the model errors appears to be satisfied approximately. Thus all
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Figure 8.24: Residual Histogram: Left Tail Distribution

Figure 8.25: Residual Q-Q Plot: Left Tail Distribution

Figure 8.26: Histogram of Residuals for Battery Lifetime Data
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Figure 8.27: QQPlot of Residuals for Battery Lifetime Data

three assumptions appear to hold approximately for this data. See Example 8.1
for the check on independence and Section 8.3.2 for the check on homogeneity
of error variances.

8.4.2 Checking Normality of the Errors for the Paper Towel
Example

Figures 8.28 and 8.29 provide a histogram and QQplot of the residuals for the
paper towel absorption data, respectively.

There are no major deviations from normality and so the assumption of
normality of the model errors appears to be satisfied approximately. The as-
sumption of homogeneity of error variances was checked earlier (see Section
8.3.3).

8.4.3 Checking Normality of the Errors for the Auditor
Example

Figures 8.30 and 8.31 provide a histogram and Q-Q plot of the residuals for
the auditor proficiency data, respectively. See Section 8.3.6.

There are no major deviations from normality and so the assumption of
normality of the model errors appears to be satisfied approximately. Thus the
assumptions of homogeneity of error variances and normality appear to be hold
approximately for this data.
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Figure 8.28: Histogram of Residuals for Paper Towel Absorption Data

Figure 8.29: QQPlot of Residuals for Paper Towel Absorption Data



230

Figure 8.30: Histogram of Residuals for Auditor Proficiency Data

Figure 8.31: QQPlot of Residuals for Auditor Proficiency Data
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Problems for Chapter 8

8.1∗ Below is a plot of residuals versus time order for the melting butter example
of Exercise 6.4. Do you think that the errors are independent? Explain.

8.2∗ An incense burning experiment was run by David Gately (Fall 2008) to
study the effects of fan status (off, 2 feet from incense, 4 feet from incense)
and flavor of incense stick (vanilla, cinnamon) on the amount of time (to the
nearest minute) it took the stick of incense to burn out. The experimental
was a two-factor completely randomized design with experimental units
being time slots. The following table gives the burn times and the time
slots at which these burn times were obtained. The residuals and predicted
values are left blank.

Fan Status Flavor Burning Time TimeOrder Predicted Residual
On2 Vanilla 15 5
On2 Vanilla 16 11
On2 Vanilla 13 18
On2 Cinnamon 14 2
On2 Cinnamon 17 8
On2 Cinnamon 16 14
On4 Vanilla 19 6
On4 Vanilla 21 15
On4 Vanilla 18 17
On4 Cinnamon 21 1
On4 Cinnamon 20 3
On4 Cinnamon 20 12
Off Vanilla 27 4
Off Vanilla 29 7
Off Vanilla 25 10
Off Cinnamon 26 9
Off Cinnamon 28 13
Off Cinnamon 28 16
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a. Calculate the residuals and predicted values associated with each of
the observations and fill in the blanks. Residual plots based on these
residuals are provided in parts (b) - (g).

b. Consider the following plot of burn times versus treatment. Can this
plot be used to check any of the assumptions about the error terms?
Explain in the context of this data.

c. Consider the following residual plot. What assumption is this plot
used to check? Comment on the assumption for this data.

d. Consider the following residual plot. What assumption is this plot
used to check? Comment on the assumption for this data.
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e. Consider the following residual plot. What assumption is this plot
used to check? Comment on the assumption for this data.

f. Consider the following histogram. What assumption is this plot used
to check? Comment on the assumption for this data.
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g. Consider the following Q-Q plot. What assumption is this plot used
to check? Comment on the assumption for this data.

8.3∗ In the article ”Lipid Pattern in Experimental Canine Atherosclerosis” (Cir-
cular Research [1964]: Vol. XIV, pgs 61-72) researchers investigated the
effects on total serum lipids (mg/100 ml serum) of the addition of choles-
terol and thiouracil to the diets of canines. The treatment group sizes,
means, and standard deviations are given in the following table.

Diet n Mean Standard Deviation
Basal 4 556 93.8

Basal + Cholesterol 6 879 357.6
Basal + Thiouracil 6 1807 497.2

Basal + Cholesterol + Thiouracil 6 3393 967.5

Is there evidence that any of the assumptions associated with ANOVA is
likely violated? Explain.

8.4∗ Cory Caswell, Selina Cole, and Matt Snow (Spring 2010) ran an experiment
to determine the effects of type of cup and type of liquid on the amount of
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time (minutes) that it took the liquid to cool from 200◦ to 100◦ Fahrenheit.
The three types of 6 ounce cups were Paper, Plastic, and Styrofoam. The
two types of liquid were water and coffee. The 30 trials, 5 replications
per treatment, were run randomly through time. The data, including time
order, is given in the table below.

Time Order Cup Liquid Amount of Time(mins)
1 Paper Coffee 40.3
2 Plastic Coffee 37.1
3 Styrofoam Water 47.6
4 Plastic Water 40.0
5 Styrofoam Coffee 49.9
6 Styrofoam Coffee 51.2
7 Styrofoam Coffee 46.9
8 Paper Coffee 45.3
9 Paper Coffee 47.2
10 Paper Water 43.6
11 Plastic Water 38.8
12 Styrofoam Water 51.2
13 Styrofoam Water 50.4
14 Plastic Coffee 39.8
15 Paper Coffee 51.2
16 Plastic Coffee 43.3
17 Plastic Coffee 40.7
18 Styrofoam Coffee 52.9
19 Styrofoam Coffee 57.2
20 Plastic Water 42.3
21 Paper Water 47.0
22 Plastic Water 42.0
23 Paper Water 43.6
24 Plastic Coffee 41.5
25 Plastic Water 42.6
26 Styrofoam Water 47.30
27 Paper Water 42.3
28 Paper Water 43.3
29 Styrofoam Water 51.8
30 Paper Coffee 47.2

Use a statistical program to obtain the residuals based on the two factor
completely randomized model. Obtain appropriate numerical summaries
and residual plots to check on the three assumptions discussed in this chap-
ter. Do the assumptions appear to be approximately satisfied? Comment.

8.5 Refer to the egg buoyancy study in Problem 6.8 of Chapter 6. Obtain
appropriate numerical summaries and residual plots to check on the three
assumptions discussed in this chapter. Do the assumptions appear to be
approximately satisfied? Comment.
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8.6 Refer to the leaflet angle data in Problem 4.11 of Chapter 4. Use a statis-
tical program to obtain numerical summaries and residual plots to check
on the three assumptions discussed in this chapter. Do the assumptions
appear to be approximately satisfied? Comment.



Chapter 9

Two Factor Split Plot
Designs

The simplest of the split plot designs is a two factor design. The completely ran-
domized two factor design was examined in Chapter 6. In that design there was
only one kind of experimental unit. All treatment combinations were assigned
completely at random to the same kind of experimental unit. For example in
the agricultural example of Chapter 6 all six combinations of type of fertilizer
and watering regimen were applied to the same kind of experimental unit, a
small plot of land. In some experiments, for reasons to be explored later, the
levels of one factor, A, are applied to one type of experimental unit and the
levels of factor B are applied to subunits of the units assigned to factor A. For
example, suppose in an educational experiment whole classes of students receive
one of three types of teaching method (factor A). Suppose within each class the
students are divided into two groups with each group receiving a level of an-
other factor B: usage of library or not. The treatment structure is factorial – all
combinations of A and B are used. But the levels of A are applied/assigned to
one type of experimental unit, the whole class, and the levels of B are applied
to another type of experimental unit, subgroups of a class. This is an example
of a split plot design. In a completely randomized design for this study there
would only be one type of unit, say classes, and the combinations of teaching
method and library usage or not would be assigned to classes.

In the general split plot design the levels of factor A are assigned to larger
“whole units” and the levels of factor B are assigned to smaller “subunits”
or bf “split units” of the whole units. In the education experiment above the
whole units are the classes of students and the two groups of students within
each class are the split units. In an agricultural experiment the whole units are
often large plots of land and the split units are subdivisions of the large plot, or
“split plots.” Hence the name split plot design. Factor A is referred to as the
whole unit factor and factor B the split unit factor. Since the split units in a
split plot design can be arranged/grouped by whole unit the whole unit is also

237
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a blocking variable (Chapter 7). Thus in the education experiment the whole
unit class is a blocking variable.

Split plot designs are often used when one treatment factor requires larger
units than the other treatment factor. The classical example is in agricultural
studies where for example different irrigation methods require larger plots of
land due to the equipment size but a second factor, such as fertilizer may be
applied to smaller plots within each larger plot. In a study to compare the
effects of 2 different oven temperatures and 3 different cupcake recipes on the
height of cupcakes, temperatures are assigned at random to different oven runs,
the larger units, but the different types of cupcakes may be tested within the
same oven run using different shelves of the oven, the smaller or split units. This
also results in a more efficient use of resources. Using only one combination of
temperature and recipe for each oven run would require more oven runs than
using an oven run for three combinations, a particular temperature with the
3 different recipes. In medical studies each person may be given each of three
different medications for a condition in random order. It is believed that the
response to the medications may depend on gender. Two groups of subjects are
used, males and females, each receiving the three medications. The design is
a split plot design. The larger or whole units are the subjects. Gender is the
whole unit classification factor. The smaller units are the time periods when
each subject receives the randomly assigned medications.

9.1 Arrangement of Whole Units

The levels of factor A in a split plot design can be assigned to the whole units
in a completely randomized fashion. Alternatively the whole units could be
blocked first and the levels of A then assigned at random to the whole units
within each block. Regardless of the treatment design for the whole unit factor
A, completely randomized or block, the levels of B are assigned completely at
random to the split units within each whole unit.

9.1.1 Examples: Split Plot Design with Whole Units in a
Completely Randomized Design

The education example described earlier is an example of this situation. Suppose
that there are 9 classes available and the three teaching methods (factor A) are
assigned completely at random to the 9 classes with 3 classes being assigned to
each of the 3 methods. The whole units are the classes. The whole unit factor
is teaching method. Within each of the classes 2 groups of students are formed
(at random). The two groups within each of the classes form the subunits or
split units of the whole unit. The two levels of factor B (library usage or not)
are assigned at random to the two subgroups within each class. The split unit
factor is library usage or not. Note that each whole unit is actually a block of
split units according to Chapter 7. In this example each class (whole unit) is a
block of two groups (two split units) of students.
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In the article “Changes in Women’s Plasma Lipid and Lipoprotein Con-
centrations Due to Moderate Consumption of Alcohol Are Affected by Dietary
Fat Level” (Journal of Nutrition, Vol. 129, pages 1713-1717, 1999) researchers
studied the impact of substituting ethanol for dietary carbohydrate, in high-and
low-fat diets, on plasma lipids (mmol/L) and lipoprotein concentrations (g/L).
Twenty-six women were randomly assigned to consume either a high-fat (n=12)
or a low-fact diet (n = 14) for a twelve week period in a controlled feeding study
The women were the whole units and the high versus low fat diet was the whole
unit factor. During the twelve week period each woman’s diet was supplemented
either with ethanol or carbohydrate, each during a 6-week period, randomly or-
dered. The split units are the two 6-week periods for each woman. The split
unit factor is the supplement (ethanol or carbohydrate). Each women serves as
a block of 2 6-week periods.

Models for the split plot designs are useful in situations where the whole
units are (in theory) random samples from populations. The whole unit factor is
defined by inherent characteristics of the whole units rather than being assigned
to the units. Each sampled whole unit serves as a block of smaller split units
which are assigned to levels of a split unit factor. In the article “Enhanced Food
Intake Regulatory Responses after a Glucose Drink in Hyperinsulinemic Men”
(International Journal of Obesity (2007) 31, 1222-1231) researchers studied the
effect of a glucose drink on food intake regulation for two groups of males. One
group (n = 33) was classified as hyperinsulinemic (HI), if their fasting plasma
insulin was≥ 41pmol/l or another group (n = 33) normohyperinsulinemic (NI) if
their fasting plasma insulin was< 40pmol/l. The whole units are the males. The
whole unit “factor” is hyperinsulinemic level (HI or NI). Each male consumed
either a noncaloric sweetened drink (placebo) or a glucose-containing drink on
two separate occasions in random order. Split units are the time periods for each
subject when consuming the drink. Split unit factor is type of drink consumed
(placebo or glucose-containing). One of the response variables was food intake
based on a pizza meal 1 hour after consuming the drink.

9.1.2 Examples: Split Plot Design with Whole Units Ar-
ranged in Blocks

Suppose in an agricultural experiment two factors are being studied, irrigation
method (factor A) with two levels, and type of fertilizer (factor B) with three
levels. Suppose that 10 large plots are grouped into 5 blocks each with 2 plots.
The arrangement of the large plots is carried out so that the two large plots
within each block are similar with regard to soil composition. The two levels of
irrigation are assigned completely at random to the two large plots within each
block. The whole units in this experiment are the large plots and are arranged
in blocks of two. Each of the two large plots within a block is divided into three
subplots. The three fertilizers are assigned at random to the three subplots
within each whole plot. The response variable might be yield of a crop planted
on all 5 x 2 x 3 = 30 subplots. Note that the 30 subplots can be grouped by
whole unit or large plot and thus large plot is a blocking variable. Thus there
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are two blocking variables in this study. One is soil composition where pairs of
large plots have similar soil composition and the other is large plot, each large
plot consisting of 3 subplots in close proximity.

In some experiments the blocking of the whole units corresponds to a time
or replication variable. Milliken and Johnson ([21], page 468) describe an ex-
periment designed to study the effects of A: amount of pressure in a water line
(10, 20, 40, 80 psi) and B: type of nozzle (round hole, oval hole, narrow slit, all
of equal area) on the amount of water that flowed through a nozzle. The exper-
iment was conducted as follows. On a particular day a pressure was selected at
random from the four and then the pressure in the water line set at that pressure.
With the pressure at that level the four nozzle types were tested in a random
order. Amount of water flowing (oz) through the nozzle in a fixed amount of
time was measured. This process was repeated for the other pressures. The
whole process was repeated on two other days resulting in 3 replications per
combination of amount of pressure and type of nozzle. The whole units are the
larger time slots when the line at a particular pressure is tested. The split units
are smaller time slots within the whole units corresponding to the three nozzle
tested. The whole units are blocked by Day since all four pressures are used in a
Day. The whole unit factor is amount of pressure. Each whole unit is a blocking
of the 3 smaller time slots for the different nozzles. The split unit factor is the
type of nozzle.

9.2 Analysis of Split Plot Design - Whole Units
in a Completely Randomized Design

9.2.1 The Model

The model for the split plot design where the whole units are assigned to the
levels of the whole unit factor A in a completely randomized design is:

yijk = µ+ αi + ϵwk(i) + βj + αβij + ϵsijk (9.1)

where i = 1, ..., a, with a being the number of levels of the whole unit factor
A, j = 1, ..., b, with b being the number of levels of the split unit factor B,
k = 1, ..., n, with n being the number of whole units assigned to each level of
factor A, and

• yijk is the observation on the response variable for the split unit for the ith

level of the factor A, kth whole unit receiving or “nested” within the ith

level of A, and receiving the jth level of the factor B.

• µ is the grand mean of the response variable averaged over a population of
split units, all levels of factor A, and all levels of factor B.

• αi is the true effect of the i
th level of the factor A on the response variable

• ϵwk(i) is the error term for the the kth whole unit “nested” within the ith level
of the factor A, representing the effect of extraneous variables associated
with the whole unit.
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• βj is the true effect of the j
th level of the factor B on the response variable.

• αβij is the true interaction effect on the response variable of the ith level
of A and the jth level of B

• ϵsijk is the error term for the split unit associated with the ith level of A,

kth whole unit nested under the ith level of A, and the jth level of B,
representing the effect of extraneous variables with this split unit.

Note that there are two error terms in the model because there are two types
of experimental units, the whole unit and the split unit. The whole unit error,
denoted by ϵwk(i), represents differences in the whole units getting assigned to
the levels of A. The split unit error, denoted by ϵsijk, represents differences in
the split units assigned to the levels of B.

The model assumes that the whole unit errors are independent normal ran-
dom variables each with mean 0 and common variance σ2

w and that the split unit
errors are independent normal random variables each with mean 0 and common
variance σ2

s . It is also assumed that a whole unit error is independent of a split
unit error.

The model assumes that the design is balanced. That is there is the same
number of observations, n, at each treatment combination of the levels of factor
A and B.

While the errors are all independent of one another the model hypothesizes
that the observations on the response for the split units within each whole unit
are correlated since those observations have a common factor, that being a
common whole unit, and that the observations are equally correlated.

9.2.2 The ANOVA Table

The ANOVA table is derived in a manner similar to how the ANOVA table is
derived for other designs. The observed responses can be partitioned into parts
representing the grand mean, the effect of the particular level of factor A, the
error associated with the whole unit, the effect of the particular level of factor
B, the interaction effect, and the error associated with the split unit. The sum
of squares of the deviations of the observed responses from the grand mean can
be partitioned into sums describing variability in the effects of A, whole unit
effects (errors), effects of B, interaction effects, and split unit effects (error).

SSTOTC = SSA+ SSEw + SSB + SSAB + SSEs

The general form of the ANOVA table with expected mean squares is given
in Table 9.1

In Table 9.1 the sums of squares for the various effects are given without
formulas. We will rely on the computer to calculate these. The column labelled
EMS gives the expected or population average mean squares. The values Q1,
Q2, and Q3 in the EMS column are, respectively, functions of the true A effects,
B effects, and AB effects, which are zero if the corresponding effects are 0, that
is the null hypothesis is true.



242

Table 9.1: ANOVA Table for Two Factor Split Plot Design - Whole Units in
Completely Randomized Design

Source of Variation df SS MS F EMS
A a - 1 SSA MSA MSA/MSEw σ2

s + aσ2
w +Q1

Errorw a(n− 1) SSEw MSEw σ2
s + aσ2

w

B b - 1 SSB MSB MSB/MSEs σ2
s +Q2

A*B (a− 1)(b− 1) SSAB MSAB MSAB/MSEs σ2
s +Q3

Errors a(b− 1)(n− 1) SSEs MSEs σ2
s

Let us consider testing for A effects. Under the null hypothesis, the expected
mean square for A would be identical to the expected mean square for the
whole plot error. Thus under the null hypothesis we would expect the ratio
MSA/MSEw to be approximately 1. If the alternative hypothesis is true,
then the expected mean square for A would be larger than MSEw. In this
case we would expect the ratio MSA/MSEw to be larger than 1. The test
statistic for testing for A effects is the F ratio MSA/MSEw. Assuming the
model assumptions hold then the ratio MSA/MSEw has an F distribution
with numerator degrees of freedom ν1 = a − 1 and denominator degrees of
freedom ν2 = a(n − 1). We will rely on the computer to calculate the F ratio
and obtain a P value for hypothesis testing.

Similarly test for B main effects and AB interaction can be tested using F
ratios. Note however that the denominator mean square error is MSEs, unlike
that for the test for A effects, for which the denominator is MSEw. Thus the
form of the ratio for the F statistic depends upon the effect being tested.

9.2.3 An Example of a Split Plot Study

Example 9.1 John Szarka and Zamda Lumbi (Fall 2004) were interested in
investigating the effects of type of flour (white, wheat, bread) and length of time
in oven (5, 10, 15 minutes) on the change in height of dough after baking. Three
rolls of dough were made from each type of flour for a total of nine rolls. Each
roll was made using the same ingredients except for the type of flour. Each roll
was divided into 3 equal parts and the 3 parts put into an oven. One part was
baked at 5 minutes, another part at 10 minutes, and another for 15 minutes.
Thus one run of the oven involved one roll (3 parts). The type of flour used for
a particular roll and run of the oven was selected at random. The 3 parts of the
roll were assigned at random to locations in the oven and time of baking. At the
end of the 5, 10, and 15 minute periods, the appropriate parts were taken out of
the oven and measured for height change.

The data are given in Table 9.2

This is an example of a split plot design. Type of flour is the whole unit/plot
factor, A. The whole plot experimental unit is a roll at a particular baking period
or oven run. The design structure for the whole units is completely randomized.
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Table 9.2: Change in Height of Dough (mm) for Baking Experiment

Baking Time (Min)

Type of Flour 5 10 15
Roll

White 1 44 46 47
2 42 46 48
3 42 43 43

Wheat 1 40 40 42
2 40 41 41
3 40 41 41

Bread 1 43 44 46
2 43 44 45
3 41 43 43

The types of flour are assigned completely at random to the rolls baked at a
particular baking period.

The split unit/plot factor, B, is the amount of time that a part of a roll
is baked. The split unit experimental unit is the part of the dough which we
will call “biscuit.” The biscuits are arranged by roll so roll, the whole unit, also
serves as a block.

The model for this data is:

yijk = µ+ αi + ϵwk(i) + βj + αβij + ϵsijk (9.2)

with i = 1(white), i = 2(wheat), i = a = 3(bread) indexing type of flour, j =
1(5 min), j = 2(10 min), j = b = 3(15 min) indexing baking time, and k =
1, 2, 3(n) indexing the roll made with a particular flour at an oven run, and

• yijk is the observation on height change, in millimeters, at the ith level of
flour type, kth roll nested within the ith level of flour type, and jth level of
baking time.

• µ is the grand mean of height change averaged over a population of rolls,
all levels of flour type, and all levels of baking time.

• αi is the true effect of the ith level of the flour type on height change.

• ϵwk(i) is the error term for the the kth roll nested within the ith level of the
flour type, representing the effect of extraneous variables associated with
the roll, such as differences in amount of kneading, ingredients, etc.

• βj is the true effect of the jth level of baking time on height change of
bread.
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Figure 9.1: Plot of Height Increase versus Flour/Baking Time

• αβij is the true interaction effect on height change of the ith level of flour
type and the jth level of baking time.

• ϵsijk is the error term for the split unit, here biscuit, associated with the ith

level of flour type, kth roll nested under the ith level of flour type, and the
jth level of baking time, representing the effect of extraneous variables for
this unit, such as slight variations in baking time, variations in temperature
of oven, within roll variations such as differences due to uneven mixing of
ingredients.

The model assumes that the 9 “roll” errors, ϵwk(i), are independent normal

random variables each with mean 0 and common variance σ2
w and that the 27

“biscuit” errors, ϵsijk, are independent normal random variables each with mean

0 and common variance σ2
s . It is also assumed that a “roll” error is independent

of a “biscuit” error.

While the errors are all independent of one another the model hypothesizes
that the observations on height change for the three biscuits of a particular roll
are correlated since those observations have a common factor, that being the
common roll and a common run of the oven, and that those correlation are all
the same.

A plot of change in height versus type of flour and baking time is given in
Figure 9.1. Type of flour appears to have an effect with bread and white flour
resulting in greater increases in height. As expected increases in baking time
are associated with increases in height change.

Height change treatment, marginal, and grand means are provided in Ta-
ble 9.3.

An interaction plot is given in Figure 9.2. There is no strong evidence of
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Table 9.3: Height Change Means: Bread Example

Baking Time
5 10 15 yi..

Flour Type
White 42.7 45.0 46.0 44.6
Wheat 40.0 40.7 41.3 40.7
Bread 42.3 43.7 44.7 43.6

y.j. 41.7 43.1 44.0

y... = 42.9

Figure 9.2: InteractionPlot

interaction between type of flour and baking time.

The ANOVA table for the baking experiment is given in Table 9.4.

The null and alternative hypotheses for the test of interaction between type
of flour and baking time are Ho : αβij = 0 for each pair (i, j), i = 1, 2, 3; j =
1, 2, 3 and Ha : αβij ̸= 0 for some pair i, j. There is no evidence of interaction
between type of flour and baking time (F = 1.17, P − value = 0.3701)) at the
0.10 level.

The null and alternative hypotheses for the test of main effects of type of
flour are Ho : α1 = α2 = α3 = 0 and Ha : not all α′

is = 0. There is evidence of
differences in height change among types of flour (F = 9.53, P − value = 0.0137
at the 0.05) level of significance.

The null and alternative hypotheses for the test of main effects of baking
time are Ho : β1 = β2 = β3 = 0 and Ha : not all β′

is = 0, respectively.
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Table 9.4: ANOVA Table for Baking Experiment

Source of Variation df SS MS F P-value
Flour 2 73.41 36.70 9.53 0.0137
Error (Roll(Flour)) 6 23.11 3.85
BakeTime 2 24.96 12.48 16.85 0.0003
Flour*BakeTime 4 3.48 0.87 1.17 0.3701
Error (Biscuit) 12 8.89 0.74

There is evidence of differences in height change among the baking times (F =
9.53, P − value = 0.0137 at the 0.05 level of significance.

Tukey-Kramer confidence intervals are used to make pairwise comparisons
of marginal means of height change for types of flour and and baking times.

The Tukey-Kramer confidence intervals with overall experiment-wise confi-
dence level (1− α) corresponding to two levels i and i′ of the whole plot factor
A, type of flour, are

(yi·· − yi′··)±
qα;ν,t√

2

√
MSEw

√
1

bn
+

1

bn

where
√
MSEw

√
1
bn + 1

bn is the standard error of the difference in marginal

means yi··−yi′·· and qα;ν,t is the upper α probability point from the Studentized
range distribution. Here ν refers to degrees of freedom associated with MSEw,
whole plot mean squared error and t = a, the number of levels of the whole plot
factor A.

For the comparisons involving types of flour the appropriate MSE is mean
squared error for the roll effect MSEw = 3.85. The value bn = (3)(3) = 9 in
the denominator is the number of observations contributing to a flour mean.
Thus the standard error of the difference between two flour (sample) means is√

2(3.85)
9 = 0.92. Table A.6 with ν = 6 degrees of freedom associated with Roll

error and t = a = 3 levels for the flour factor gives q0.05;6,3 = 4.34 for overall
95% confidence. Thus the multiplier on the standard error is 4.34√

2
= 3.1. Thus

the endpoints for the intervals for µ3·−µ2·, µ1·−µ2·, and µ1·−µ3·, respectively,
are:

(43.6− 40.7)± (3.1)(0.92)
(44.6− 40.7)± (3.1)(0.92)
(44.6− 43.6)± (3.1)(0.92)

Thus the Tukey-Kramer simultaneous 95% confidence intervals are:

0.1 ≤ µ3. − µ2. ≤ 5.7
1.1 ≤ µ1. − µ2. ≤ 6.7

−1.8 ≤ µ1. − µ3. ≤ 3.8
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It is estimated that Bread flour increases mean height change of dough as
compared to White flour by between 0.1 and 5.7 mm. It is estimated that
White flour increases mean height change of dough compared to Wheat flour
by between 1.1 and 3.8 mm. There is not enough evidence of a difference in
mean height change between the White and Bread flours. These conclusions are
supported by a 95% experiment-wise confidence level.

The Tukey-Kramer confidence intervals with overall confidence level 1 − α
corresponding to the levels j and j′ of the split plot factor B, here number of
minutes in oven, are

(y·j· − y·j′·)±
qα;ν,t√

2

√
MSEs

√
1

an
+

1

an

where
√
MSEs

√
1
an + 1

an is the standard error of y·j· − y·j′· and qα;ν,t is the

upper α probability point from the Studentized range distribution. Here ν refers
to the degrees of freedom associated with MSEs, split plot mean squared error
and t = b refers to the number of levels of the split plot factor B.

For the comparisons involving the three baking times the appropriate MSE
is mean squared error for the split plots MSEs = 0.74. The value (a)(n) =
(3)(3) = 9 is the number of observations contributing to a baking time marginal
mean. Thus the standard error of the difference between two baking time means

is
√

2(0.74)
9 = 0.41. Table A.6 with ν = 12 degrees of freedom associated with the

split plot error and t = b = 3 levels for the baking time factor gives q0.05;12,3 =
3.77. Thus the multiplier on the standard error is 3.77√

2
= 2.67. Thus the

endpoints for the intervals for µ·2 − µ·1, µ·3 − µ·1, and µ·3 − µ·2 comparing the
baking times 5 and 10, 5 and 15, and 10 and 15 minutes are:

(43.1− 41.7)± (2.67)(0.41)
(44.0− 41.7)± (2.67)(0.41)
(44.0− 43.1)± (2.67)(0.41)

The Tukey-Kramer simultaneous 95% confidence intervals are:

0.3 ≤ µ.2 − µ.1 ≤ 2.5
1.2 ≤ µ.3 − µ.1 ≤ 3.4

−0.2 ≤ µ.3 − µ.2 ≤ 2.0

It is estimated that the mean height change of dough for 10 minutes of baking
time is between 0.3 and 2.5 mm greater than mean height change for 5 minutes
of baking time. It is estimated that mean height change of dough for 15 minutes
of baking time is between 1.2 and 3.4 mm greater than mean height change with
5 minutes of baking time. There is not enough evidence of a difference in mean
height change of dough at 10 and 15 minutes of baking time. These conclusions
are supported by a 95% experiment-wise confidence level.

A check is made of the assumptions of normality and homogeneous error
variances associated with the split plot errors. Figure 9.3 gives a histogram
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Figure 9.3: Histogram of Split Plot Residuals: Baking Experiment

of the split plot residuals from the model. Normality appears to be satisfied
approximately.

Figure 9.4 gives a scatterplot of the split plot residuals versus the predicted
height changes with the fitted model. There appears to be no patterns and
thus the assumptions of homogeneity of error variance appears to be satisfied
approximately.

9.2.4 Whole Units in CRD with Interaction

When there is evidence of interaction between the whole unit factor A and the
split unit factor B then there might be interest in comparing the levels of B at
each level of the A and/or comparing the levels of A at each of the levels of B.
Details of the calculations that follow are based on Kutner, Nachtsheim, Neter,
and Li ([15], pages 1148-1153).

The Tukey-Kramer confidence intervals with experiment-wise confidence level
(1− α) for all pairwise comparisons of treatment means with levels j and j′ of
the split plot factor B at a particular level i of A are:

(yij· − yij′·)±
qα;ν,t√

2

√
MSEs

√
1

n
+

1

n

where
√
MSEs

√
1
n + 1

n is the standard error of the difference in two treatment

means, (yij· − yij′·), and qα;ν,t is the upper α probability point from the Stu-
dentized range distribution. Here ν refers to the degrees of freedom associated
with MSEs, split plot MSE and t = b refers to the number of levels of factor B.

The Tukey-Kramer confidence intervals with approximate experiment-wise
confidence level (1 − α) for all pairwise comparisons of treatment means with
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Figure 9.4: Plot of Split Plot Residuals versus Predicted Change: Baking Ex-
periment

levels i and i′ of the whole unit factor A at a particular level j of the split unit
factor B are:

(yij· − yi′j·)±
qα;νadj ,t√

2

√
MSEadj

√
1

n
+

1

n

where
√

MSEadj

√
1
n + 1

n is the approximate standard error of the difference in

two treatment means, (yij· − yi′j·) and qα;νadj ,t is the upper α probability point
from the Studentized range distribution. Here t = a, the number of levels of the
whole unit factor A, and

MSEadj =
a(n− 1)MSEw + a(b− 1)(n− 1)MSEs

ab(n− 1)

a pooling of the two mean squares associated with the two types of errors and
degrees of freedom associated with MSEadj , νadj , with

νadj =
[SSEw + SSEs]

2

[SSEw]2

a(n−1) + [SSEs]2

a(b−1)(n−1)

Computer software will be used to obtain the results of the Tukey pairwise
comparisons of treatment means when there is evidence of interaction.

Example 9.2 Suppose a study is conducted to investigate the effects of three
different types of containers (A: ceramic mug, styrofoam cup, paper cup) and
two heated liquids (B: coffee, hot chocolate) on the amount of time for the liquid
to cool from 82 ◦C to 72 ◦C. The experiment was conducted as follows. A type
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Table 9.5: Cooling Time (seconds)

Cooling Time (sec)

Liquid Type Ceramic Mug Paper Cup Styrofoam
Time Slot

Coffee 1 78 212 281
2 108 230 259
3 73 234 266
4 92 228 257

Hot Chocolate 1 96 222 260
2 85 225 244
3 81 237 254
4 84 217 263

Table 9.6: Cooling Time Means (sec): Cooling Example

Container Type
Ceramic Paper Styrofoam yi..

Liquid Type
Coffee 80.0 222.0 263.5 188.5

Hot Chocolate 94.3 222.3 250.0 191.2

y.j. 87.1 225.6 256.8

y... = 189.8

of liquid was randomly selected. Eighteen ounces of the liquid was poured into
a pot and heated to 82◦C. The heated liquid was then poured into containers of
the three types, in a random order, with 6 ounces per container. The amount
of time (seconds) until the liquid in each cup was cooled to 72 ◦C was recorded.
This process was repeated on 7 other occasions, resulting in 4 replications per
combination of liquid type and container type. The design is a split plot design
with whole units being equal to time slots corresponding to the pouring and heat-
ing of eighteen ounces of liquid with whole unit factor being equal to the type
of liquid used. Whole units are assigned completely at random to type of liquid.
Split units are the 6 ounce amounts of liquid in a cup, with split unit factor
being type of cup. The data are given in Table 9.5

Cooling Time treatment, marginal, and grand means are provided in Ta-
ble 9.6.

An interaction plot is given in Figure 9.5. There is some evidence of inter-
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Figure 9.5: InteractionPlot
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action between liquid and container type.

The ANOVA table for the cooling experiment is given in Table 9.7. The
interaction effect on cooling time between type of liquid and container is signif-
icant at the 0.10 level.

Tukey-Kramer comparisons of cooling time for pairs of containers at each of
the liquids are given in Table 9.8. For both liquids Coffee and Hot Chocolate
the differences between mean cooling time for Ceramic and Paper and Ceramic
and Styrofoam are significant at the 0.05 experiment-wise significance level. The
difference in cooling time between the Styrofoam and Paper container types is
significant for Coffee but not for Hot Chocolate.

Tukey comparisons of cooling time for the two liquids at each of the container
types is given in Table 9.9. The difference between cooling time for the two
liquids is not significant for any of the container types.

Computer software (SAS Proc GLM and Mixed) was used to obtain the
results given for the cooling experiment. The SAS code is provided in Section
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Table 9.7: ANOVA Table for Liquid Cooling Experiment

Source of Variation df SS MS F P-value
Beverage 1 42.7 42.7 0.53 0.4924
Whole Unit Error 6 479.3 79.9
Container 2 130463 65232 483.5 < 0.0001
Beverage*Container 2 833.1 416.5 3.09 0.0829
Split Unit Error 12 1619.2 134.9

Table 9.8: Tukey Pairwise Comparisons of Container Types for Each Liquid

Liquid Container Container Mean Difference Std.Error df t Value P-value LCL UCL

Coffee Ceramic Paper -142.0 8.21 12 -17.29 <.0001 -163.9 -120.1
Coffee Ceramic Styrofoam -183.5 8.21 12 -22.34 <.0001 -205.4 -161.6
Coffee Paper Styrofoam -41.5 8.21 12 -5.05 0.0008 -63.4 -19.6

Hot Chocolate Ceramic Paper -135.0 8.21 12 -16.44 <.0001 -156.9 -113.1
Hot Chocolate Ceramic Styrofoam -155.8 8.21 12 -14.50 <.0001 -177.7 -133.8
Hot Chocolate Paper Styrofoam -20.8 8.21 12 -2.53 0.0640 -42.7 1.2

Table 9.9: Tukey Pairwise Comparisons of Two Liquids for Each Container

Container Liquid Liquid Mean Difference Std.Error df t Value P-value LCL UCL

Ceramic Coffee Hot Chocolate -14.3 7.63 17.15 -1.87 0.0866 -30.9 2.4
Paper Coffee Hot Chocolate -7.3 7.63 17.15 -0.95 0.3611 -23.9 9.4

Styrofoam Coffee Hot Chocolate 13.5 7.63 17.15 1.77 0.1024 -3.1 30.1
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9.4.2.

9.3 Analysis of Split Plot Design - Whole Units
Arranged in a Block Design

9.3.1 The Model

The model for the split plot design where the whole units are arranged in blocks
is:

yijk = µ+ αi + ρk + ϵwik + βj + αβij + ϵsijk (9.3)

where i = 1, ..., a, with a being the number of levels of factor A, j = 1, ..., b,
with b being the number of levels of factor B, and k = 1, ..., n, with n being the
number of blocks of the whole units, and

• yijk is the observation on the response variable at the ith level of the factor
A, kth block of whole units, and jth level of the factor B.

• µ is the grand mean of the response variable averaged over a population of
subjects, all levels of factor A, and all levels of factor B.

• αi is the true effect of the i
th level of the factor A on the response variable.

• ρk is the true effect of the kth level of the blocking variable.

• ϵwik is the error term for the whole unit assigned to factor level i in block
k representing the effect of extraneous variables associated with the whole
unit.

• βj is the true effect of the j
th level of the factor B on the response variable.

• αβij is the true interaction effect on the response variable of the ith level
of A and the jth level of B.

• ϵsijk is the error term for the split unit receiving the jth level of factor B in

the whole unit receiving level i of factor A in the kth block, representing
the effects of extraneous variables associated with that split unit.

The model assumes that the whole unit errors are independent normal ran-
dom variables each with mean 0 and common variance σ2

w and that the split unit
errors are independent normal random variables each with mean 0 and common
variance σ2

s . In this chapter it will be assumed that the levels of the blocks are
random and that the block effects are independent, normal random variables,
each with mean 0 and common variance σ2

ρ. It is also assumed that the whole
unit errors, split unit errors, and the block effects are statistically independent
of one another. While the errors and block effects are all independent of one
another the model hypothesizes that the observations on the response for the
split units within each whole unit are correlated since those observations have
a common factor, that being a common whole unit, and that this correlation is
the same for all pairs of responses on the split units.
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Table 9.10: ANOVA Table: Split Plot Design - Whole Units Blocked

Source of Variation df SS MS F EMS
Blocks n - 1 SSBlocks MSBlocks σ2

s + bσ2
w + abσ2

ρ

A a - 1 SSA MSA MSA/MSEw σ2
s + bσ2

w +Q1

Errorw (a− 1)(n− 1) SSEw MSEw σ2
s + bσ2

w

B b - 1 SSB MSB MSB/MSEs σ2
s +Q2

A*B (a− 1)(b− 1) SSAB MSAB MSAB/MSEs σ2
s +Q3

Errors a(n− 1)(b− 1) SSEs MSEs σ2
s

9.3.2 The ANOVA Table

The ANOVA table for the split plot design where the whole units are arranged
in blocks ([21], Chapter 24)is given in Table 9.10. The sums of squares for the
various effects are given without formulas. Computer programs will be used to
calculate these. Also the values Q1, Q2, and Q3 are, respectively, functions of
the A effects, B effects, and AB interaction effects, which are zero if the effects
are 0, that is the null hypothesis is true.

Note again for this design that the mean squared error associated with the
whole plots is the appropriate denominator for testing for factor A effects. The
appropriate F ratio for testing for B and interaction effects uses mean squared
error associated with the split units in the denominator. Again we will obtain
F ratios and P-values using computer software.

9.3.3 Example

Example 9.3 This example is based on an experiment described in Cochran
and Cox [5]. The original study was undertaken to investigate the effects of
three chocolate cake recipes and 6 baking temperatures on the various quality
characteristics of the cakes. The three recipes will simply be referred to as R1,
R2, and R3. There were 6 temperatures used in the original experiment but we
will use only three here, namely 175, 195, and 215 degrees Fahrenheit. There
were three replications of the experiment with replications serving as blocks. So
a block here refers to a time frame. At each replication a recipe was selected
at random and then enough cake batter was prepared for three cakes. After
making a particular batch the batch was split into three equal parts and each
part assigned at random to one of the three oven temperatures. There were
three ovens available for the experiment. The data is provided in Table 9.11.
The response variable is a quality characteristic with higher values indicating
greater quality.

This is an example of a split plot design where the whole units are arranged
in blocks. A block corresponds to a replication in which a set of three time slots
are available to make three cake batter batches. The whole unit is a batch of
cake batter prepared at a particular time slot. The whole plot factor, A, is recipe
(R1,R2, and R3) whose levels are assigned at random to the three whole units
for a replication. Whole units are blocked according to replication. The split
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Table 9.11: Quality Data for Chocolate Cake Experiment

Recipe

Replication/Block R1 R2 R3
Temp(◦F) 175 195 215 175 195 215 175 195 215

1 28 31 41 31 29 40 21 31 33
2 24 27 30 21 24 37 26 27 35
3 26 32 37 21 28 27 21 25 31

units are the three portions of a batch of cake batter prepared at a particular
time slot. The three portions are assigned to the three ovens/temperatures.
Temperature of oven is the split plot factor, B. The whole units (batches of
cake) are blocked by replication. Each whole unit (batch of cake) within a
replication serves as a block of three split units (portions of batch).

The model for the split plot design in this example is:

yijk = µ+ αi + ρk + ϵwik + βj + αβij + ϵsijk (9.4)

with i = 1(R1), i = 2(R2), i = a = 3(R3) indexing recipe, j = 1(175◦F), j =
2(195◦F), j = b = 3(215◦F) indexing temperature, and k = 1, 2, n = 3 indexing
replication.

• yijk is the observation on the quality characteristic at the ith level of recipe,
kth replication, and jth temperature.

• µ is the grand mean of the quality characteristic averaged over a population
of cakes, all levels of recipe, and all levels of temperature.

• αi is the true effect of the ith level of recipe on quality.

• ρk is the true effect of the kth replication.

• ϵwik is the error term for the batch of cake batter assigned to recipe i in
replication k representing the effect of extraneous variables associated with
the cake batch.

• βj is the true effect of the jth level of temperature on quality.

• αβij is the true interaction effect on the quality of the ith level of recipe
and the jth level of temperature.

• ϵsijk is the error term for the portion of cake batter batch receiving the

jth level of temperature in the kth replication for recipe i, representing the
effects of extraneous variables associated with the portion. These include
within batch variations and variations in ovens.

The model assumes that the batch errors are independent normal random
variables each with mean 0 and common variance σ2

w and that the portion er-
rors are independent normal random variables each with mean 0 and common
variance σ2

s . It is also assumed that a batch error is independent of a portion
error. While the errors are all independent of one another the model hypoth-
esizes that the observations on the response quality for the three cakes made
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Figure 9.6: Scatterplot of Quality Versus Recipe/Temperature

Table 9.12: Quality Means: Chocolate Cake Example

Baking Temperature ◦F (j)
175(1) 195(2) 215(3) yi..

Recipe (i)
R1 (1) 26.0 30.0 36.0 30.7
R2 (2) 24.3 27.0 34.7 28.7
R3 (3) 22.7 27.7 33.0 27.8

y.j. 24.3 28.2 34.6

y... = 29.0

from each batch of cake batter are correlated since those observations have a
common factor, all cakes made from the same batch of cake batter.

A plot of quality versus recipe and oven temperature is given in Figure 9.6
Recipe does not appear to have an effect on quality. Oven temperature appears
to affect quality.

Quality treatment, marginal, and grand means are provided in Table 9.12.

An interaction plot is given in Figure 9.7. There is no strong evidence of
interaction between recipe and baking temperature.

The ANOVA table for this example is is given in Table 9.13. Note that there
is no evidence of interaction between recipe and temperature (F = 0.15,P - value =
0.9571) at the 0.10 level of significance. The effects of recipe are not significant
(F = 0.82,P-value = 0.5038) while the effects of temperature are significant
(F = 26.03,P-value < 0.0001) using a 0.05 level of significance in both cases.
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Figure 9.7: Interaction Plot

Table 9.13: ANOVA Table: Recipe and Temperature Baking Experiment

Source of Variation df SS MS F P-value
Blocks 2 93.85 46.93
Recipe 2 39.41 19.70 0.82 0.5038
Errorw 4 96.37 24.09
Temp 2 479.19 239.59 26.03 < 0.0001
Recipe*Temp 4 5.70 1.43 0.15 0.9571
Errors 12 110.44 9.20
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Since the recipe effects are not significant pairwise comparisons of the marginal
means would normally not be undertaken. However to illustrate the the appro-
priate mean square error to do Tukey-Kramer comparisons, comparisons of the
recipes as well as the temperatures will be calculated.

The Tukey-Kramer confidence intervals with overall confidence level (1−α)
for the levels of the whole plot factor A are as before:

(yi·· − yi′··)±
qα;ν,t√

2

√
MSEw

√
1

bn
+

1

bn

where
√
MSEw

√
1
bn + 1

bn is the standard error of the difference in two marginal

means for factor A, yi·· − yi′··, and qα;ν,t is the upper α probability point from
the Studentized range distribution. Here ν refers to the degrees of freedom
associated with whole plot mean squared error, MSEw and t = a, the number
of levels of the whole plot factor A.

For the comparisons involving recipes the appropriate MSE is mean squared
error for whole unit, here MSEw = 24.09. The value bn = (3)(3) = 9 is
the number of observations contributing to a recipe mean. Thus the standard

error of the difference between two recipe marginal means is
√

2(24.09)
9 = 2.31.

Table A.6 with ν = 4 degrees of freedom associated with whole unit error and
t = a = 3 levels for the recipe factor gives q0.05;4,3 = 5.04. Thus the multiplier
on the standard error is 5.04√

2
= 3.56. Thus the endpoints for the intervals for

the differences µ1. − µ2., µ1. − µ3., and µ2. − µ3. for the comparisons of recipes
R1 and R2, R1 and R3, and R2 and R3 are:

2.0± (3.56)(2.31), 2.9± (3.56)(2.31), 0.9± (3.56)(2.31)

Thus the simultaneous 95% Tukey-Kramer confidence intervals are:

−6.2 ≤ µ1. − µ2. ≤ 10.2
−5.3 ≤ µ1. − µ3. ≤ 11.1
−7.3 ≤ µ2. − µ3. ≤ 9.1

All three intervals contain zero and thus the comparisons are consistent with
the results from the F test.

The Tukey-Kramer confidence intervals with overall confidence level (1−α)
for the levels of the split plot factor B, here temperature, are

(y·j· − y·j′·)±
qα;ν,t√

2

√
MSEs

√
1

an
+

1

an

where
√
MSEs

√
1
an + 1

an is the standard error of the difference in two marginal

means for factor B, y·j· − y·j′·, and qα;ν,t is the upper α probability point from
the Studentized range distribution. Here ν refers to the degrees of freedom
associated with split plot mean squared error, MSEs and t = b, the number of
levels of the split plot factor B.
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Figure 9.8: Histogram of Residuals from Cake Experiment

For the comparisons involving the three oven temperatures the appropriate
MSE is mean squared error for the split units (cake batter batch portion),
MSEs = 9.20. The value an = (3)(3) = 9 is the number of observations
contributing to a temperature mean. Thus the standard error of the difference

between two temperature marginal means is
√

2(9.20)
9 = 1.43. Table A.6 with

ν = 12 degrees of freedom associated with the split plot error and t = b = 3
levels for the temperature factor gives q0.05;12,3 = 3.77. Thus the multiplier
on the standard error is 3.77√

2
= 2.67. Thus the endpoints for the intervals for

differences in temperatures µ·2 − µ·1, µ·3 − µ·1, and µ·3 − µ·2 comparing the
temperatures 175◦ and 195◦, 175◦ and 215◦, and 195◦ and 215◦ are:

(28.2− 24.3)± (2.67)(1.43)
(34.6− 24.3)± (2.67)(1.43)
(34.6− 28.2)± (2.67)(1.43)

The Tukey-Kramer simultaneous 95% confidence intervals are:

0.08 ≤ µ·2 − µ·1 ≤ 7.7
6.5 ≤ µ·3 − µ·1 ≤ 14.1
2.6 ≤ µ·3 − µ·2 ≤ 10.2

All pairwise comparisons of recipe mean quality are significant.

A check is made of the assumptions of normality and homogeneous error
variances associated with the split plot errors. Figure 9.8 gives a histogram
of the split plot residuals from the model. Normality appears to be satisfied
approximately.
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Figure 9.9: Scatterplot of Residuals versus Predicted for Cake Baking Experi-
ment

Figure 9.9 gives a plot of the split plot residuals versus the predicted quality
for the fitted model. There appears to be no patterns and thus the assumption
of homogeneity of error variance appears to be satisfied approximately.
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9.4 SAS Code

9.4.1 Example 9.1

* SAS Code for Example 9.1;

* Input data;

data bake;

input Flour $ Roll $ BakeTime Treatment $ HeightChange;

datalines;

White 1 5 White5 44

White 1 10 White10 46

White 1 15 White15 47

White 2 5 White5 42

White 2 10 White10 46

White 2 15 White15 48

White 3 5 White5 42

White 3 10 White10 43

White 3 15 White15 43

Wheat 1 5 Wheat5 40

Wheat 1 10 Wheat10 40

Wheat 1 15 Wheat15 42

Wheat 2 5 Wheat5 40

Wheat 2 10 Wheat10 41

Wheat 2 15 Wheat15 41

Wheat 3 5 Wheat5 40

Wheat 3 10 Wheat10 41

Wheat 3 15 Wheat15 41

Bread 1 5 Bread5 43

Bread 1 10 Bread10 44

Bread 1 15 Bread15 46

Bread 2 5 Bread5 43

Bread 2 10 Bread10 44

Bread 2 15 Bread15 45

Bread 3 5 Bread5 41

Bread 3 10 Bread10 43

Bread 3 15 Bread15 43

;

run;

* Calculate and print means of height change;

proc means data = Bake;

class Flour BakeTime;

var HeightChange;

output out = Summary mean = MeanHeightChange;
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run;

proc print data = Summary;

run;

* Compute ANOVA table and construct Tukey-Kramer pairwise comparisons;

proc glm data = bake;

title1;

class Flour Roll BakeTime;

model HeightChange = Flour Roll(Flour) BakeTime Flour*Baketime;

random Roll(Flour) / test;

lsmeans Flour / pdiff tdiff adjust = tukey e = Roll(Flour);

lsmeans BakeTime / pdiff tdiff adjust = tukey;

run;

9.4.2 Example 9.2

* SAS Code for Example 9.2;

* Input Cooling;

data bake;

input Liquid $ TimeSlot $ Container $ Treatment $ CoolingTime;

datalines;

Coffee 1 Ceramic CC 78

Coffee 1 Paper CP 212

Coffee 1 Styrofoam CS 281

Coffee 2 Ceramic CC 85

Coffee 2 Paper CP 225

Coffee 2 Styrofoam CS 244

Coffee 3 Ceramic CC 73

Coffee 3 Paper CP 234

Coffee 3 Styrofoam CS 266

Coffee 4 Ceramic CC 84

Coffee 4 Paper CP 217

Coffee 4 Styrofoam CS 263

HotChoc 1 Ceramic HC 96

HotChoc 1 Paper HP 222

HotChoc 1 Styrofoam HS 230

HotChoc 2 Ceramic HC 108

HotChoc 2 Paper HP 230

HotChoc 2 Styrofoam HS 259

HotChoc 3 Ceramic HC 81

HotChoc 3 Paper HP 237

HotChoc 3 Styrofoam HS 254

HotChoc 4 Ceramic HC 92

HotChoc 4 Paper HP 228
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HotChoc 4 Styrofoam HS 257

;

run;

* Calculate and print means of cooling times;

proc means data = Cooling;

class Liquid Container;

var CoolTime;

output out = Summary mean = MeanCoolTime;

run;

proc print data = Summary;

run;

* Use proc glm to compute ANOVA table;

proc glm data = Cooling;

class Liquid TimeSlot Container;

model CoolTime = Liquid TimeSlot(Liquid) Container Liquid*Container;

random TimeSlot(Liquid) / test;

run;

* Use proc glimmix to construct tukey comparisons;

proc glimmix data = Cooling nobound;

class TimeSlot Liquid Container;

model CoolTime = Liquid Container Liquid*Container / ddfm = kr;

random TimeSlot(Liquid);

lsmeans Liquid*Container / slicediff = (Liquid Container) cl adjust = Tukey;

9.4.3 Example 9.3

* SAS Code for Example 9.3;

* Input data;

data Cake;

input Block Recipe $ Temperature Treatment $ Quality;

datalines;

1 R1 175 R1_175 28

1 R1 195 R1_195 31

1 R1 215 R1_215 41

1 R2 175 R2_175 31

1 R2 195 R2_195 29

1 R2 215 R2_215 40

1 R3 175 R3_175 21
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1 R3 195 R3_195 31

1 R3 215 R3_215 33

2 R1 175 R1_175 24

2 R1 195 R1_195 27

2 R1 215 R1_215 30

2 R2 175 R2_175 21

2 R2 195 R2_195 24

2 R2 215 R2_215 37

2 R3 175 R3_175 26

2 R3 195 R3_195 27

2 R3 215 R3_215 35

3 R1 175 R1_175 26

3 R1 195 R1_195 32

3 R1 215 R1_215 37

3 R2 175 R2_175 21

3 R2 195 R2_195 28

3 R2 215 R2_215 27

3 R3 175 R3_175 21

3 R3 195 R3_195 25

3 R3 215 R3_215 31

;

run;

* Calculate and print quality means;

proc means data = Cake;

class Recipe Temperature;

var Quality;

output out = Summary mean = MeanQuality;

run;

proc print data = Summary;

run;

* Calculate ANOVA table and results of Tukey-Kramer pairwise comparisons;

proc glm data = Cake;

class Block Recipe Temperature;

model Quality = Block Recipe Block*Recipe Temperature Recipe*Temperature;

random Block Block*Recipe / test;

lsmeans Recipe / pdiff tdiff adjust = tukey e = Block*Recipe;

lsmeans Temperature / pdiff tdiff adjust = tukey;

run;
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Problems for Chapter 9

9.1∗ A researcher was interested in comparing the growths of three strains of
petunias (A,B,C) grown at different temperatures. The plants were to be
grown in growth chambers where temperature could be controlled. Nine
growth chambers altogether were used, three chambers randomly assigned
to each of 70, 75, and 80 degree temperatures. Within each growth chamber
three saplings, one of each strain, were assigned at random to three pots
and locations within the growth chamber. The saplings were grown in the
chambers for one month. At the end of the month the growth in inches
was recorded. This is an example of a split plot experiment.

a. What is the whole plot factor? What is the whole plot experimental
unit? Give some extraneous variables that contribute to whole plot
experimental error.

b. Are the whole plot experimental units arranged in a completely ran-
domized design or a block design? Explain.

c. What is the split plot factor? What is the split plot experimental
unit? Give some extraneous variables that contribute to split plot
experimental error.

d. Describe the blocking variable(s) used in this study.

e. Give the population effects model for this experiment and describe the
terms in the model including the error terms. Give the assumptions
associated with the errors.

9.2∗ An experiment was conducted to investigate the effects of background mu-
sic and font color in memorizing a list of words. Three kinds of music were
investigated: classical, reggae, and jazz. Three font colors were used in
the list: red, blue, and black. There was a total of nine testing sessions
with three subjects tested at a particular session. The type of music to be
played at a session was selected at random with three sessions used for each
of the types of music. At a particular session three subjects were assigned
to study the same list of 50 words except that subjects had a different font
color. After studying the list for 1 minute the subjects were then asked to
recall and write down the words that he/she could remember. The score on
this memorization test was the fraction of the 50 words that were correctly
remembered.

This is an example of a split plot experiment.

a. What is the whole plot factor? What is the whole plot experimental
unit? Give some extraneous variables that contribute to whole plot
experimental error.

b. Are the whole plot experimental units arranged in a completely ran-
domized design or a block design? Explain.
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c. What is the split plot factor? What is the split plot experimental
unit? Give some extraneous variables that contribute to split plot
experimental error.

d. Describe the blocking variable(s) used in the study.

e. Give the population effects model for this experiment and describe the
terms in the model including the error terms. Give the assumptions
associated with the errors.

9.3∗ Casey Gundersen (Fall 2004) investigated the effects of oven temperature
and type of ice cube on the amount of time for the ice cube to melt. The
experiment was carried out using nine oven sessions. The temperature
used for a particular oven session was randomly selected from one of 250,
300, 350 degrees Fahrenheit, with three sessions per temperature. At each
session three ice cubes about of equal size were put into the oven, one per
Pyrex bowl. One ice cube was made from bottle water, one from tap water,
and one from bottle water with salt. The response variable was the amount
of time in seconds that it took for a cube to melt. This is an example of a
split plot experiment. The data are given in the following table.

Ice Type

Oven Temp Tap Bottle Salt
Run

250 1 753 707 525
2 786 728 648
3 650 658 596

300 1 546 528 567
2 629 598 485
3 665 612 628

350 1 563 602 484
2 642 521 443
3 608 498 438

a. What is the whole unit factor? What is the whole unit? Give some
extraneous variables that contribute to whole unit experimental error.

b. Are the whole units arranged in a completely randomized design or a
block design? Explain.

c. What is the split unit factor? What is the split unit? Give some
extraneous variables that contribute to split unit experimental error.
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d. Give the population effects model for this experiment and describe the
terms in the model including the error terms. Give the assumptions
associated with the model.

e. Use a statistical computing program to obtain an ANOVA table for
the data.

f. Is there evidence of interaction between oven temperature and ice
type? Use a 0.10 level of significance.

g. From part (f) there is no evidence of interaction between oven tem-
perature and ice type. Thus test for main effects of oven temperature
and ice type. Use a significance level of 0.05 for each type. Make
appropriate pairwise comparisons using the Tukey-Kramer confidence
intervals with an overall confidence level of 0.95.

h. Check the assumptions of normality and homogeneity of split unit
error variance with appropriate plots. Comment.

9.4∗ Milliken and Johnson [20], page 297 describe an experiment in which a
field is divided into two blocks, each with four plots. Each of four fertilizers
(F1, F2, F3, F4) is randomly assigned to one of the plots within each block.
Each plot is split into two smaller plots. Each smaller plot within the plot is
randomly assigned to one of two wheat varieties (W1,W2). The response
variable is yield (lbs) of the variety of wheat on the smaller plot. This is an
example of a split plot experiment. The yields are given in the following
table.

Block F1 F2 F3 F4
W1 W2 W1 W2 W1 W2 W1 W2

1 35.4 37.9 36.7 38.2 34.8 36.4 39.5 40.0
2 41.6 40.3 42.7 41.6 43.6 42.8 44.5 47.6

a. What is the whole plot factor? What is the whole plot experimental
unit?

b. Are the whole plot experimental units arranged in a completely ran-
domized design or a block design? Explain.

c. What is the split plot factor? What is the split plot experimental unit?

d. Give the population effects model for this experiment and describe the
terms in the model including the error terms. Also give the assump-
tions associated with the model.

e. Use a statistical computing program to obtain an ANOVA table for
the yields.

f. Is there evidence of interaction between fertilizer and wheat variety?
Use a 0.10 level of significance.
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g. From part(f) there was no statistical evidence of interaction between
fertilizer and wheat variety. Thus test for fertilizer and wheat variety
main effects. Use a significance level of 0.05 for each test. Make appro-
priate pairwise comparisons using Tukey-Kramer confidence intervals
with an overall confidence level of 0.95.

9.5 Megan Ragghiani and Lauren Saunders (Spring 2009) conducted an exper-
iment to compare the amount of salt dissolved in 50 mL of water at three
different pH levels and three different temperatures. The three pH levels
were 4, 7, and 10 (lower means more acidic). The three temperatures were
4◦C, 22◦C, and 37◦C. The procedure was as follows. An amount of water
equal to 150 mL was poured into a container. A pH level was randomly
selected from the three and enough hydrochloric acid (HCl) or base sodium
hydroxide (NaOH) was added to the container of 150 mL of water to ob-
tain the desired pH level. The 150 mL of water in the container was then
divided into three flasks each with 50 mL. The flasks were then cooled or
heated to obtain the desired temperature. Once the water in a flask was
cooled or heated to the desired temperature a fixed amount of salt was
added and the solution thoroughly mixed. A lab procedure was then used
to measure the response amount of salt (grams) dissolved in the flask. This
procedure was followed 9 times, three times for each of the pH levels.

A table of mean amount of salt absorbed (grams) is given below:

Temperature (◦C)
pH 4 22 37
4 16.5 16.6 17.4
7 15.6 16.9 17.4
10 16.6 17.4 17.5

a. The design is a split plot design with whole units arranged in a com-
pletely randomized design.

i. What are the “whole units” and what is the whole unit factor?

ii. What are the “split units” and what is the split unit factor?

b. Below is a partial ANOVA table.

Source of Variation df SS MS F P-value
Temperature 6.58 0.0058
pH 1.29 0.6201
Temperature*pH 1.40 0.5105
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Suppose that MSE associated with the whole units is 1.25 with 6
degrees of freedom and MSE associated with the split units is 0.40
with 12 degrees of freedom.
In the ANOVA table above fill in the missing value for df, MS, and F
corresponding to Temperature, pH, and Temperature*pH.

c. Note that the interaction between Temperature and pH is not signifi-
cant at the 0.10 level. Note also that the marginal means for amount
of salt at the different temperature are significantly different at the
0.05 level. Calculate the Tukey simultaneous confidence intervals for
making pairwise comparisons of the marginal means of amount of salt
dissolved for the temperature factor. Use a 95% experiment-wise confi-
dence level. Interpret the endpoints of the intervals within the context
of this study.

9.6 In the article “Impact of Chicken Manure and Sowing Methods on Alfalfa
(Medicago sativa L.) Growth, Forage Yield and Some Quality Attributes”
researchers describe an experiment to investigate the effects of manure level
and sowing method on forage dry weight using a split plot design. There
were four levels of chicken manure (0, 2.5, 5, and 10 tonne ha−1) and two
levels of sowing method (flat plots and ridged plots) studied in a factorial
design. A level of chicken manure was randomly assigned and applied to
a 4 x 12 meter rectangular plot of land. The rectangular plot was then
subdivided into 2 subplots with the two subplots being randomly assigned
to the two sowing methods of alfalfa seeds. After several weeks of growth
the alfalfa was cut and several responses measured on each subplot. One
response was forage dry weight (tonne ha−1) which was the dry weight of
the alfalfa plants cut from a small section in the center of a subplot. It
was not feasible to measure the dry weight of all plants in the subplot.

a. What are the whole units? What is the whole unit factor?

b. What are the split units? What is the split unit factor?

c. Describe the blocks in this study.

d. Are the whole units arranged in the completely randomized design or
in a randomized complete block design? Explain.

e. How many treatments are in this study? The authors describe 3 repli-
cations per treatment combination. How many total whole plots did
the study use? How many total split plots did the study use?

f. Suppose that the researchers obtained plants from three different small
sections of each subplot exposed to a particular manure level and sow-
ing method and measured the dry weight for each of these 3 samples of
plants. Explain why these 3 observations on dry weight for each sub-
plot would not represent 3 replications of the treatment combination.

9.7 Emily Shrader, Ashley Sawyer, and Lisa Kleinschmidt (Fall 2009) inves-
tigated the effects of liquid type and cup type on the temperature of the
liquid 10 minutes after having been heated to 160◦F. Three different liq-
uid types were used: water, water + lemon, and water + salt. Two cup



270

types were used, paper and styrofoam. The experiment was carried out
over nine liquid heating sessions. At a heating session a randomly selected
liquid type was poured into a pot and heated to 160◦F. After reaching this
temperature the heated liquid was poured into two cups, one paper and
one styrofoam, in equal amounts. The response variable was the tempera-
ture of the liquid in the cup after 10 minutes of cooling. The temperature
data are given in the following table.

Cup Type

Liquid Type Styrofoam Paper
Session

Water 1(7) 139 136
2(4) 144 140
3(1) 148 141

Water+Lemon 1(9) 140 138
2(3) 129 122
3(6) 126 126

Water+Salt 1(5) 130 125
2(8) 130 126
3(2) 131 128

a. What is the whole plot factor? What is the whole plot experimental
unit? Give some extraneous variables that contribute to whole plot
experimental error.

b. Are the whole plot experimental units arranged in a completely ran-
domized design or a block design? Explain.

c. What is the split plot factor? What is the split plot experimental
unit? Give some extraneous variables that contribute to split plot
experimental error.

d. Give the population effects model for this experiment and describe the
terms in the model including the error terms.

e. Use a statistical software to obtain an ANOVA table for the tempera-
tures.

f. Is there evidence of interaction between type of cup and liquid type?
Use a 0.10 level of significance.

g. From part (f) there is no evidence of interaction between type of cup
and liquid type. Thus test for main effects of liquid type and cup
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type. Use a significance level of 0.05 for each test. Make appropri-
ate pairwise comparisons using the Tukey-Kramer multiple confidence
intervals with an overall confidence level of 0.95.

h. Check the assumptions of normality and homogeneity of split plot error
variance with appropriate plots. Comment.

9.8 Elizabeth Napoda and Jennifer Sherman (Spring 2009) investigated the
effects of type of flour and temperature of cookie dough on the diameter
of baked sugar cookies. Cookie dough was made from one of two different
types of flour, wheat and rice. After making a batch of cookie dough with
a randomly selected type of flour the dough was formed into twelve cookie
dough balls. Four of the balls were then put in the freezer, four in the
refrigerator, and four kept at room temperature, in all three cases for one
hour, before baking. The twelve balls were randomly placed on a cookie
sheet and baked for the suggested time on the recipe. The entire experi-
ment was conducted over six mixing/baking sessions, three for each type of
flour, with the type of flour used randomly selected. The response variable
was the mean diameter (cm) of the four baked sugar cookies prepared at
one session with one of the temperature environments. The experimental
design is the split plot design. The mean diameters (cm) of cookies are
given in the following table.

Temperature

Type of Flour Room Refrigerator Frozen
Session

Wheat 1 4.39 4.19 4.46
2 4.40 4.54 4.54
3 4.59 4.31 4.28

Rice 1 7.60 7.61 7.61
2 7.19 7.33 7.53
3 7.59 7.36 7.31

a. What is the whole unit factor? What are the whole units? Give some
extraneous variables that contribute to whole unit error?

b. Are the whole units arranged in a completely randomized design or a
block design? Explain.

c. What is the split unit factor? What are the split units? Give some
extraneous variables that contribute to split unit error.

d. Why use the mean diameter of the four dough balls at a particular
temperature for the response rather than the diameters of individual
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dough balls?

e. Give the population effects model for this experiment and describe the
terms in the model including the error terms. Give the assumptions
associated with the model.

f. Use a statistical software to obtain an ANOVA table for the data.

g. Is there evidence of interaction between type of flour and temperature?
Use a 0.10 level of significance.

h. From part (f) there is no evidence of interaction between type of flour
and temperature. Thus test for flour type and temperature main ef-
fects. Use a significance level of 0.05 for each test. Make appropriate
pairwise comparisons using the Tukey-Kramer multiple confidence in-
tervals with an overall confidence level of 0.95.

i. Check the assumptions of normality and homogeneity of split unit
error variance with appropriate plots. Comment.

j. Explain how this experiment could have been conducted using a com-
pletely randomized design.

9.9 Stephen Clark and Jodie Tsou (Spring 2009) used a split plot design to
investigate the effects of different cooling methods and types of container
on the temperature of a beverage after 15 minutes of cooling. The cooling
methods were ice, ice + water, and ice + water + salt which were put
into a styrofoam container. The types of containers were glass bottle,
aluminum can, and plastic bottle. The entire experiment was conducted
over three days with one complete replication of all treatments in a day.
On each of three days three styrofoam ice chests of the same type and
size were stocked, one with ice, one with ice + water, and another with
ice+water+salt. Within each ice chest three container types were randomly
placed in 1/3 compartments of the chest. Each container had the same
amount of liquid (beer) which had been stored at room temperature before
the cooling. After being placed in the chests the liquid was allowed to
cool for 15 minutes. After the 15 minute period of cooling the liquids
in the three containers were measured for temperature. The temperature
measurements (◦F) are given in the table below.

Cooling Method

Day Ice Ice+Water Ice+Water+Salt
Container A P G A P G A P G

1 50.1 61 59.8 46.2 48.1 49.8 48.8 49.1 46.6
2 49.2 57 62.5 47.1 43.5 45.3 49.0 45.8 51.8
3 51.2 60.2 56.1 45.2 45.9 46.9 47.9 46.3 45.9

a. What is the whole unit factor? What are the whole units and how
many are there? Give some extraneous variables that contribute to
whole unit error.



273

b. Are the whole units arranged in a completely randomized design or a
block design? Explain.

c. What is the split plot factor? What are split units and how many are
there? Give some extraneous variables that contribute to split unit
error.

d. Describe all types of blocking in this experiment.

e. Give the population effects model for this experiment and describe the
terms in the model including the error terms. What are the assump-
tions associated with the model?

f. Use statistical software to obtain an ANOVA table for the tempera-
tures.

g. Is there evidence of interaction between type of coolant and container
type? Use a 0.10 level of significance.

h. From part (g) there is evidence of interaction between type of coolant
and container type. Using statistical software make three sets of pair-
wise comparisons of mean temperature across the different container
types, one for each level of coolant. Use the Tukey-Kramer multiple
confidence intervals with an overall confidence level of 0.95 for each
level of coolant.

i. Check the assumptions of normality and homogeneity of split plot error
variance with appropriate plots. Comment.

j. Explain how this experiment could have been conducted using a com-
pletely randomized design.
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Chapter 10

Analysis of Designs with
Subsampling and Repeated
Measures

Designs with subsampling and measurement units were discussed briefly
in Chapter 1. The measurement unit is the unit upon which the measurement of
the response is made. In some cases the measurement unit and the experimental
unit are the same. In other cases measurement units are subsamples of the
experimental units. For example in animal health studies pens are usually
experimental units since treatments are given in the feed or water of a pen
and treatments are assigned to pens. There are some responses for which the
measurement is made directly on the pen or experimental unit such as feed
consumption, and in this case the measurement unit and experimental unit
are the same. Other measures may be made on individual animals within the
pen rather than at the pen level or experimental unit level, such as degree of
sickness or weight gain of the animal. In this case experimental units are pens
but measurement units are individual pigs.

Section 10.1 will investigate methods for analyzing the response when there
is subsampling of the experimental unit in a one factor completely randomized
design.

Two factor repeated measures designs are similar to two factor split
plot designs from Chapter 9 in that there are two two kinds of experimental
units. The levels of one factor, the whole unit factor, are assigned at random
to whole units, such as persons, arranged in either a completely randomized
or block design. Each whole unit is then measured repeatedly on the response
variable over time or space. The second type of experimental unit is a time
slot or unit of space corresponding to the repeated measures. The split unit
factor is a time or space scale associated with the time slots, an observational
factor rather than an experimental factor. Interest is in trends of the response
variable over time or space for different levels of the whole unit factor and/or
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comparisons of trends across the levels of the whole unit factor. The split plot
analysis may be used in some cases to analyze data from repeated measures
designs. In other cases an alternative analysis must be used. More detail in
provided in Section 10.2.

10.1 One Factor Studies with Subsampling

10.1.1 Example: Completely Randomized Design

Consider an experiment to compare four different mulching methods on moisture
of the soil. Twelve available plots are assigned at random to the four different
mulches, with 3 plots per mulch. The experimental units are the twelve plots. It
is more convenient to take smaller soil samples (or sub-samples) from each plot
and measure moisture than measuring moisture for the entire plot. Suppose that
three soil samples are selected from each of the plots and the moisture content
is measured for each sample. This is an example of a one factor completely
randomized design with sub-sampling. The single factor is the type of mulch
with four levels. The types of mulch are assigned completely at random to the
experimental units, here plots. However the entire plots are not measured for
moisture. Three samples of soil were measured for moisture rather moisture
being measured on the the entire plot. The individual samples of soil are the
measurement units, which are sub-samples of the experimental unit plot. The
fact that the values of the response variable are measured from parts of the
experimental unit has to be taken into account in the analysis.

10.1.2 Example: Completely Randomized Design

In a student project three different brands of cupcake mixes are compared for
cupcake height. The experiment is conducted as follows. A brand of cupcake
mix is randomly selected and dough is made from a box of mix of that brand.
The box is capable of making 12 cupcakes, but only 3 cupcakes are baked at
a time. The rest of the dough is frozen for later use. The three cupcakes are
baked at a pre-selected temperature and amount of time. The heights of the
centers of each of the three cupcakes is measured. This process is repeated for a
total of four boxes per brand and 3 brands for a total of 36 cupcakes. Only one
box (3 cupcakes from that box)are baked at an oven run. This is an example of
a completely randomized design with sub-sampling. The experimental unit is
batch of dough made from a box of cup cake baked at a particular oven run. The
boxes are assigned completely at random to the 12 oven runs. The 3 cupcakes,
with their heights, are a sub-sample or a part of the batch of cupcake mix that
could have been baked with the particular box.

10.1.3 Example: Randomized Complete Block Design

Oehlert (2000) provides an example of sub-sampling of experimental units in a
one factor randomized complete block design. The blocks are 5 Cycad plants.
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Three branches on each plant are selected and randomly assigned to three treat-
ments for mealybug. The treatments are 1) water (control), 2) horticultural oil,
and 3) fungal spores in water. There are 15 experimental units with 3 per
branch. This is an example of Type A blocking (natural grouping) from Chap-
ter 7 on blocking. The response variable is change in number of mealybugs
(before treatment - 3 days after treatment) obtained from each of two 3 cm
by 3 cm patches on a branch. The two patches on each branch constitute a
subsample of the experimental unit, branch, and the two patches are measure-
ment units. Presumably the multiple measurements on a branch are taken for
increasing precision of the comparison of the treatments.

10.1.4 Model for One Factor CRD with Subsampling

The population effects model for the one factor completely randomized design
(CRD) with sub-sampling of the experimental unit is:

yijk = µ+ αi + ϵij + ηijk (10.1)

where i = 1, ..., t, with t being the number of levels/treatments of the single
factor factor A, j = 1, ..., r, with r being the number of experimental units at
each level of factor A, and k = 1, ..., n, with n being the number of measurement
units on the jth experimental unit for the ith treatment.

• yijk is the value of the response variable for the kth measurement unit of
the jth experimental unit receiving the ith treatment

• µ is the grand mean of the response variable averaged over a population of
measurement units, all levels of factor A and a population of experimental
units.

• αi is the true effect of the i
th level of the factor A on the response variable

• ϵij is the error term associated with the jth experimental unit for the
ith level of the factor A, representing the effect of extraneous variables
associated with the experimental unit.

• ηijk is the sampling error for the kth measurement unit with the jth ex-
perimental unit associated with the ith level of A, representing the effect
of extraneous variables associated with the measurement unit.

The model assumes that the experimental errors are independent normal
random variables each with mean 0 and common variance σ2

ϵ and that the
measurement unit errors are independent normal random variables each with
mean 0 and common variance σ2

η. It is also assumed that experimental errors
are independent of measurement unit errors.

The ANOVA table is derived in a manner similar to the derivation for other
designs. The observed responses can be partitioned into parts representing the
grand mean, the effect of the particular level of factor A, the error associated
with the experimental unit, and the error associated with the measurement unit.
The sum of squares of the deviations of the observed responses from the grand
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Table 10.1: ANOVA Table for One Factor CRD with Subsampling

Source of Variation df SS MS F EMS
A t - 1 SSA MSA MSA/MSEϵ σ2

η + nσ2
ϵ + rnQt

Errorϵ t(r − 1) SSEϵ MSEϵ σ2
η + nσ2

ϵ

Errorη tr(n - 1) SSEη MSEη σ2
η

Total(C) trn− 1 SSTotalC

mean can be partitioned into sums describing variability in the effects of A,
experimental unit effects, and measurement unit effects.

SSTOTC = SSA+ SSEϵ + SSEη

The ANOVA table is given in Table 10.1. Mean squares, MS, are as usual,
sums of squares, SS, divided by respective degrees of freedom. Note that the
F ratio for testing for A treatment effects uses MSEϵ, that is the variation
associated with the experimental units rather than MSEη, variation associated
with the measurement units.

The mathematical derivations of the sums of squares are given below (see
[14], p. 162):

SSA = rn
t∑

i=1

(yi·· − y···)
2 (10.2)

SSEϵ = n
t∑

i=1

r∑
j=1

(yij· − yi··)
2

SSEη =

t∑
i=1

r∑
j=1

n∑
k=1

(yijk − yij·)
2

SSTotalC =

t∑
i=1

r∑
j=1

n∑
k=1

(yijk − y···)
2

In the above for SSEϵ, yij· is the mean of response for the jth experimental

unit of the ith treatment, averaged over the measurement units for that experi-
mental unit, while the value yi·· is the mean of the response for the ith treatment.
Thus SSEϵ measures variation in the means of the experimental units from their
respective treatment means, pooled across the different treatments. SSEη mea-
sures variation in the individual response values for the measurement units from
the respective experimental unit mean pooled across all experimental units and
treatments.

The Tukey-Kramer confidence intervals with overall confidence level 1 − α
for making pairwise comparisons of the treatment means of the response is

(yi·· − yi′··)±
qα;ν,t√

2

√
MSEϵ

√
1

rn
+

1

rn
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where
√
MSEϵ

√
1
rn + 1

rn is the standard error of the difference in two treatment

means, yi··−yi′··, and qα;ν,t is the upper α probability point from the Studentized
range distribution. Here ν refers to the degrees of freedom associated with
MSEϵ, experimental unit mean squared error and t refers to the number of
levels (treatments) of factor A.

10.1.5 Example: Analysis of a CRD with subsampling

Example 10.1 This example is based on the cupcake baking experiment by
Hillary Hayes and Tristin Millette (Fall 2012). Three flavors of cupcakes (Choco-
late, Strawberry and Funfetti) were compared in terms of height of cupcake mea-
sured at the center of the cupcake. The experiment was conducted as follows. A
box of cupcake mix of a randomly selected flavor was used to make a batch of
dough. Enough dough was selected to make four cupcakes from the batch. The
oven was preset to a predetermined heat level. The four cupcakes were randomly
positioned on the middle rack of the oven. The cupcakes were cooked for 23
minutes. The cupcakes were removed from the oven and center of the cupcake
was measured to the nearest millimeter. This process was repeated for a total of
12 oven runs, 4 runs for each of the flavors.

The design is a completely randomized design. The experimental units are
batches of cupcakes of different flavors, the order of baking randomly assigned.
Measurement units for each batch are the 4 cupcakes per batch measured for
height. The heights are given in the following table.

The population effects model for the cupcake heights is:

yijk = µ+ αi + ϵij + ηijk (10.3)

where i = 1, ..., t = 3, with i being an index on the flavor, j = 1, ..., r = 4, with
j being an index on the replicate batch at each flavor, and k = 1, ..., n = 4, with
k being an index on the measurement unit (cupcake) for the jth replicate batch
for the ith flavor.

• yijk is the value of cupcake height for the kth cupcake with the jth replicate
batch using the ith flavor.

• µ is the grand mean of cupcake heights averaged over a population of
cupcakes, all flavor levels and a population of batches.

• αi is the true effect of the ith flavor on cupcake height

• ϵij is the error term associated with the jth replicate batch of the ith flavor,
representing the effect of extraneous variables associated with the batch,
box of cupcake mix, run of the oven.

• ηijk is the error for the kth cupcake with the jth replicate batch using
the ith flavor, representing the effect of extraneous variables associated
with the cupcake, such as variation within the cupcake mix, variation of
temperature within the oven.
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Table 10.2: Heights (mm) of Cupcakes

Batch (j)

Flavor(i) 1 2 3 4

Chocolate (1) Cupcake(k)
1 46 51 42 55
2 50 46 56 50
3 47 47 49 45
4 45 45 46 45

y1j· 47.0 47.3 48.3 48.8

Strawberry (2) Cupcake(k)
1 36 45 42 40
2 31 44 37 36
3 35 45 40 45
4 36 45 45 47

y2j· 34.5 44.8 41.0 42.0

Funfetti (3) Cupcake(k)
1 33 44 36 37
2 35 46 35 41
3 35 41 32 40
4 33 40 33 40

y3j· 34.0 42.8 34.0 39.5
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Figure 10.1: Plot of Cupcake Heights versus Batch and Flavor
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The model assumes that the experimental errors are independent normal
random variables each with mean 0 and common variance σ2

ϵ and that the
cupcake errors are independent normal random variables each with mean 0 and
common variance σ2

η. It is also assumed that the batch/oven run errors are
independent of cupcake errors.

A dot plot is given in Figure 10.1. It appears that heights for chocolate
flavored cupcakes are greater than heights for the other two flavors.

The ANOVA table is given in Table 10.3. The results of the F test (F =
8.72,P-value = 0.0078) indicate statistically significant differences in mean
heights of cupcakes among the three flavors at the 0.05 level of significance.

Table 10.4 gives the Tukey-Kramer pairwise comparisons of the flavors on
cupcake height. The differences in mean heights between the chocolate flavor
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Table 10.3: ANOVA Table for Cupcake Example

Source of Variation df SS MS F P-value
Flavor 2 888.7 444.3 8.72 0.0078
Error (Batch) 9 458.6 4.8
Error (Cupcake) 36 379.8 10.5
Total(C) 47 1727.0

Table 10.4: Tukey Pairwise Comparisons of Flavors

Flavor Flavor Mean Difference Std.Error DF t Value P-value LCL UCL

Chocolate Funfetti 10.25 2.5 9 4.06 0.0072 3.20 17.30
Chocolate Strawberry 7.25 2.5 9 2.87 0.0441 0.20 14.30
Funfetti Strawberry -3.00 2.5 9 -1.19 0.4884 -10.05 4.05

and each of the Funfetti and Strawberry flavors are statistically significant.
There is not enough evidence of a difference in mean height between the Funfetti
and Strawberry flavors.

10.1.6 Note on Subsampling

1. The design for this example is balanced. That is there are the same number
of experimental units per treatment and the same number of measurement
units per experimental unit. For balanced designs the same results regard-
ing the comparison of the treatments can be obtained by using the methods
of Chapter 4 with the mean of the response averaged over all measurement
units.

2. If measurement units are treated as experimental units and the data an-
alyzed using the method of Chapter 4 then mean squared error will gen-
erally be underestimated and results of the F test and the multiple com-
parison procedures will be invalid. In the cupcake example this means
that an incorrect analysis would be conducted if the individual cupcakes
were treated as experimental units (16 experimental units per flavor) and
cupcake heights analyzed using the method of Chapter 4.

10.2 Repeated Measures Designs

In a two factor repeated measures design subjects are assigned at random
to treatments (levels of one factor, say A), and then the response variable is
observed for each of the subjects on several time slots or occasions after treat-
ment. Some measure of time associated with the time slots or occasions form the
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second factor, B. The purpose of the study is to study the nature of the trend
in the values of the response variable across time for the individual treatments
and to compare trends for the different treatments.

The design is similar to the split plot design of Chapter 9 with whole units
being the subjects or objects receiving the treatments and with split units being
time slots or occasions associated the subjects when the repeated measures on
the response are taken. In the standard split plot design of Chapter 9 the split
units are randomly assigned to levels of the split unit factor. In the repeated
measures design the levels of the split unit factor are measures of time, such as
days, hours, weeks, etc., which cannot be assigned at random to time slots or
occasions. The measure of time are inherent characteristics of the time slots.
This fact has ramifications on when a split plot design analysis can or cannot
be used to analyze repeated measures data.

It should be noted that some textbooks (see [15], [25], [29]) use the term
repeated measures not only for studies where subjects are repeatedly measured
on the response over time after receiving a treatment but also designs where
subjects or objects are reused over different time slots, receiving different treat-
ments at different time slots over time. Chapter 10 of this text concentrates on
the former type of study. The latter type of study was considered in Chapter 9.

10.2.1 Example of Repeated Measures Study - Whole Units
in CRD

This example illustrates the use of a repeated measures design where the whole
units are assigned completely at random to the levels of the whole unit factor.
In the study described in the article “Efficacy and safety of eperisone in patients
with low back pain: a double blind randomized study” (European Review for
Medical and Pharmacological Sciences, 2008; 12: 229-235) researchers assigned
160 patients with low back pain to one of two medications, eperisone 100 mg
three times daily or thiocolchicoside 8 mg twice daily for 12 consecutive days,
with 80 patients per medication group. Analgesic activity of the two medications
was evaluated at Day 0 before start of medication and on Days 3, 7, and 12 days
while on treatment using a 100-mm visual analogue scale (VAS). Whole units
are the 160 patients randomly assigned to the two medication groups. Split units
are the time slots/days at which observations on the VAS scale were determined.
The split unit factor is a time variable with levels of 0, 3, 7, and 12 days after
medication started.

10.2.2 Example of Repeated Measures Study - Whole Units
Blocked

This example illustrates a repeated measures study where the whole units are
blocked first and then treatments are assigned at random within blocks. In the
article “Acute Effects of a Caffeine-Taurine Energy Drink on Repeated Sprint
Performance of American College Football Players (International Journal of
Sport Nutrition and Exercise Metabolism, 2012, 22, 109-116) each of twenty
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football players ran two sets of 6 35(m) sprints on each of two separate days,
with a 10 second recovery between sprints. One one day the player drank
an energy drink (AdvoCare Spark) before the sprints and on the other day a
placebo drink. The order of the drinks on the two days was random. One of
the response variables was time (seconds)to complete the sprint. The design
is similar to a split plot design with whole units blocked. The whole units are
the larger time slots, days, associated with the two sets of 6sprints. These are
blocked by sprinter with each sprinter providing two days of sprinting. The split
units for each whole unit are the 6 smaller time slots that correspond to the 6
individual sprints which are labelled by the order in which they occur (1, 2, 3,
4, 5, 6). The whole unit factor is type of drink (energy or placebo) assigned at
random to the two whole units or days for each sprinter. The split unit factor
is the time order of the individual sprints. This is a repeated measures design
since measurements (sprint times) are collected repeatedly over time for each
sprinter after being treated with a type of drink.

10.2.3 Example of Repeated Measures Study over Space

Rather than repeated measures being taken over time in some studies the re-
peated measures are over space. Kutner, Nachtsheim, Neter, and Li ([15], page
1149), describe a study to compare blood flow in rats at five different parts of
the body (Bone, Brain, Skin, Muscle, Heart) without and with exercise. All
eight rats were injected intravenously with radioactive microspheres to deter-
mine blood flow. Four rats, randomly selected from the eight were exercised
on a treadmill (exercise) for 15 minutes. The other four rats were put on the
treadmill but it was not turned on. After the exercise the rats were sacrificed,
tissue from the five parts of the body harvested, and blood flow determined
based on the microspheres. The whole units are the rats who were assigned at
random to one of the levels (exercise, not exercise) of the whole unit factor. The
split units are spatial units, that is the tissues for each of the rats. The split
unit factor is the type of tissue. The levels of tissue type are not assigned at
random to the harvested tissues. There are 5 repeated measures on each rat
corresponding to the five harvested tissues.

10.2.4 Example: Split Plot Design, Not Repeated Mea-
sures

Recall the split plot design for the class project of John Szarka and Zamda
Lumbi (Fall 2004) used in Chapter 9. They were interested in investigating the
effects of type of flour (white, wheat, bread) and length of time in oven (5, 10,
15 minutes) on the change in height of dough after baking. Three rolls of dough
were made from each type of flour for a total of nine rolls. Each roll was made
using the same ingredients except for the type of flour. Each roll was divided
into 3 equal parts and the 3 parts put into an oven. One part was baked at 5
minutes, another part at 10 minutes, and another for 15 minutes. Thus one run
of the oven involved one roll (3 parts). The type of flour used for a particular
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roll and run of the oven was selected at random. The 3 parts of the roll were
assigned at random to locations in the oven and time of baking. At the end
of the 5, 10, and 15 minute periods, the appropriate parts were taken out of
the oven and measured for height change. The split unit factor was elapsed
time in the oven but the elapsed times corresponded to different split units,
here parts, not the same experimental unit. Thus the original experiment was
not a repeated measures study. A modification of this experiment for repeated
measures would be where each part is left in the oven the entire 15 minutes,
with repeated measures of change in height on each part taken at 5, 10, and 15
minutes after the start of baking.

10.2.5 Equal Correlation Between Response Among Pairs
of Repeated Measures

The assumptions for the split plot design models of Chapter 9 are that 1) re-
sponses have equal variances, 2) responses are independent for two split units
from different whole units, and 3) responses are correlated for two responses
from the same whole unit, with that correlation being the same for different
pairs of split units. One justification for the equal correlation assumption is the
fact that the levels of the split unit factor are assigned at random to the split
units. The assumption of equal variance can be checked with plots.

In the repeated measures design in this chapter the levels of the split unit
factor (time marker) are not assigned at random to the split units or time slots.
Correlation may exist on the response variable between pairs of time slots and
the correlation may differ depending on the pair of time slots. In addition
variances of the response at the time slots may depend on time. The following
repeated measures example illustrates.

Example 10.2 In the article “Problems in the Analysis of Growth and Wear
Curves” (Biometrics 6, 262-289) the author gives growth rate data for three
groups of rats: control, Thyroxin, and Thioruacil in the drinking water.

The weights of the rats at Weeks 0, 1, 2, 3, 4 after treatment are given in
Table 10.5

Line plots are given in Figure 10.2, Figure 10.3, and Figure 10.4. Lines
connect the weights over time for individual rats. It is evident that rats weights
increase over time with perhaps greater variability in the latter weeks.

An interaction plot is given in Figure 10.5. There is evidence of interaction
between Treatment and Week, with control and thyroxin rats having similar
growth rates, but thiourac rats having a lower growth rate.

Treatment, marginal, and grand mean for weights are provided in Table 10.6.

Standard deviations for the weights at each time period for each treatment
are given in Table 10.7.

Clearly variation in weights is increasing over time regardless of the group.
Variation across groups is fairly similar at each time point.
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Table 10.5: Rat weights for Three Groups

Week

Group 0 1 2 3 4

Rat

Control 1 57 86 114 139 172
2 60 93 123 146 177
3 52 77 111 144 185
4 49 67 100 129 164
5 56 81 104 121 151
6 46 70 102 131 153
7 51 71 94 110 141
8 63 91 112 130 154
9 49 67 90 112 140
10 57 82 110 139 169

Thyroxin 1 59 85 121 146 181
2 54 71 90 110 138
3 56 75 108 151 189
4 59 85 116 148 177
5 57 72 97 120 144
6 52 73 97 116 140
7 52 70 105 138 171

Thiouracil 1 61 86 109 120 129
2 59 80 101 111 122
3 53 79 100 106 133
4 59 88 100 111 122
5 51 75 101 123 140
6 51 75 92 100 119
7 56 78 95 103 108
8 58 69 93 116 140
9 46 61 78 90 107
10 53 72 89 104 122
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Figure 10.2: Plot of Rat Weight versus Week: Control
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Figure 10.3: Plot of Rat Weight versus Week: Thyroxin
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Figure 10.4: Plot of Rat Weight versus Week: Thyroxin
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Figure 10.5: InteractionPlot
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Table 10.6: Weight Means: Rat Example

Week
0 1 2 3 4 yi..

Group
Control 54.0 78.5 106.0 130.1 160.6 105.8
Thiourac 54.7 76.3 95.8 108.4 124.2 91.9
Thyroxin 55.6 75.9 104.9 132.7 162.9 106.4

y.j. 54.7 77.0 102.9 125.4 152.0

y... = 49.8

Table 10.7: Rat Weight Standard Deviations

Week
0 1 2 3 4

Group
Control 5.4 9.6 9.9 12.6 15.2
Thiourac 4.7 7.9 8.5 9.9 11.5
Thyroxin 3.0 6.4 11.1 17.0 21.5

Correlation coefficient for weights at two different time periods are provided
in Table 10.8 for each group. Thus, for example, the correlation between the
weights at Week 1 and 3 for the control rats is 0.59.

An inspection of Table 10.8 indicates that the correlations are decreasing the
further apart in time. Figure 10.6 is a plot of the correlations versus lag number.
Lag refers to the difference in number of weeks on which the two correlations
are calculated. For example the correlation coefficient between the weights at
Week 1 and Week 3 for the control rats has lag 2. The plot vividly indicates
that correlations generally decrease as lag increases.

If the split plot assumptions of equal variance and equal correlation holds,
called compound symmetry, then the analysis of data from a repeated mea-
sures design can be validly carried out using the split plot analysis method from
Chapter 9. Example 10.3 will illustrate. The conditions of compound symmetry
obviously do not hold for the rat weight data and therefore a split plot analysis
is not valid.

A condition, called the Huynh-Feldt Condition, less stringent than com-
pound symmetry for the validity of the split plot analysis for repeated measures,
is that differences in the response between pairs of repeated measures have the
same standard deviation. The condition of compound symmetry satisfies the
Huynh-Feldt condition. An informal approach to checking for validity of the
split plot approach is to calculate differences in repeated measures for each pair
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Table 10.8: Pearson Correlations: Rat Weight Example

Week
Group
Control Week 0 1 2 3 4

0 1.00 0.95 0.73 0.41 0.32
1 1.00 0.88 0.59 0.47
2 1.00 0.89 0.80
3 1.00 0.94
4 1.00

Thiourac Week 0 1 2 3 4
0 1.00 0.75 0.75 0.63 0.29
1 1.00 0.87 0.53 0.19
2 1.00 0.81 0.53
3 1.00 0.81
4 1.00

Thiourac Week 0 1 2 3 4
0 1.00 0.83 0.68 0.54 0.48
1 1.00 0.86 0.64 0.58
2 1.00 0.90 0.86
3 1.00 0.99
4 1.00
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Figure 10.6: Plot of Rat Weight Correlations versus Lag
14:19 Friday, January 2, 2015 1
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within each level of the whole unit factor and compare standard deviations. If
the standard deviations are similar then the split plot approach is valid. Statisti-
cal programs also have results of statistical tests for the Huynh-Feldt Condition.
The test is beyond the scope of this text.

10.2.6 An Example of a Split Plot Analysis of a Repeated
Measures Study

Example 10.3 The data in this example is fictitious but is loosely based on
the study “Sugars and satiety: does the type of sweetener make a difference?”
(American Journal of Clinical Nutrition [2007]: Vol. 86, pages 116-23). Three
drinks are used here whereas there were five drinks in the study. Times of obser-
vations are altered. The hunger levels (VAS 100 mm scale) were simulated based
on relationships observed in the article. Suppose that 30 subjects are assigned
at random to drink one of three drinks: milk, diet cola, or no drink at 9:30 a.m.
in the morning, approximately 1 hour after consuming breakfast. The subjects
then complete a hunger level VAS scale four times, starting at 10:30 and ending
at noon, before lunch.

The hunger levels are given in Table 10.9

This is an example of a split plot design where whole units (subjects) are
assigned completely at random to the levels of the whole unit factor, beverage
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Table 10.9: Hunger Levels for Beverage Experiment

Time

Beverage 1 2 3 4

Subject
Milk 1 28 39 49 56

2 26 37 49 51
3 27 39 51 54
4 24 40 51 55
5 27 40 51 53
6 27 39 48 55
7 28 39 50 57
8 26 40 53 56
9 26 38 46 54
10 26 38 50 56

Coke 11 26 42 54 63
12 26 41 54 60
13 26 43 55 64
14 27 43 55 62
15 29 44 56 64
16 30 43 55 65
17 28 42 54 62
18 27 40 55 62
19 27 41 55 62
20 28 42 56 63

Control 21 50 55 63 70
22 50 54 63 67
23 50 56 64 71
24 51 56 64 69
25 53 57 65 71
26 54 56 64 72
27 52 55 63 69
28 51 53 64 69
29 51 54 64 69
30 52 55 65 70
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type.
The split unit/plot factor is is a time scale, here denoted by 1, 2, 3, and 4,

for the occasions when the hunger levels were measured. The time variable is
an observational factor whose levels are not assigned to occasions.

The model for this data is the same model from Chapter 9:

yijk = µ+ αi + ϵwk(i) + βj + αβij + ϵsijk (10.4)

with i = 1(milk), i = 2(diet cola), i = a = 3(control) indexing type of beverage,
j = 1(10:30), j = 2(11:00), j = 3(11:30), j = b = 4(12:00) indexing time, and
k = 1, 2, 3..., 10(n) indexing the subject associated with a particular beverage,
and

• yijk is the observation on hunger (VAS scale, 100mm) at the ith level of
beverage type, kth subject nested within the ith level of beverage type, and
jth level of time of measurement.

• µ is the grand mean of hunger averaged over a population of subjects, all
levels of beverage type, and all levels of times of observation.

• αi is the true effect of the ith level of the beverage type on hunger.

• ϵwk(i) is the error term for the the kth subject nested within the ith level of
the beverage type, representing the effect of extraneous variables associated
with the subject, such as varying degrees of initial hunger, metabolism, etc.

• βj is the true effect of the jth level of time on hunger

• αβij is the true interaction effect on hunger of the ith level of beverage
type and the jth level of time.

• ϵsijk is the error term for the split unit, here time slot, associated with the

ith level of beverage type, kth subject nested under the ith level of bever-
age type, and the jth level of time, representing the effect of extraneous
variables for a particular time slot, such as distractions, etc.

The model assumes that the “subject” errors, ϵwk(i), are independent normal

random variables each with mean 0 and common variance σ2
w and that the

“time slot” errors, ϵsijk, are independent normal random variables each with

mean 0 and common variance σ2
s . It is also assumed that a “subject” error is

independent of a “time slot” error.
While the errors are all independent of one another the model hypothesizes

that the observations on hunger for the time slots of a particular subject are
equally correlated across all pairs of observations. This condition will be checked
with correlation coefficients.

Line plot of hunger level across time for the different groups are given in
Figure 10.7, Figure 10.8, and Figure 10.9. As expected hunger levels increase
over time. There is no evidence that variation in hunger level changes over time.

Treatment, marginal, and grand mean for hunger are provided in Table 10.10.
Standard deviations for the hunger levels at each time period for each bev-

erage are given in Table 10.11. There is no evidence that variation depends on
time or beverage group.
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Figure 10.7: Hunger Level versus Time: Milk Group
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Figure 10.8: Hunger Level versus Time: Cola Group
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Figure 10.9: Hunger Level versus Time: Control Group
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Table 10.10: Hunger Means: Satiety Example

Time
1 2 3 4 yi..

Beverage
Milk 26.5 38.9 49.8 54.6 42.5
Coke 27.4 42.1 54.9 62.7 46.8

Control 51.4 55.1 63.9 69.7 60.0

y.j. 41.7 43.1 44.0 62.3

y... = 49.8

Table 10.11: Hunger Standard Deviations: Satiety Example

Time
1 2 3 4

Beverage
Milk 1.2 1.0 1.9 1.7
Coke 1.3 1.2 0.7 1.4

Control 1.3 1.2 0.7 1.4
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Table 10.12: Pearson Correlations: Satiety Example

Correlation

Beverage
Milk Time1 Time2 Time3 Time4

Time1 1.00 -0.05 0.15 0.28
Time2 1.00 0.62 0.37
Time3 1.00 0.11
Time4 1.00

Coke Time1 Time2 Time3 Time4
Time1 1.00 0.45 0.49 0.59
Time2 1.00 0.39 0.67
Time3 1.00 0.50
Time4 1.00

Control Time1 Time2 Time3 Time4
Time1 1.00 0.45 0.49 0.59
Time2 1.00 0.39 0.67
Time3 1.00 0.50
Time4 1.00

Pearson correlation coefficients are provided in Table 10.12 and a plot of
correlations versus lag number is given in Figure 10.10. There is no evidence of
correlation depending on lag.

An interaction plot is given in Figure 10.11. There is evidence of interaction
between beverage and time.

The ANOVA table for the Satiety/Beverage experiment is given in Ta-
ble 10.13. Note that there is evidence of interaction between type of beverage
and time (F = 137.7,P-value < 0.0001) at the 0.10 level. Thus the rates of
increase in hunger across time are not the same for the three beverage types.

Tukey-Kramer pairwise comparisons of the beverages at each of the times is
given in Table 10.14.

Table 10.13: ANOVA Table for Satiety Experiment

Source of Variation df SS MS F P-value
Beverage 2 6708.7 3354.3 940.0 < 0.0001
Error (Subject(Beverage)) 27 96.4 3.6
Time 3 13013.0 4337.8 3919.3 < 0.0001
Beverage*Time 6 914.5 152.4 137.7 < 0.0001
Error (Time slot) 81 89.7 1.1
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Figure 10.10: Hunger Correlation Plot
19:51 Wednesday, December 31, 2014 1
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Table 10.14: Tukey-Kramer Pairwise Comparisons of Drinks at each Time

Time Drink Drink Mean Difference Std.Error df t Value P-value LCL UCL

1 Coke Milk 0.9 0.59 78.1 1.53 0.2808 -0.50 2.31
1 Coke Control -24.0 0.59 78.1 -40.9 <.0001 -25.4 -22.6
1 Milk Control -24.9 0.59 78.1 -42.4 <.0001 -26.3 -23.5

2 Coke Milk 3.2 0.59 78.1 5.45 <.0001 1.8 4.6
2 Coke Control -13.0 0.59 78.1 -22.2 <.0001 -14.4 -11.6
2 Milk Control -16.2 0.59 78.1 -27.6 <.0001 -17.6 -14.8

3 Coke Milk 5.1 0.59 78.1 8.69 <.0001 3.70 6.5
3 Coke Control -9.0 0.59 78.1 -15.53 <.0001 -10.4 -7.6
3 Milk Control -14.1 0.59 78.1 -24.02 <.0001 -15.5 -12.7

4 Coke Milk 8.1 0.59 78.1 13.80 <.0001 6.7 9.5
4 Coke Control -7.0 0.59 78.1 -11.93 <.0001 -8.4 -5.6
4 Milk Control -15.1 0.59 78.1 -25.73 <.0001 -16.5 -13.7



298

Figure 10.11: InteractionPlot
11

MeanSatiety

20

30

40

50

60

70

Time

1 2 3 4

DrinkGroup Coke Milk NoDr

10.2.7 General Conditions Necessary for Valid Split Plot
Analysis of Repeated Measures

Compound symmetry is a special case of a more general condition on repeated
measures correlations and variances that will guarantee that the split plot anal-
ysis is valid. Huynh and Feldt in 1970 (”Conditions under which mean square
ratios in repeated measures designs have exact F-distributions,” Journal of the
American Statistical Association Vol. 65, 1582-1589) showed that the split plot
analysis is valid if variances of all possible pairs of the response variable taken
at different times, say yi and yj , are the same within and between all treatment
groups. This condition, called the Huynh-Feldt condition, holds under the com-
pound symmetry structure noted earlier. It does not hold if correlations are
decreasing with increasing lag as with the rat weight data.

The Huynh-Feldt condition can be checked informally by calculating sample
variances or standard deviations of the difference in the response for all possible
time pairs and comparing. Sample standard deviations for the Satiety example
are given in Table 10.15.

Since we have already informally decided that the compound symmetry con-
dition is reasonable for the satiety example then it should not be surprising that
the variances of differences are similar across pairs of time points and treat-
ments. The largest standard deviation is 2.4 with the smallest of 1.1, differing
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Table 10.15: Standard Deviations for Pairwise Differences in Hunger Levels

Time Pair

Beverage 1 vs 2 1 vs 3 1 vs 4 2 vs 3 2 vs 4 2 vs 5

Milk 1.6 2.4 1.8 1.5 1.6 2.4

Coke 1.3 1.2 1.3 1.1 1.1 1.2

Control 1.3 1.2 1.3 1.1 1.1 1.2

Table 10.16: Standard Deviations of Pairwise Differences of Rat Weights

Time Pair

Group 0 vs 1 0 vs 2 0 vs 3 0 vs 4 1 vs 2 1 vs 3 1 vs 4 2 vs 3 2 vs 4 3 vs 4

Control 4.8 7.0 11.5 14.4 4.7 10.3 13.6 5.9 9.5 5.4

Thiourac 5.4 5.9 7.9 11.1 4.2 8.8 12.7 5.8 10.0 6.8

Thyroxin 4.3 9.3 15.6 20.2 6.4 13.8 18.5 8.6 13.2 5.4

by a factor of only about 2.

Standard deviations for differences in rat weights for all possible pairs and
treatments are given in Table ??.

Note that there is considerable difference among the standard deviations.
The largest standard deviation of 20.2 is almost 5 times the smallest standard
deviation of 4.2, confirming the validity of using a split plot model analysis for
this data.

The Mauchly W test is a formal hypothesis test of the Huynh-Feldt condition
developed by Mauchly in 1940 (”Significance test for sphericity of a normal n-
variate distribution,” Annals of Mathematical Statistics 11, 204-209). The null
hypothesis is that the Huyhn-Feldt condition for the variances and covariances of
the repeated measures holds and the alternative hypothesis is that the condition
does not hold. The test statistic has an approximate large sample chi-square
distribution under the null hypothesis. The value of the test statistic and P-
value is reported in software with repeated measures analysis. A significant
result (P-value < α) indicates that the condition does not hold and therefore
the split plot analysis is not valid.

The results of the Mauchly test for the rat weights data are W = 0.852,
Chi-square = 101.79003 with 5 degrees of freedom, P-value < 0.0001. There is
evidence at the 0.05 level of significance that the Huynh-Feldt condition does
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not hold. Thus the split plot analysis is inappropriate.
The results of the Mauchly test for the satiety data are W = 0.787, Chi-

square = 6.16 with 5 degrees of freedom, P-value = 0.2910. There is no evidence
at the 0.05 level of significance that the Huynh-Feldt condition is violated. Thus
the split plot analysis is a reasonable approach to analyzing the data.

Informal and formal procedures, along with a special knowledge of the vari-
ables, should be used to assess whether the split plot analysis can be used to
analyze repeated measures data.

10.2.8 Alternative Analyses if Huynh-Feldt Conditions Do
Not Hold

When the Huyn-Feldt condition is not satisfied there are several types of analysis
that can be employed. These are described below.

Multivariate methods

This approach treats the repeated measures for each subject as a vector and
then analyzes the vectors within and between treatments using multivariate
analysis of variance (MANOVA). The variances and covariances of the
repeated measures can take on any form. If a subject has at least one
missing repeated observation then the rest of the data for that subject is
not used. MANOVA is beyond the scope of this text. Interested readers
may refer to Milliken and Johnson ([21], page 537) for a detailed discussion
of this approach.

Adjust P-values in Split Plot Analysis

This approach uses the split plot analysis but adjusts degrees of freedom,
and thus P-values, associated with the split plot test for time main ef-
fects and the interaction between Treatment and Time. (The test for main
effects of treatment is valid even if the Huynh-Feldt condition is not satis-
fied). The adjustment is to multiply the usual degrees of freedom for the
two tests, resulting in lower degrees of freedom and higher P-values. There
are two different adjustments that are usually seen in software output.
One is called the Greenhouse and Geisser adjustment (”On methods in the
analysis of profile data,” 1959, Psychometrika, 24, 95-11). The other is the
Huynh-Feldt adjustment (”Estimation of the Box correction for degrees of
freedom from sample data in the randomized block design and split-plot
designs,” Journal of Educational Statistics, 1976, 1, 69-82).

This approach fixes the problem by altering the usual split plot analysis.
Schabenberger and Pierce ([27], page 464) argue that rather than forcing
the usual split plot analysis on inappropriate data by employing fudge fac-
tors the analyst should use a direct approach employing modern statistical
methods. That is use procedures that recognize and models variance and
correlation structures which might be appropriate for the data at hand.
This author agrees with the philosophy of Schabenberger and Pierce and
will not further explore the P-value adjustment methods.
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Reduce/summarize repeated measures with single value

The basic idea of this approach is to reduce the repeated measures on
each subject to a single measure and then compare the single measure
using the analysis for a one-factor completely randomized design of Chapter
4. For example the repeated measures for each subject might be linearly
related to the time variable. If so then a linear regression analysis could
be conducted for each subject giving a slope measuring the rate of change
of the response for each. These slopes could then be compared using the
methods of Chapter 4.

Mixed Model Methods

Mixed models methodology offers possible variance/covariance structures
to be selected in the analysis. Scientific knowledge may offer suggestions as
to one of a few appropriate structure. For example it may be hypothesized
that correlations decay with time or that variances differ across time. The
few structures may be estimated based on the variation in the data and
then one is selected for the final analysis based on model selection criteria.
Treatment, time, and interaction effects with standard errors are then es-
timated based on the chosen variance covariance structure and estimated
degrees of freedom. Tests for various effects and multiple comparison pro-
cedures can then be employed as in ANOVA. The specifics of mixed model
methods are beyond the scope of this text. Interested readers with a back-
ground in matrix algebra may refer to Milliken and Johnson ([21], page
553.
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10.3 SAS Code

10.3.1 Example 10.1

* SAS Code for Example 10.1;

* Input data;

data Cupcakes;

input Flavor $ Batch $ Cupcake Height BatchCupcake;

datalines;

C 1 1 46 C1

C 1 2 50 C1

C 1 3 47 C1

C 1 4 45 C1

C 2 1 51 C2

C 2 2 46 C2

C 2 3 47 C2

C 2 4 45 C2

C 3 1 42 C3

C 3 2 56 C3

C 3 3 49 C3

C 3 4 46 C3

C 4 1 55 C4

C 4 2 50 C4

C 4 3 45 C4

C 4 4 45 C4

S 1 1 36 S1

S 1 2 31 S1

S 1 3 35 S1

S 1 4 36 S1

S 2 1 45 S2

S 2 2 44 S2

S 2 3 45 S2

S 2 4 45 S2

S 3 1 42 S3

S 3 2 37 S3

S 3 3 40 S3

S 3 4 45 S3

S 4 1 40 S4

S 4 2 36 S4

S 4 3 45 S4

S 4 4 47 S4

F 1 1 33 F1

F 1 2 35 F1

F 1 3 35 F1



303

F 1 4 33 F1

F 2 1 44 F2

F 2 2 46 F2

F 2 3 41 F2

F 2 4 40 F2

F 3 1 36 F3

F 3 2 35 F3

F 3 3 32 F3

F 3 4 33 F3

F 4 1 37 F4

F 4 2 41 F4

F 4 3 40 F4

F 4 4 40 F4

;

run;

* Compute ANOVA table and construct Tukey-Kramer pairwise comparisons;

proc glm data = Cupcakes;

class Flavor Batch;

model Height = Flavor Batch(Flavor);

random Batch(Flavor) / test;

lsmeans Flavor / pdiff tdiff adjust = tukey e = Flavor(Batch);

run;

* SAS Code for Example 10.3;

* Input data;

data Satiety;

input Beverage $ Subject Time;

datalines;

Milk 1 1 28

Milk 1 2 39

Milk 1 3 49

Milk 1 4 56

Milk 2 1 26

Milk 2 2 37

Milk 2 3 49

Milk 2 4 51

Milk 3 1 27

Milk 3 2 39

Milk 3 3 51

Milk 3 4 54

Milk 4 1 24
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Milk 4 2 40

Milk 4 3 51

Milk 4 4 55

Milk 5 1 27

Milk 5 2 40

Milk 5 3 51

Milk 5 4 53

Milk 6 1 27

Milk 6 2 39

Milk 6 3 48

Milk 6 4 55

Milk 7 1 28

Milk 7 2 39

Milk 7 3 50

Milk 7 4 57

Milk 8 1 26

Milk 8 2 40

Milk 8 3 53

Milk 8 4 56

Milk 9 1 26

Milk 9 2 38

Milk 9 3 46

Milk 9 4 54

Milk 10 1 26

Milk 10 2 38

Milk 10 3 50

Milk 10 4 56

Coke 11 1 26

Coke 11 2 42

Coke 11 3 54

Coke 11 4 63

Coke 12 1 26

Coke 12 2 41

Coke 12 3 54

Coke 12 4 60

Coke 13 1 26

Coke 13 2 43

Coke 13 3 55

Coke 13 4 64

Coke 14 1 27

Coke 14 2 43

Coke 14 3 55

Coke 14 4 62

Coke 15 1 29

Coke 15 2 44

Coke 15 3 56
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Coke 15 4 64

Coke 16 1 30

Coke 16 2 43

Coke 16 3 55

Coke 16 4 65

Coke 17 1 28

Coke 17 2 42

Coke 17 3 54

Coke 17 4 62

Coke 18 1 27

Coke 18 2 40

Coke 18 3 55

Coke 18 4 62

Coke 19 1 27

Coke 19 2 41

Coke 19 3 55

Coke 19 4 62

Coke 20 1 28

Coke 20 2 42

Coke 20 3 56

Coke 20 4 63

Control 21 1 50

Control 21 2 55

Control 21 3 63

Control 21 4 70

Control 22 1 50

Control 22 2 54

Control 22 3 63

Control 22 4 67

Control 23 1 50

Control 23 2 56

Control 23 3 64

Control 23 4 71

Control 24 1 51

Control 24 2 56

Control 24 3 64

Control 24 4 69

Control 25 1 53

Control 25 2 57

Control 25 3 65

Control 25 4 71

Control 26 1 54

Control 26 2 56

Control 26 3 64

Control 26 4 72

Control 27 1 52
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Control 27 2 55

Control 27 3 63

Control 27 4 69

Control 28 1 51

Control 28 2 53

Control 28 3 64

Control 28 4 69

Control 29 1 51

Control 29 2 54

Control 29 3 64

Control 29 4 69

Control 30 1 52

Control 30 2 55

Control 30 3 65

Control 30 4 70

;

;

run;

* Proc glm to obtain ANOVA table;

proc glm data = Satiety;

class Beverage Subject Time;

model Satiety = Beverage Subject(Beverage) Time Beverage*Time;

random Subject(Beverage) / test;

run;

* Use Proc glimmix to Compute Tukey-Kramer Pairwise comparisons;

proc glimmix data = Satiety;

class Beverage Subject Time;

model Satiety = Beverage Time Beverage*Time / ddfm = kr;

random Subject(Beverage);

lsmeans Beverage*Time / slicediff = (Beverage Time) cl adjust = tukey;

run;

* Create data set with hunger levels in wide format for

correlations and Mauchly test results.

Calculate differences between hunger levels for pairs of times

for calculation of standard deviations of differences;

data Satiety_Wide;

input Beverage $ Subject Time1 Time2 Time3 Time4;

diff12 = Time1 - Time2;
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diff13 = Time1 - Time3;

diff14 = Time1 - Time4;

diff23 = Time2 - Time3;

diff24 = Time2 - Time4;

diff34 = Time3 - Time4;

datalines;

Milk 1 28 39 49 56

Milk 2 26 37 49 51

Milk 3 27 39 51 54

Milk 4 24 40 51 55

Milk 5 27 40 51 53

Milk 6 27 39 48 55

Milk 7 28 39 50 57

Milk 8 26 40 53 56

Milk 9 26 38 46 54

Milk 10 26 38 50 56

Coke 11 26 42 54 63

Coke 12 26 41 54 60

Coke 13 26 43 55 64

Coke 14 27 43 55 62

Coke 15 29 44 56 64

Coke 16 30 43 55 65

Coke 17 28 42 54 62

Coke 18 27 40 55 62

Coke 19 27 41 55 62

Coke 20 28 42 56 63

Control 21 50 55 63 70

Control 22 50 54 63 67

Control 23 50 56 64 71

Control 24 51 56 64 69

Control 25 53 57 65 71

Control 26 54 56 64 72

Control 27 52 55 63 69

Control 28 51 53 64 69

Control 29 51 54 64 69

Control 30 52 55 65 70

;

* Code to obtain correlations of pairs of hunger levels

proc sort data = Satiety_Wide;

by Group;

run;

proc corr data = Satiety_Wide;

by Group;
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var Time1 Time2 Time3 Time4;

run;

* Proc means to obtain standard deviations

for differences of hunger levels for pairs of

times;

proc means data = Satiety_Wide;

var diff12 diff13 diff14 diff23 diff24 diff34;

class group;

run;

* Proc glm to obtain results of

Mauchly test of sphericity;

proc glm data = Satiety_Wide;

class Group;

model Time1-Time4 = Group / nouni;

repeated time 4 / printe;

run;
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Problems for Chapter 10

10.1∗ This example is a modification of a project conducted by Zachary Buchin
and and Frank Galante (Spring 2013). Three paper airplane designs (Basic
Dart, Lightning, Thunder) were compared on flight distance (cm). The
experiment was conducted as follows. A design was randomly selected. A
paper airplane of the given design was constructed using standard printer
paper. The plane was launched by hand down the hallway of a dormitory.
Each plane constructed was thrown three times to increase precision for
the particular plane. The design is a one factor completely randomized
design with subsampling. The distances (cm) are given in the table below.

Plane Design
Basic Dart Lightning Thunder

Observation
Unit Plane 1 Plane 2 Plane 3 Plane 4 Plane 5 Plane 6 Plane 7 Plane 8 Plane 9
1 586 590 560 450 482 501 151 170 157
2 592 565 582 447 459 485 159 201 174
3 561 601 540 482 467 495 168 188 179

a. What are the experimental units? What are some extraneous variables
that contribute to experimental error?

b. What are the measurement units? What are some extraneous variables
that contribute to error among measurement units?

c. Give a model for this experiment and describe the terms in the model
including the error terms.

d. Use software to determine if the differences in flight time are statisti-
cally significant.

e. Can the flight distances be analyzed differently by summarizing the 3
distances for each plane? Explain.

10.2∗ In the article “Performance of broiler finishing hens as affected by fermenta-
tion duration of Bambara groundnut (Vigna subterranean) meal” ([2014]:
2(2): pgs 29-34), researchers compared five test diets on weight gain of
broiler hens. Two hundred 21-day old female Arbor acre broiler chicks
were randomly assigned to 25 pens each with 8 broiler hens. The 25 pens
were randomly assigned to one of five test diets (five pens per diet) given
below:

1. C0: control, no Bambura groundnut (BGN)

2. F0: 15 % BGN, socked in water for 0 hours
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3. F12: 15 % BGN, socked in water for 12 hours

4. F24: 15 % BGN, socked in water for 24 hours

5. F36: 15 % BGN, socked in water for 36 hours

The design is a one factor completely randomized design with subsampling.

a. What are the experimental units? Give some extraneous variables that
contribute to variation in weight gain among the experimental units.

b. What are the measurement units? Give some extraneous variables
that contribute to variation in weight gain among the measurement
units.

c. Weight gains for the 8 chicks in each pen were summarized with the
response pen mean weight gain with 5 values per group. The following
are summaries of pen mean weight gain for the 5 treatment groups
(mean± std.dev(grams)):

– C0: 1852.50± 94.01

– F0: 1532.62± 72.44

– F12: 1579.37± 90.34

– F24: 1571.90± 33.19

– F36: 1578.00± 21.29

With this information could you calculate MSE for testing for diet
effects? Yes or no and explain.

10.3∗ This is a new look at the balloon inflation example from Dean and Voss
([6], page 62). See also Example 8.2. The purpose of the study was to
determine if color of a balloon had an effect on the amount of time to blow
up the balloon. One person blew up 20 balloons of 4 different colors, 5 per
color. The colors were pink, yellow, orange, and blue. One person blew up
all 20 balloons in a random order. The design is a one factor completely
randomized with experimental unit being time slots, or the blowing up of
a balloon at a time slot. The response variable was the amount of time to
blew up a balloon recorded to the nearest 1/10 of a second.

Suppose that we want to also study the effect that number of inflations
on the same balloon has on the amount of time to blow up the balloon.
Suppose that each of the 20 balloons is blown up 3 times in succession
by the same person at 5 minute intervals. After a particular balloon is
blown up once the air is let out. Five minutes later it is blown up a second
time and then the air is let out again. Five minutes later it is blown up
a third time and then the air is let out. Thus there are three repeated
measurements on amount of time to inflate (seconds) for each balloon In
addition to the effect of the color of the balloon on amount of time to inflate
a balloon we also wish to study the effect of the number of inflations of the
balloon.

The resulting design is a repeated measures design.

a. What are the two types of experimental units - whole unit and split
unit?
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b. What are the two factors?

c. Are the whole units arranged in a completely randomized design or in
blocks? Explain.

d. What are the block(s)?

10.4∗ Justin Bell and Josh Doorly (Spring 2014) investigated the effects of brand
of gum (Big Red, Wrigley’s Juice Fruit) and chewing time (30, 45, 60, 75,
90, 105 seconds) of gum on how long the chewed gum could be stretched
before breaking. Five sticks of gum were used for each of the 12 combina-
tions of brand and chewing time for a total of 60 sticks of gum. The 60
sticks of gum were chewed and stretched one at a time. At a particular
chewing/stretching session a combination of brand and chewing time was
randomly selected. Then a stick was randomly selected corresponding to
the selected brand. This was repeated for 60 sessions. The same person
did all of the chewing of the sticks of gum.

a. What are the factors of interest in this study?

b. Are there one or two types of experimental units?

c. Is the design a repeated measures design? Explain.

10.5∗ Consider the paper airplane study of Exercise 10.1. Since there are three
distances collected over time for each plane there is a potential time effect
in that repeated handling of the plane might result in a deterioration of
the structure and loss in flight distances. Explain how the design might be
regarded as a split plot design. Give the two types of experimental units.
Give the two factors, whole and split unit factors. What are the blocks?

10.6∗ Consider the mealybug example in this chapter (Section 10.3.1). Suppose
that there is only one patch per branch. The number of mealybugs on a
patch is measured right before treatment. After the treatment there are
7 daily observations on number of mealybugs on the patch. The response
variable is percentage decrease in the number of mealybugs on a day com-
pared to the initial number before treatment.

This new experiment can be viewed as a split plot design with repeated
measures.

a. Give the two types of experimental units, whole units and split units.

b. Give the two factors, whole and split unit factors.

c. Are the whole units blocked before assignment to treatments or are
they assigned to treatments in a completely randomized manner?

d. Describe all types of blocking in this repeated measures design.

10.7∗ Se Chang, Matthew Harris, and Kevin Tomlinson (Spring 2015) investi-
gated the cooling rates of different liquids (cola, deionized water, olive oil).
They conducted their experiment over a period of 5 days. On the first day
three beakers were each filled with 50 mL of liquid, one with cola, one with
deionized water, and one with olive oil. The three beakers were placed at
randomly located positions on a burner with a digital thermometer placed
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in each beaker/liquid. The burner was then turned on and each of the
liquids was in the beakers were allowed to heat until reaching 50◦C. Upon
reaching the desired temperature a beaker with its liquid was removed and
then the temperature of the liquid was measured at 1, 2, 3, 4, and 5 minutes
after removal from the heat. This procedure of testing the three liquids at
a time was repeated on 4 other days. Interest was in investigating the time
profile of the temperature for each liquid and comparing the temperature
of the three liquids at each time point.

This is an example of split plot/repeated measures design.

a. What are the whole units and give an extraneous variable associated
with the whole units?

b. What are the split units and give an extraneous variable associated
with the split units?

c. Give the two factors, whole and split unit factors.

d. Are the whole units assigned completely at random to the levels of the
whole unit factor or are the whole units blocked first and then assigned
to levels of the whole unit factor? Explain.

e. Describe all blocking that was used in this experiment.

10.8∗ This example is a modification of an example from Dowdy and Reardon
([9], page 376). Five different methods are being considered for packaging
soda crackers to protect them from humidity. Crackers lose their crispness
in humid conditions. The packaging methods are: 1) Control Box (card-
board), 2) Wax Paper Box, 3) Metal Foil Box, 4) Plastic Box, and 5) Metal
Foil and Plastic Box. A randomly selected box of each type of packaging
is selected and the four boxes placed in random locations in a chamber
where the humidity is maintained at 80% humidity for 24 hours. After 24
hours the boxes are opened and three crackers are selected at random from
each of the 5 boxes and measured for moisture content. This testing pro-
cedure is repeated for four other different chambers, each chamber being
maintained at 80% humidity for 24 hours.

This study has subsampling.

a. What is the factor of interest? What are the treatments?

b. What are the experimental units? How many experimental units are
there?

c. What are the measurement units? How many measurement units are
there?

d. Is this a completely randomized design or a randomized complete block
design? Explain.

10.9∗ Angie Davenport, Taryn McLaughlin, and Charlie Kim (Spring 2015) in-
vestigated the melting rate of ice using different salt treatments. They con-
ducted their experiment over a period of 5 days. On each of 5 days three
trials were conducted, one for each of the three salt treatments(Morton
kosher salt, Road Runner calcium chloride, no salt), randomly assigned
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through time. On a particular trial a small ice mass was laid on top of a
wire mesh which was situated above a graduated beaker so that water from
the melting ice could be measured. Ice masses were formed by freezing 75
mL of water in a Dixie cup. The randomly selected salt treatment was
applied to the ice mass and then the cumulative amount of water from the
melting ice (mL) mass was measured at 30, 60, 90, 120, and 150 minutes
after the salt treatment was applied.

Time Interval(min)

Type of Salt 30 60 90 120 150
Block

Kosher 1 12.0 21.0 32.0 42.0 49.0
2 15.0 24.0 38.0 48.0 54.0
3 12.0 20.0 30.0 42.0 50.0
4 17.0 24.0 39.0 49.0 57.0
5 13.0 22.0 35.0 47.0 52.0

Calcium 1 15.2 28.8 43.0 53.0 60.0
chloride 2 14.0 27.0 40.0 50.0 59.0

3 15.0 20.0 30.0 42.0 52.0
4 16.0 27.0 42.0 51.0 60.0
5 15.0 30.0 44.0 54.0 60.0

None 1 10.5 16.5 25.0 32.0 40.0
2 6.0 15.0 23.0 31.0 40.0
3 6.0 13.0 20.0 28.0 32.0
4 7.0 15.0 25.0 34.0 41.0
5 7.0 17.0 27.0 35.0 43.0

This is an example of split plot/repeated measures design.

a. What are the whole units and give an extraneous variable associated
with the whole units?

b. What are the split units and give an extraneous variable associated
with the split units?

c. Give the two factors, whole and split unit factors.

d. Are the whole units assigned completely at random to the levels of the
whole unit factor or are the whole units blocked first and then assigned
to levels of the whole unit factor? Explain.

e. Describe all blocking that was used in this experiment.
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f. Use software to determine if there are any trends in the correlations
among pairs of the response variable.

g. Use software to calculate standard deviations of differences in the re-
sponse among all possible pairs of time points to informally check on
the Huyn-Feldt condition. Interpret.

h. Use software to obtain results of the Mauchly test of the Huyn-Feldt
condition. Is there any evidence that the condition is not satisfied for
this data? Explain.
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Table A.1: Standard Normal Right Tail Probabilities

Table entries are areas under standard normal curve to the right of z

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.00 .5000 .4960 .4920 .4880 .4840 .4801 .4761 .4721 .4681 .4641
0.10 .4602 .4562 .4522 .4483 .4443 .4404 .4364 .4325 .4286 .4247
0.20 .4207 .4168 .4129 .4090 .4052 .4013 .3974 .3936 .3897 .3859
0.30 .3821 .3783 .3745 .3707 .3669 .3632 .3594 .3557 .3520 .3483
0.40 .3446 .3409 .3372 .3336 .3300 .3264 .3228 .3192 .3156 .3121
0.50 .3085 .3050 .3015 .2981 .2946 .2912 .2877 .2843 .2810 .2776
0.60 .2743 .2709 .2676 .2643 .2611 .2578 .2546 .2514 .2483 .2451
0.70 .2420 .2389 .2358 .2327 .2296 .2266 .2236 .2206 .2177 .2148
0.80 .2119 .2090 .2061 .2033 .2005 .1977 .1949 .1922 .1894 .1867
0.90 .1841 .1814 .1788 .1762 .1736 .1711 .1685 .1660 .1635 .1611
1.00 .1587 .1562 .1539 .1515 .1492 .1469 .1446 .1423 .1401 .1379
1.10 .1357 .1335 .1314 .1292 .1271 .1251 .1230 .1210 .1190 .1170
1.20 .1151 .1131 .1112 .1093 .1075 .1056 .1038 .1020 .1003 .0985
1.30 .0968 .0951 .0934 .0918 .0901 .0885 .0869 .0853 .0838 .0823
1.40 .0808 .0793 .0778 .0764 .0749 .0735 .0721 .0708 .0694 .0681
1.50 .0668 .0655 .0643 .0630 .0618 .0606 .0594 .0582 .0571 .0559
1.60 .0548 .0537 .0526 .0516 .0505 .0495 .0485 .0475 .0465 .0455
1.70 .0446 .0436 .0427 .0418 .0409 .0401 .0392 .0384 .0375 .0367
1.80 .0359 .0351 .0344 .0336 .0329 .0322 .0314 .0307 .0301 .0294
1.90 .0287 .0281 .0274 .0268 .0262 .0256 .0250 .0244 .0239 .0233
2.00 .0228 .0222 .0217 .0212 .0207 .0202 .0197 .0192 .0188 .0183
2.10 .0179 .0174 .0170 .0166 .0162 .0158 .0154 .0150 .0146 .0143
2.20 .0139 .0136 .0132 .0129 .0125 .0122 .0119 .0116 .0113 .0110
2.30 .0107 .0104 .0102 .0099 .0096 .0094 .0091 .0089 .0087 .0084
2.40 .0082 .0080 .0078 .0075 .0073 .0071 .0069 .0068 .0066 .0064
2.50 .0062 .0060 .0059 .0057 .0055 .0054 .0052 .0051 .0049 .0048
2.60 .0047 .0045 .0044 .0043 .0041 .0040 .0039 .0038 .0037 .0036
2.70 .0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026
2.80 .0026 .0025 .0024 .0023 .0023 .0022 .0021 .0021 .0020 .0019
2.90 .0019 .0018 .0018 .0017 .0016 .0016 .0015 .0015 .0014 .0014
3.00 .0013 .0013 .0013 .0012 .0012 .0011 .0011 .0011 .0010 .0010
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Table A.2: Upper α probability points for the Student t distribution

Table entries are tα;ν , where P [t > tα;ν ] = α

α

ν 0.40 0.25 0.10 0.05 0.025 0.01 0.005 0.0005

1 .325 1.000 3.078 6.314 12.706 31.820 63.657 636.619
2 .289 .816 1.886 2.920 4.303 6.965 9.925 31.599
3 .277 .765 1.638 2.353 3.182 4.541 5.841 12.924
4 .271 .741 1.533 2.132 2.776 3.747 4.604 8.610
5 .267 .727 1.476 2.015 2.571 3.365 4.032 6.869
6 .265 .718 1.440 1.943 2.447 3.143 3.707 5.959
7 .263 .711 1.415 1.895 2.365 2.998 3.500 5.408
8 .262 .706 1.397 1.860 2.306 2.896 3.355 5.041
9 .261 .703 1.383 1.833 2.262 2.821 3.250 4.781
10 .260 .700 1.372 1.812 2.228 2.764 3.169 4.587
11 .260 .697 1.363 1.796 2.201 2.718 3.106 4.437
12 .259 .695 1.356 1.782 2.179 2.681 3.054 4.318
13 .259 .694 1.350 1.771 2.160 2.650 3.012 4.221
14 .258 .692 1.345 1.761 2.145 2.624 2.977 4.140
15 .258 .691 1.341 1.753 2.131 2.602 2.947 4.073
16 .258 .690 1.337 1.746 2.120 2.583 2.921 4.015
17 .257 .689 1.333 1.740 2.110 2.567 2.898 3.965
18 .257 .688 1.330 1.734 2.101 2.552 2.878 3.922
19 .257 .688 1.328 1.729 2.093 2.540 2.861 3.883
20 .257 .687 1.325 1.725 2.086 2.528 2.845 3.850
21 .257 .686 1.323 1.721 2.080 2.518 2.831 3.819
22 .256 .686 1.321 1.717 2.074 2.508 2.819 3.792
23 .256 .685 1.319 1.714 2.069 2.500 2.807 3.768
24 .256 .685 1.318 1.711 2.064 2.492 2.797 3.745
25 .256 .684 1.316 1.708 2.060 2.485 2.787 3.725
26 .256 .684 1.315 1.706 2.056 2.479 2.779 3.707
27 .256 .684 1.314 1.703 2.052 2.473 2.771 3.690
28 .256 .683 1.313 1.701 2.048 2.467 2.763 3.674
29 .256 .683 1.311 1.699 2.045 2.462 2.756 3.659
30 .256 .683 1.310 1.697 2.042 2.457 2.750 3.646
40 .255 .681 1.303 1.683 2.021 2.423 2.704 3.551
60 .254 .678 1.296 1.671 2.000 2.390 2.660 3.460
120 .254 .677 1.289 1.658 1.980 2.358 2.617 3.373
∞ .253 .674 1.282 1.645 1.960 2.326 2.576 3.291
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Table A.3: Upper 0.05/2m Bonferroni probability point for the Student t dis-
tribution

Table entries are t0.05/2m;ν , where P [t > t0.05/2m;ν ] = 0.05/2m

ν\m 2 3 4 5 6 7 8 9 10 15

1 25.4 38.2 50.9 63.7 76.4 89.1 101. 115. 127. 191.
2 6.21 7.65 8.86 9.92 10.9 11.8 12.6 13.4 14.1 17.3
3 4.18 4.86 5.39 5.84 6.23 6.58 6.90 7.18 7.45 8.58
4 3.50 3.96 4.31 4.60 4.85 5.07 5.26 5.44 5.60 6.25
5 3.16 3.53 3.81 4.03 4.22 4.38 4.53 4.66 4.77 5.25
6 2.97 3.29 3.52 3.71 3.86 4.00 4.12 4.22 4.32 4.70
7 2.84 3.13 3.34 3.50 3.64 3.75 3.86 3.95 4.03 4.36
8 2.75 3.02 3.21 3.36 3.48 3.58 3.68 3.76 3.83 4.12
9 2.69 2.93 3.11 3.25 3.36 3.46 3.55 3.62 3.69 3.95
10 2.63 2.87 3.04 3.17 3.28 3.37 3.45 3.52 3.58 3.83
11 2.59 2.82 2.98 3.11 3.21 3.29 3.37 3.44 3.50 3.73
12 2.56 2.78 2.93 3.05 3.15 3.24 3.31 3.37 3.43 3.65
13 2.53 2.75 2.90 3.01 3.11 3.19 3.26 3.32 3.37 3.58
14 2.51 2.72 2.86 2.98 3.07 3.15 3.21 3.27 3.33 3.53
15 2.49 2.69 2.84 2.95 3.04 3.11 3.18 3.22 3.29 3.48
16 2.47 2.67 2.81 2.92 3.01 3.08 3.15 3.20 3.25 3.44
17 2.46 2.65 2.79 2.90 2.98 3.06 3.12 3.17 3.22 3.41
18 2.45 2.64 2.77 2.88 2.96 3.03 3.09 3.15 3.20 3.38
19 2.43 2.63 2.76 2.86 2.94 3.01 3.07 3.13 3.17 3.35
20 2.42 2.61 2.74 2.85 2.93 3.00 3.06 3.11 3.15 3.33
21 2.41 2.60 2.73 2.83 2.91 2.98 3.04 3.09 3.14 3.31
22 2.41 2.59 2.72 2.82 2.90 2.97 3.02 3.07 3.12 3.29
23 2.40 2.58 2.71 2.81 2.89 2.95 3.01 3.06 3.10 3.27
24 2.39 2.57 2.70 2.80 2.88 2.94 3.00 3.05 3.09 3.26
25 2.38 2.57 2.69 2.79 2.86 2.93 2.99 3.03 3.08 3.24
26 2.38 2.56 2.68 2.78 2.86 2.92 2.98 3.02 3.07 3.23
27 2.37 2.55 2.68 2.77 2.85 2.91 2.97 3.01 3.06 3.22
28 2.37 2.55 2.67 2.76 2.84 2.90 2.96 3.00 3.05 3.21
29 2.36 2.54 2.66 2.76 2.83 2.89 2.95 3.00 3.04 3.20
30 2.36 2.54 2.66 2.75 2.82 2.89 2.94 2.99 3.03 3.19
40 2.33 2.50 2.62 2.70 2.78 2.84 2.89 2.93 2.97 3.12
60 2.30 2.46 2.58 2.66 2.73 2.79 2.83 2.88 2.91 3.06
120 2.27 2.43 2.54 2.62 2.68 2.74 2.78 2.82 2.86 3.00
∞ 2.24 2.39 2.50 2.58 2.64 2.69 2.73 2.77 2.81 2.94
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Table A.4: Upper 0.01/2m Bonferroni probability point for the Student t dis-
tribution

Table entries are t0.01/2m;ν , where P [t > t0.01/2m;ν ] = 0.01/2m

ν\m 2 3 4 5 6 7 8 9 10 15

1 127. 191. 255. 318. 382. 446. 509. 573. 624. 955.
2 14.1 17.3 20.0 22.3 24.5 26.4 28.3 30.0 31.6 38.7
3 7.45 8.58 9.46 10.2 10.9 11.4 12.0 12.5 12.9 14.8
4 5.60 6.25 6.76 7.17 7.53 7.84 8.12 8.38 8.61 9.57
5 4.77 5.25 5.60 5.89 6.14 6.35 6.54 6.71 6.87 7.50
6 4.32 4.70 4.98 5.21 5.40 5.56 5.71 5.84 5.96 6.43
7 4.03 4.36 4.59 4.79 4.94 5.08 5.20 5.31 5.41 5.80
8 3.83 4.12 4.33 4.50 4.64 4.76 4.86 4.96 5.04 5.37
9 3.69 3.95 4.15 4.30 4.42 4.53 4.62 4.71 4.78 5.08
10 3.58 3.83 4.00 4.14 4.26 4.36 4.44 4.52 4.59 4.85
11 3.50 3.73 3.89 4.02 4.13 4.22 4.30 4.37 4.44 4.68
12 3.43 3.65 3.81 3.93 4.03 4.12 4.19 4.26 4.32 4.55
13 3.37 3.58 3.73 3.85 3.95 4.03 4.10 4.16 4.22 4.44
14 3.33 3.53 3.67 3.79 3.88 3.96 4.03 4.09 4.14 4.35
15 3.29 3.48 3.62 3.73 3.82 3.90 3.96 4.02 4.07 4.27
16 3.25 3.44 3.58 3.69 3.77 3.85 3.91 3.96 4.01 4.21
17 3.22 3.41 3.54 3.65 3.73 3.80 3.86 3.92 3.97 4.15
18 3.20 3.38 3.51 3.61 3.69 3.76 3.82 3.87 3.92 4.10
19 3.17 3.35 3.48 3.58 3.66 3.73 3.79 3.84 3.88 4.06
20 3.15 3.33 3.46 3.55 3.63 3.70 3.75 3.80 3.85 4.02
21 3.14 3.31 3.43 3.53 3.60 3.67 3.73 3.78 3.82 3.99
22 3.12 3.29 3.41 3.50 3.58 3.64 3.70 3.75 3.79 3.96
23 3.10 3.27 3.39 3.48 3.56 3.62 3.68 3.72 3.77 3.93
24 3.09 3.26 3.38 3.47 3.54 3.60 3.66 3.70 3.75 3.91
25 3.08 3.24 3.36 3.45 3.52 3.58 3.64 3.68 3.73 3.88
26 3.07 3.23 3.35 3.43 3.51 3.57 3.62 3.67 3.71 3.86
27 3.06 3.22 3.33 3.42 3.49 3.55 3.60 3.65 3.69 3.84
28 3.05 3.21 3.32 3.41 3.48 3.54 3.59 3.63 3.67 3.83
29 3.04 3.20 3.31 3.40 3.47 3.52 3.58 3.62 3.66 3.81
30 3.03 3.19 3.30 3.39 3.45 3.51 3.56 3.61 3.65 3.80
40 2.97 3.12 3.23 3.31 3.37 3.43 3.47 3.51 3.55 3.69
60 2.91 3.06 3.16 3.23 3.29 3.34 3.39 3.43 3.46 3.59
120 2.86 3.00 3.09 3.16 3.22 3.26 3.31 3.34 3.37 3.49
∞ 2.81 2.94 3.02 3.09 3.14 3.19 3.23 3.26 3.29 3.40
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Table A.5: Upper α = 0.01 probability point for the Studentized Range Distri-
bution

Table entries are q0.01;ν,t, where P [q > q0.01;ν,t] = 0.01

ν\t 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 14.0 19.0 22.3 24.7 26.6 28.2 29.5 30.7 31.7 32.6 33.4 34.1 34.8 35.4
3 8.26 10.6 12.2 13.3 14.2 15.0 15.6 16.2 16.7 17.1 17.5 17.9 18.2 18.5
4 6.51 8.12 9.17 9.96 10.6 11.1 11.5 11.9 12.3 12.6 12.8 13.1 13.3 13.5
5 5.70 6.98 7.81 8.42 8.91 9.32 9.67 9.97 10.2 10.5 10.7 10.9 11.1 11.2
6 5.24 6.33 7.03 7.56 7.97 8.32 8.61 8.87 9.10 9.30 9.48 9.65 9.81 9.95
7 4.95 5.92 6.54 7.01 7.37 7.68 7.94 8.17 8.37 8.55 8.71 8.86 9.00 9.12
8 4.74 5.64 6.20 6.63 6.96 7.24 7.47 7.68 7.86 8.03 8.18 8.31 8.44 8.55
9 4.60 5.43 5.96 6.35 6.66 6.91 7.13 7.33 7.50 7.65 7.78 7.91 8.03 8.13
10 4.48 5.27 5.77 6.14 6.43 6.67 6.88 7.05 7.21 7.36 7.49 7.60 7.71 7.81
11 4.39 5.15 5.62 5.97 6.25 6.48 6.67 6.84 6.99 7.13 7.25 7.36 7.46 7.56
12 4.32 5.05 5.50 5.84 6.10 6.32 6.51 6.67 6.81 6.94 7.06 7.17 7.26 7.36
13 4.26 4.96 5.40 5.73 5.98 6.19 6.37 6.53 6.67 6.79 6.90 7.01 7.10 7.19
14 4.21 4.89 5.32 5.63 5.88 6.08 6.26 6.41 6.54 6.66 6.77 6.87 6.96 7.05
15 4.17 4.84 5.25 5.56 5.80 5.99 6.16 6.31 6.44 6.55 6.66 6.76 6.84 6.93
16 4.13 4.79 5.19 5.49 5.72 5.92 6.08 6.22 6.35 6.46 6.56 6.66 6.74 6.82
17 4.10 4.74 5.14 5.43 5.66 5.85 6.01 6.15 6.27 6.38 6.48 6.57 6.66 6.73
18 4.07 4.70 5.09 5.38 5.60 5.79 5.94 6.08 6.20 6.31 6.41 6.50 6.58 6.65
19 4.05 4.67 5.05 5.33 5.55 5.73 5.89 6.02 6.14 6.25 6.34 6.43 6.51 6.58
20 4.02 4.64 5.02 5.29 5.51 5.69 5.84 5.97 6.09 6.19 6.28 6.37 6.45 6.52
21 4.00 4.61 4.99 5.26 5.47 5.65 5.79 5.92 6.04 6.14 6.23 6.32 6.39 6.47
22 3.99 4.59 4.96 5.22 5.43 5.61 5.75 5.88 5.99 6.09 6.19 6.27 6.35 6.42
23 3.97 4.57 4.93 5.19 5.40 5.57 5.72 5.84 5.95 6.05 6.14 6.23 6.30 6.37
24 3.96 4.55 4.91 5.17 5.37 5.54 5.68 5.81 5.92 6.02 6.11 6.19 6.26 6.33
25 3.94 4.53 4.88 5.14 5.35 5.51 5.65 5.78 5.89 5.98 6.07 6.15 6.22 6.29
26 3.93 4.51 4.87 5.12 5.32 5.49 5.63 5.75 5.89 5.95 6.04 6.12 6.19 6.26
27 3.92 4.49 4.85 5.10 5.30 5.46 5.60 5.72 5.83 5.92 6.01 6.09 6.16 6.22
28 3.91 4.48 4.83 5.08 5.28 5.44 5.58 5.70 5.80 5.90 5.98 6.06 6.13 6.19
29 3.90 4.47 4.81 5.06 5.26 5.42 5.56 5.67 5.78 5.87 5.96 6.03 6.10 6.17
30 3.89 4.45 4.80 5.05 5.24 5.40 5.54 5.65 5.76 5.85 5.93 6.01 6.08 6.14
35 3.85 4.40 4.74 4.98 5.17 5.32 5.45 5.57 5.67 5.75 5.84 5.91 5.98 6.04
40 3.82 4.37 4.70 4.93 5.11 5.26 5.39 5.50 5.60 5.69 5.76 5.83 5.90 5.96
45 3.80 4.34 4.66 4.89 5.07 5.22 5.34 5.45 5.55 5.63 5.71 5.78 5.84 5.90
50 3.79 4.32 4.63 4.86 5.04 5.19 5.31 5.41 5.51 5.59 5.67 5.73 5.80 5.85
100 3.71 4.22 4.52 4.73 4.90 5.03 5.14 5.24 5.33 5.40 5.47 5.54 5.59 5.65
∞ 3.64 4.12 4.40 4.60 4.76 4.88 4.99 5.08 5.16 5.23 5.29 5.35 5.40 5.45
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Table A.6: Upper α = 0.05 probability point for the Studentized Range Distri-
bution

Table entries are q0.05;ν,t, where P [q > q0.05;ν,t] = 0.05

ν\t 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 6.08 8.33 9.80 10.9 11.7 12.4 13.0 13.5 14.0 14.4 14.8 15.1 15.4 15.6
3 4.50 5.91 6.82 7.50 8.04 8.48 8.85 9.18 9.46 9.72 9.95 10.2 10.4 10.5
4 3.93 5.04 5.76 6.29 6.71 7.05 7.35 7.60 7.83 8.03 8.21 8.37 8.52 8.66
5 3.64 4.60 5.22 5.67 6.03 6.33 6.58 6.80 6.99 7.17 7.32 7.47 7.60 7.72
6 3.46 4.34 4.90 5.30 5.63 5.90 6.12 6.32 6.49 6.65 6.79 6.92 7.03 7.14
7 3.34 4.16 4.68 5.06 5.36 5.61 5.82 6.00 6.16 6.30 6.43 6.55 6.66 6.76
8 3.26 4.04 4.53 4.89 5.17 5.40 5.60 5.77 5.92 6.05 6.18 6.29 6.39 6.48
9 3.20 3.95 4.41 4.76 5.02 5.24 5.43 5.59 5.74 5.87 5.98 6.09 6.19 6.28
10 3.15 3.88 4.33 4.65 4.91 5.12 5.30 5.46 5.60 5.72 5.83 5.93 6.03 6.11
11 3.11 3.82 4.26 4.57 4.82 5.03 5.20 5.35 5.49 5.61 5.71 5.81 5.90 5.98
12 3.08 3.77 4.20 4.51 4.75 4.95 5.12 5.27 5.39 5.51 5.61 5.71 5.80 5.88
13 3.06 3.73 4.15 4.45 4.69 4.88 5.05 5.19 5.32 5.43 5.53 5.63 5.71 5.79
14 3.03 3.70 4.11 4.41 4.64 4.83 4.99 5.13 5.25 5.36 5.46 5.55 5.64 5.71
15 3.01 3.67 4.08 4.37 4.59 4.78 4.94 5.08 5.20 5.31 5.40 5.49 5.57 5.65
16 3.00 3.65 4.05 4.33 4.56 4.74 4.90 5.03 5.15 5.26 5.35 5.44 5.52 5.59
17 2.98 3.63 4.02 4.30 4.52 4.70 4.86 4.99 5.11 5.21 5.31 5.39 5.47 5.54
18 2.97 3.61 4.00 4.28 4.49 4.67 4.82 4.96 5.07 5.17 5.27 5.35 5.43 5.50
19 2.96 3.59 3.98 4.25 4.47 4.65 4.79 4.92 5.04 5.14 5.23 5.31 5.39 5.46
20 2.95 3.58 3.96 4.23 4.45 4.62 4.77 4.90 5.01 5.11 5.20 5.28 5.36 5.43
21 2.94 3.56 3.94 4.21 4.42 4.60 4.74 4.87 4.98 5.08 5.17 5.25 5.33 5.40
22 2.93 3.55 3.93 4.20 4.41 4.58 4.72 4.85 4.96 5.06 5.14 5.23 5.30 5.37
23 2.93 3.54 3.91 4.18 4.39 4.56 4.70 4.83 4.94 5.03 5.12 5.20 5.27 5.34
24 2.92 3.53 3.90 4.17 4.37 4.54 4.68 4.81 4.92 5.01 5.10 5.18 5.25 5.32
25 2.91 3.52 3.89 4.15 4.36 4.53 4.67 4.79 4.90 4.99 5.08 5.16 5.23 5.30
26 2.91 3.51 3.88 4.14 4.35 4.51 4.65 4.77 4.88 4.98 5.06 5.14 5.21 5.28
27 2.90 3.51 3.87 4.13 4.33 4.50 4.64 4.76 4.86 4.96 5.04 5.12 5.19 5.28
28 2.90 3.50 3.86 4.12 4.32 4.49 4.62 4.74 4.85 4.94 5.03 5.11 5.18 5.24
29 2.89 3.49 3.85 4.11 4.31 4.47 4.61 4.73 4.84 4.93 5.01 5.09 5.18 5.23
30 2.89 3.49 3.85 4.10 4.30 4.46 4.60 4.72 4.82 4.92 5.00 5.08 5.15 5.21
35 2.87 3.46 3.81 4.07 4.26 4.42 4.56 4.67 4.77 4.86 4.95 5.02 5.09 5.15
40 2.86 3.44 3.79 4.04 4.23 4.39 4.52 4.63 4.73 4.82 4.90 4.98 5.04 5.11
45 2.85 3.43 3.77 4.02 4.21 4.36 4.49 4.61 4.70 4.79 4.87 4.94 5.01 5.07
50 2.84 3.42 3.76 4.00 4.19 4.34 4.47 4.58 4.68 4.77 4.85 4.92 4.98 5.04
100 2.81 3.36 3.70 3.93 4.11 4.26 4.38 4.48 4.58 4.66 4.73 4.80 4.86 4.92
∞ 2.77 3.31 3.63 3.86 4.03 4.17 4.29 4.39 4.47 4.55 4.62 4.68 4.74 4.80
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Table A.7: Upper α probability point for the F distribution: α = 0.05

Table entries are F0.05;ν1,ν2 , where P [F > F0.05;ν1,ν2 ] = 0.05

ν
\ν1

2 1 2 3 4 5 6 7 8 9 10 12 15 20 25 30 40

1 161 200 216 225 230 234 237 239 241 242 244 246 248 249 250 251
2 18.6 19.0 19.2 19.2 19.3 19.3 19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.5 19.5 19.5
3 10.1 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.74 8.70 8.66 8.63 8.62 8.59
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.91 5.86 5.80 5.77 5.75 5.72
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.68 4.62 4.56 4.52 4.50 4.46
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.00 3.94 3.87 3.83 3.81 3.77
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.57 3.51 3.44 3.40 3.38 3.34
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.28 3.22 3.15 3.11 3.08 3.04
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.07 3.01 2.94 2.89 2.86 2.83
10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.91 2.85 2.77 2.73 2.70 2.66
11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.79 2.72 2.65 2.60 2.57 2.53
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.69 2.62 2.54 2.50 2.47 2.43
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67 2.60 2.53 2.46 2.41 2.38 2.43
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 2.53 2.46 2.39 2.34 2.31 2.27
15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.48 2.40 2.33 2.28 2.25 2.20
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.42 2.35 2.28 2.23 2.19 2.15
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45 2.38 2.31 2.23 2.18 2.15 2.10
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.34 2.27 2.19 2.14 2.11 2.06
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38 2.31 2.23 2.16 2.11 2.07 2.03
20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.28 2.20 2.12 2.07 2.04 1.99
21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32 2.25 2.18 2.10 2.05 2.01 1.96
22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30 2.23 2.15 2.07 2.02 1.98 1.94
23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27 2.20 2.13 2.05 2.00 1.96 1.19
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25 2.18 2.11 2.03 1.97 1.94 1.89
25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24 2.16 2.09 2.01 1.96 1.92 1.87
26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22 2.15 2.07 1.99 1.94 1.90 1.85
27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 2.20 2.13 2.06 1.97 1.92 1.88 1.84
28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19 2.12 2.04 1.96 1.91 1.87 1.82
29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22 2.18 2.10 2.03 1.94 1.89 1.85 1.81
30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.09 2.01 1.93 1.88 1.84 1.79
40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 2.00 1.92 1.84 1.78 1.74 1.69
60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 1.92 1.84 1.75 1.69 1.65 1.59
100 3.94 3.09 2.70 2.46 2.31 2.19 2.10 2.03 1.97 1.93 1.85 1.77 1.68 1.62 1.57 1.52
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Table A.8: Upper α probability point for the F distribution: α = 0.01

Table entries are F0.01;ν1,ν2 , where P [F > F0.01;ν1,ν2 ] = 0.01

ν
\ν1

2 1 2 3 4 5 6 7 8 9 10 12 15 20 25 30 40

1 4052 4999 5403 5625 5764 5859 5928 5981 6022 6056 6106 6157 6209 6240 6261 6287
2 98.5 99.0 99.2 99.2 99.3 99.3 99.4 99.4 99.4 99.4 99.4 99.4 99.4 99.5 99.5 99.5
3 34.1 30.8 29.5 28.7 28.2 27.9 27.7 27.5 27.4 27.2 27.0 26.9 26.7 26.6 26.5 26.4
4 21.2 18.0 16.7 16.0 15.5 15.2 15.0 14.8 14.7 14.6 14.4 14.2 14.0 13.9 13.8 13.8
5 16.3 13.3 12.1 11.4 11.0 10.7 10.5 10.3 10.2 10.0 9.89 9.72 9.55 9.45 9.38 9.29
6 13.8 10.9 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.72 7.56 7.40 7.30 7.23 7.14
7 12.2 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62 6.47 6.31 6.16 6.06 5.99 5.91
8 11.3 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81 5.67 5.52 5.36 5.26 5.20 5.12
9 10.6 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26 5.11 4.96 4.81 4.71 4.65 4.57
10 10.0 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85 4.71 4.56 4.41 4.31 4.25 4.17
11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.79 4.63 4.54 4.40 4.25 4.10 4.01 3.94 3.86
12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30 4.16 4.01 3.86 3.76 3.70 3.62
13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 4.10 3.96 3.82 3.66 3.57 3.51 3.43
14 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03 3.94 3.80 3.66 3.51 3.41 3.35 3.27
15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 3.67 3.52 3.37 3.28 3.21 3.13
16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69 3.55 3.41 3.26 3.16 3.10 3.02
17 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68 3.59 3.46 3.31 3.16 3.07 3.00 2.92
18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 3.51 3.37 3.23 3.08 2.98 2.92 2.84
19 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43 3.30 3.15 3.00 2.91 2.84 2.76
20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37 3.23 3.09 2.94 2.84 2.78 2.69
21 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40 3.31 3.17 3.03 2.88 2.79 2.72 2.64
22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.35 3.26 3.12 2.98 2.83 2.73 2.58
23 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30 3.21 3.07 2.93 2.78 2.69 2.62 2.54
24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 3.17 3.03 2.89 2.74 2.64 2.58 2.49
25 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 3.22 3.13 2.99 2.85 2.70 2.60 2.54 2.45
26 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18 3.09 2.96 2.81 2.66 2.57 2.50 2.42
27 7.68 5.49 4.60 4.11 3.78 3.56 3.39 3.26 3.15 3.06 2.93 2.78 2.63 2.54 2.47 2.38
28 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12 3.03 2.90 2.75 2.60 2.51 2.44 2.35
29 7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.09 3.00 2.87 2.73 2.57 2.48 2.41 2.33
30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98 2.84 2.70 2.55 2.45 2.39 2.30
40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80 2.66 2.52 2.37 2.27 2.20 2.11
60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63 2.50 2.35 2.20 2.10 2.03 1.94
100 6.90 4.82 3.98 3.51 3.21 2.99 2.82 2.69 2.59 2.50 2.37 2.22 2.07 1.97 1.89 1.80
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Appendix B

Solutions to Exercises

B.1 Chapter 1

1.1 a. experiment

b. treatment factor is “arthroscopic surgery or sham surgery” and re-
sponse variable is speed of walking after surgery

c. control for the placebo effect, the effect of responding positively just
because a patient receives any kind of treatment

1.2 a. conditions are “recirculated air” and “fresh air”-observed.

b. response variable is categorical - having cold or not a week after flight

c. Possible reasons are:

i. traveling is stressful which may increase the chances of catching a
cold.

ii. close contact with individuals in aircraft

1.3 a. The group of children that does not receive the massage should also
receive some kind of attention from their parents. In this way both
groups are getting attention

1.4 a. factor of “interest” is “body piercing or not”; response variable is cat-
egorical: smokes or not

b. observational study – the conditions “have body piercings”, “not have
body piercings” are observed, not assigned

c. No, we cannot conclude this, because the two groups of females, one
with body piercings and the other without body piercings, may differ
in other ways that may be conducive to sexual activity

1.5 a. treatments are “injection of bone marrow cells” and “injection of reg-
ular blood”

b. response variables are:

i. results of test comparing blood pressure in ankle and arm

ii. differences in oxygen inside and outside tissue
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c. while the two treatments are being compared on the two legs of the
same person, thus controlling for extraneous variables associated with
different persons, the randomization within a person is to balance out
the effects of extraneous variables associated with the two legs, such
as prior differences in circulation between the two legs.

d. Yes, a block is a pair of legs on a subject. The two treatments can
be compared within the same person and the results for the different
persons pooled to form a conclusion

1.6 a. factor of interest is “derived strength or comfort from religion or “not
derived strength or comfort from religion”; response variable is length
of life

b. observational study, since the conditons are observed, not assigned to
subjects

c. i. diet, perhaps people who derive strength from religion eat healthier

ii. life style, perhaps people who derive strength from religion do not
smoke as much or drink alcohol as much

1.7 Since there are two different methods of memorizing difficult material,
the subjects could be blocked into pairs so that within each pair the two
subjects are similar with regard to characteristics that might be related to
memorization ability such academic ability

1.8 a. there are 4 treatments: the blowing up of the balloons of the four
colors

b. the treatments will be assigned to different time slots–thus the exper-
imental units are time slots

c. randomization would be used by randomly assigning the treatments to
the time slots. The purpose would be to balance out any effects due
to time on the amount of time to blow up the balloons

d. there is direct control of peoples’ different abilities to blow up balloons
by having the balloons all blown up by the same person

1.9 The experimental units are pens of 3 pigs. There are 6 experimental units.
Treatments are different concentrations of garlic powder in the feed of a
pen of 3 animals and these are randomly assigned to pens. In order for
pig to be the experimental unit the pigs would have to be fed individually
(not group fed) and the different concentrations assigned to the individual
pigs.

1.10 a. Experiment because the treatments: supervised aerobic exercise ther-
apy, exercise-placebo, and usual care are (randomly) are assigned to
the 108 women for the purpose of determining whether there are effects
of aerobic exercise therapy on quality of life.

b. Experimental units are the 108 women who had been treated for breast
cancer

c. No. In an experiment in general subjects are informed of the different
kinds of treatments and sometimes they can be blinded as to what
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particular treatment they are getting such as in a medical study, when
everyone is getting the same looking pill. In this study subjects would
know what exercise they are doing – you can’t disguise the exercises
to look the same. Thus subjects would not be blinded.

1.11 Observational study. Condition “long term meditators” not assigned to
subjects.

1.12 a. Treatments are “use dryer balls in dryer” and “do not use dryer balls
in dryer.”

b. Experimental units are the next 40 loads of laundry at the differ-
ent time periods. The treatments are (randomly) assigned to these
loads/time periods to determine which load gets the dryer balls and
which loads do not.

c. machine effects - directly controlled by using only one machine. size of
load, type of clothing, changes in one machine over time, are controlled
by randomization.

1.13 a. Factor A: Composition of pasta (white, whole grain) Factor B: Length
of Pasta (1.25, 6, 12 inches)

b. Treatments are the 6 combinations of composition and length of pasta.
The treatments are (white,1.25), (white,6), (white,12), (whole grain,1.25),
(whole grain, 6), (whole grain, 12).

c. Experimental units are the time slots on each day corresponding to
the boilings of pasta

d. Yes, each day is a block/grouping of 6 time slots when the 6 boilings
occur.

e. On each day, write the 6 combinations or treatments on six slips of
paper. Mix the slips thoroughly and pull out one slip. This determines
the particular combination of composition and length to boil.

1.14 a. Factor A: Type of cookie (Chips Ahoy Chocolate Chip, Oreo’s,Nutter
Butter) Factor B: Type of Liquid (milk, orange juice, water) in which
the cookie was dipped

b. Treatments are the 9 combinations of type of cookie and type of liquid

c. Experimental units are 45 cups

d. No blocking, the cups were not grouped in any way

e. Write down the 9 combinations on slips of paper, 5 per combination,
for a total of 45 slips of paper and put into a bowl. Label the 45 cups
with the whole numbers 1 through 45 and put the 45 labels in a bowl.
Pull out a slip for a combination and a label for a cup. The selected
combination slip is the combination that is assigned the selected label
for the cup. Do this 44 other times.

1.15 a. Factor A: Type of liquid (water, water+lemon, water+salt) Factor B:
Type of Cup (styrofoam, paper)

b. Whole units = time slots when twenty ounces of liquid heated to 160
degrees Split units = two cups each 10 ounces of heated liquid
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c. Yes, each pot of liquid is a grouping of two 10 ounce cups of liquid

d. On twelve slips of paper write the levels of liquid type, 4 per liquid
type. Pull one slip out a random. This determines the liquid to be
heated at a time slot. Put the words styrofoam and paper on two slips
of paper. Pull one out. This determines which type of cup gets the
first half of the poured liquid.

1.16 a. This is a re-using type of block design. The 3 blocks are the 3 blinds,
each reused at different time slots for the three different decoy types.

b. Decoy type (taxidermy mounted decoys, plastic shell decoys, and full-
bodied decoys)

c. Each blind uses all three types of decoys so the randomization would
determine which decoy type is used first, which second, and which
third.

1.17 Determining when water is “boiling” was subjective. The researcher was
aware from the other study that adding salt to the water increased the
boiling temperature. So in theory if the student is not blinded regarding
the treatment and observation of the thermometer, then the student may
consciously or unconsciously wait longer to determine “boiling” depending
on the treatment.

1.18 a. The experimental units are the 9 heating runs.

b. The measurement units are the 5 pieces of meat in a pan for a total of
5x9 = 45 measurement units

c. There is only one replicate per treatment combination corresponding
to the one heating run per treatment combination.

d. Not a valid design in the sense that the 5 pieces per treatment combi-
nation should not be treated as independent replicates. The statistical
analysis would need to take into account the fact that 5 pieces were
heated at a time.

1.19 a. Experimental units are the pots. There are 15 pots.

b. Variation in the nutrients in the Miracle Gro soil from pot to pot
within a group. Variation in the genetics of the 3 plants per pot from
pot to pot.

c. There are 3 measurement units (plants) per pot, for a total of 45
measurement units.

d. Yes. The plants are not true replicates, so there are not 15 replicates
per watering regimen. There are 5 replicates per watering regimen.

1.20 a. Treatments are 1)no music and 2) music

b. Distance run on the treadmill during 10 minute period

c. Age (all 16), and all physically fit with no health problems

d. Each person is a block, here a grouping of two time slots at which the
running on the treadmill was conducted for the two treatments.
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e. Students might do better on the 2nd day when listening to music, not
because of the music but because of self-competition, that is they are
trying to do better than their first day time. Or the students might
do better on the 1st day, not because of no music but because on the
first day they are perhaps not as tired compared to the 2nd day.

f. In a completely randomized design each student would only do one
run on the treadmill with the treatment (no music, music) randomly
determined.
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B.2 Chapter 2

2.1 y = 73.38, s = 4.66,

The 5 stretched lengths deviate above or below the mean of 73.38 cm by
on average 4.66 cm.

2.2 y = 1.25, s = 0.2, sy = s√
n
= 0.2√

48
= 0.03

Sample standard deviation s = 0.2 measures variation of weight gains of
individual pigs in the sample around the sample mean y = 1.25. The
standard error sy = 0.03 gives a crude measure of the error associated
with y = 1.25, treating y as an estimate of the population mean weight
gain, µ.

2.3 a. The sample mean y has a normal distribution with mean µy = µ = 50
and standard deviation σy = σ√

n
= 5√

16
= 1.25

b. Standard normal distribution

c. t distribution with ν = 15 degrees of freedom

2.4 a. 1.711

b. 0.80

2.5 a. Sample mean y = 32.6, midpoint of interval

b. 95% error margin = 1/2 width of interval = 7.8/2 = 3.9

c. standard error = s√
121

= 3.9/2.045 = 1.91

d. We are 95% confident that the population mean number of hours stud-
ied per week is between 28.7 and 36.5 hours.

e. Yes, different set of n = 30 students would result in a different mean
and standard deviation and thus a different interval

2.6 y = 244.3, s = 12.4, t = 1.21, P − value = 0.2508 > 0.05, No reason
to believe true mean differs from stated. There is about a 25% chance of
obtaining a sample mean as far from the hypothesize null population mean
of 240 as the observed value of 244.3 due to sampling.

2.7 a. Relevant population mean is µ = mean mental health score for the
population of all long-term meditators in Australia. Ho : µ = 75.75
versus µ ̸= 75.75.

b. t = 14.3

c. Reject Ho, accept Ha. There is evidence that the mean mental health
score for the population of all long-term meditators is different than
the norm score of 75.75.

d. (83.99, 86.31). Use ∞ row in Table A.2. We are 95% confident that the
mean mental health score for the population of long-term meditators
is somewhere between 83.99 and 86.31.

e. Yes, possible Type I error.

2.8 a. Relevant population mean of interest is mean perceived midpoint of
curved glass by a population of participants. Ho : µ = 30.00 versus
µ ̸= 30.00.
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b. P < 0.001 < 0.05 and thus reject Ho, accept Ha. There is evidence
that peoples’ perceived midpoint is different than the true midpoint of
30. The data points to peoples’ perceived midpoint being lower.

2.9 E = 2/3 = 0.67 Use approximation of E = 0.7 in Table 2.3. Power = 0.915.
There is a 91.5 chance that the one sample t will conclude, based on the
data, that the (pop) mean perceived midpoint is lower than 30 when in
fact the population mean is lower than 30.

2.10 E = 5/8 = 0.625. Use E = 0.6 in Table 2.3. n = 25 gives power of 0.898,
approximately equal to 0.90.
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B.3 Chapter 3

3.1 a. Type of fertilizer. Total amount of tomatoes from a plant

b. Experimental units = plant/plot combination

c. Completely randomized design. Types of fertilizer assigned completely
at random to plant/plot combination. Plants/plots were not grouped
in any way prior to randomization

d. Fertility of soil in plots - fertilizers randomly assigned to plots Natural
variability of plants - fertilizers randomly assigned to plants

3.2 a. Candles (one scented and one unscented) are paired/grouped by the
day on which they are burned.

b. Type of candle to (scented or unscented); burning time of candle

c. d = 25, sd = 58.2, t = 1.36, df = 9, From software two sided P −
value = 0.2075 > 0.05 No evidence of a difference in mean burning
times between the two types of candles.

3.3 a. Paired design - reusing. Subjects are used before and after being put
on diet.

b. Completely randomized. Treatments “told applicant attracted to in-
terviewer” and “not told applicant attracted” were assigned completely
at random to sixty male students

c. Paired design - sorting/grouping. Letters are paired according to the
destination/city.

3.4 a. Time of Period (before or after) of measurement of mental ability

b. Two time periods when measurements taken for each patient

c. No. ‘Before’ and ‘After’ are inherent characteristics of time periods.

d. Since the conditions ‘Before’, ‘After’ are not assigned at random then
differences in measurements taken before and after might be con-
founded with other time effects.

3.5 a. Route taken

b. Travel time (hrs)

c. Driving habits of drivers.

d. Independent samples t test. Variances not assumed to be equal. nA =
5, yA = 17.7, sA = 5.9; nB = 5, yB = 22.0, sB = 5.6; df = 7.98, t =
−1.10, P = 0.3047 > 0.05. Not enough evidence of a difference in
driving times between two routes.

e. Have each driver use both routes A and B in a random order.

3.6 a. Paired samples design - reusing. Corresponding to each squirrel are
two time periods, one when FT twigs are given and one when NFT
twigs are given.

b. One sided test with d = 2.84, sd = 2.34, t = 2.72, df = 4, P − value =
0.0266 < 0.05. There is evidence that squirrels eat more of the FT
twigs than the NFT twigs.
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3.7 a. The plots of the stands of slash pines are paired according to location.

b. One sided test. d = 13, sd = 127.2, t = 0.32, df = 9, P − value =
0.3770 > 0.05. There is not enough evidence that ‘improved’ trees
have a greater mean inner bark volume than ‘unimproved’ trees.

3.8 a. i. Lower lip forces for females lower on average than males; spread
of lower lip forces for females smaller than spread for males

ii. Yes, t = -3.98, df = 24.9, P-value = 0.0005

iii. males and females are different groups which are not blocked in
any way.

b. comparison of male upper lip forces with female upper lip forces, com-
parison of male lower lip forces with male upper lip forces

3.9 a. Ho : µd = 0 where µd is the true mean of differences in perceived
midpoint (straight glass - curved glass). Ha : µd ̸= 0

b. No, do not have the standard deviation of the differences

c. P < 0.001 < 0.05 and thus there is evidence of a difference in mean
perceived midpoints for the two glass types.

3.10 E = 50/100 = 0.5. From Table 3.4, power is 0.799, approximately equal
to 0.80, for 50 chicks per group

3.11 a. Average level of drying times and variation in drying times appear to
be similar for the two groups: dryer balls used and dryer balls not used
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Dryer Balls Used

No Yes

b. Dryer balls used: mean = 28.38 min, stdev = 6.61 min. Dryer balls
not used: mean = 28.30 min., stdev = 5.52 min

c. independent samples t test (unpooled variances). Ho : µ1 ≥ µ2 versus
Ha : µ1 < µ2 where µ1 = true mean drying time with dryer balls,
and µ2 = true mean drying time without dryer balls. t = 0.04, P =
0.4846 > 0.05. There is no evidence in this study that dryer balls
reduce mean drying time
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B.4 Chapter 4

4.1 a.

yij = y·· + Ai + eij

Drug A 20 = 24.67 + -2.67 + -2
22 = 24.67 + -2.67 + 0
25 = 24.67 + -2.67 + 3
24 = 24.67 + -2.67 + 2
19 = 24.67 + -2.67 + -3

Drug B 21 = 24.67 + 0.33 + -4
26 = 24.67 + 0.33 + 1
26 = 24.67 + 0.33 + 1
27 = 24.67 + 0.33 + 2
25 = 24.67 + 0.33 + 0

Drug C 30 = 24.67 + 2.33 + 3
24 = 24.67 + 2.33 + -3
26 = 24.67 + 2.33 + -1
25 = 24.67 + 2.33 + -2
30 = 24.67 + 2.33 + 3

yij − y·· = Ai + eij

Drug A -4.67 = -2.67 + -2
-2.67 = -2.67 + 0
0.33 = -2.67 + 3
-0.67 = -2.67 + 2
-5.67 = -2.67 + -3

Drug B -3.67 = 0.33 + -4
1.33 = 0.33 + 1
1.33 = 0.33 + 1
2.33 = 0.33 + 2
0.33 = 0.33 + 0

Drug C 5.33 = 2.33 + 3
-0.67 = 2.33 + -3
1.33 = 2.33 + -1
0.33 = 2.33 + -2
5.33 = 2.33 + 3

b.

Source of Variation Df SS MS F P-value

Grand Mean 1 9126.67
Drug 2 63.33 31.67 4.75 0.0302
Error 12 80.00 6.67

Total 15 9270
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Source of Variation Df SS MS F P-value

Drug 2 63.33 31.67 4.75 0.0302
Error 12 80.00 6.67

Total (Corrected) 14 143.33

c. Yes, F = 4.75 > 3.89

4.2 a.

Source of Variation Df SS MS F P-value

Grand Mean 1 1728
Treatments 4 85 21.25 5.06 < 0.01
Error 25 105 4.2

Total 30 1918

b. 5 treatments

c. 6 replications per treatment

d. Yes, since P < 0.01.

4.3 F = 0.157
0.136 = 1.15 with numerator df = 2 and denominator df = 9. P =

0.3578, not significant at the 0.05 level of significance.

4.4 a. Type of drink

b. Treatments are Cocal cola, Orange Juice, Water

c. Experimental units are cup/ice combination.

d. Ice cube size, amount of liquid, rate of pouring.

e. yij = µ· + αi + ϵij where

– i is an index on type of drink with i = 1(Coca cola), i = 2(OJ),
i = 3(Water)

– yij is the jth observation on amount of time for the ith type of
drink

– µ· = true grand mean amount of time averaged over all types of
drink

– αi is the true effect of the ith type of drink on melting time yij
– ϵij is the effect of extraneous variables on melting time yij .

f. i. Ho : α1 = α2 = α3 = 0
Ha : not all α′

is = 0

ii. F = 790.5
3.87 = 102.2, P < 0.0001. There is evidence of a difference

in melting times among the three types of beverages.

iii. The true errors ϵij are independent, normally distributed each with
mean of 0 and common standard deviation σ.
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4.5 a. Means are 43.1, 89.4, 68.0, and 40.5, respectively for Brands A,B,C,and
D. Standard deviations are 3.0, 2.2, 2.2, and 2.4, respectively, for
brands A,B,C,D. Yes.

b.
Source of Variation Df SS MS F P-value

Brand 3 15953.47 5317.82 866.12 P < 0.0001
Error 36 221.03 6.14

Total (Corrected) 39 16174.5
Estimate of common variance is MSE = 6.14

c. Yes, P < 0.0001 < 0.05.

4.6 7988.38, 84.09

4.7 a. µ· = (4+4+7)/3 = 5. True effects are α1 = 4− 5 = −1, α2 = 4− 5 =
−1, α3 = 7− 5 = 2

b. By population effects model,
Y = µ2 + ϵ or
Y = µ· + α2 + ϵ
Thus decomposition of 6 is 6 = 5 + (−1) + 2

c. True average of MSE is E[MSE] = σ2 = 2

d. True average of MSTR is according to Section 4.4
E[MSTR] = σ2 + 1

3−1

∑3
i=1 niα

2
i or

E[MSTR] = 2+ 1
3−1 [10(−1)2 +10(−1)2 +10(2)2] or E[MSTR] = 32.

MSTR for a particular run of the experiment will differ from 32.

e. By the model and Section 4.4,
y1· − y2· = (µ1 − µ2) + (ϵ1· − ϵ2·)
Thus even if µ1 − µ2 = 0, y1· − y2· can be different than 0 due to
ϵ1· − ϵ2· being different than 0, that is different due to errors.

4.8 a. yij = µ· + αi + ϵij
where
i = 1(Men), 2(NCWomen), 3(OCWomen) indexes the different groups
j = 1, ..., 15 for i = 1, 2 and j = 1, ..., 14 for i = 3, indexes subject j
within a particular group i
yij represents the j

th observation on frequency of sexual thoughts/desire
to engage in sexual activity within group i
µ· = the true/population grand mean of frequency averaged over all
groups
αi = the true/population effect of the ith group on frequency
ϵij = the effect of extraneous variables on the jth frequency in the ith

group.

b. Ho : α1 = α2 = α3 = 0
Ha : not all α’s are equal to 0

c. i. numerator degrees of freedom = 2 and denominator degrees of
freedom equal to 41
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ii. There is only a 0.001 probability that the F ratio (MSTR/MSE)
will take on a value like 8.72 or higher if in fact the null hypothesis
is true.

iii. P-value = 0.001 which is less than 0.05, and thus null hypothesis
is rejected

4.9 (pooled samples) t test: t = 0.04, df = 38, P = 0.9691

ANOVA: F = 0.00, num df = 1, den df = 38, P = 0.9691

square of t stat = F,. df for t test equal to den df for F test, P values same
for both tests.
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B.5 Chapter 5

5.1 a. m = 10

b. t0.01/2 = 2.787 for ν = 25, ME = 9.7, CLe ≥ 0.9

c. 3.73, 12.9

d. 5.14, 12.6

e. Bonferroni, Unadjusted t procedure.

5.2 a. 6.6 < µ2 − µ1 < 15.4, significant, 13.2 < µ2 − µ3 < 22.0, significant,
2.2 < µ1 − µ3 < 11.0, significant

b. 99% percent confident that all 3 intervals from part(a) are simultane-
ously correct.

c. narrower

5.3 t0.05/2;ν=20 = 2.086, q∗/
√
2 = 2.95/

√
2 = 2.086

5.4 a. MSE = 0.817

b. ν = 40, t = 3, q0.05;40,3 = 3.44 Men vs NC Women: (0.598, 2.202) Men
vs OCWomen: (−0.258, 1.378) NCWomen vs OCWomen: (−1.658,−0.022)

c. Means for Men and NCWomen are significantly different (interval does
not include 0), Means for NC Women and OC Women are significantly
different (interval does not include 0), Means for Men and OC Women
are not significantly different (interval includes 0)

5.5 a. C1 = ( 14 )µ1 + (−1)µ2 + ( 14 )µ3 + ( 14 )µ4 + ( 14 )µ5

C2 = ( 12 )µ1 + (0)µ2 + (− 1
2 )µ3 + (− 1

2 )µ4 + ( 12 )µ5

C3 = (1)µ1 + (0)µ2 + (0)µ3 + (0)µ4 + (−1)µ5

C4 = (0)µ1 + (0)µ2 + (1)µ3 + (0)µ4 + (−1)µ5

b. Ĉ1 = 0.9, s{Ĉ1} = 0.52
Ĉ2 = −5.4, s{Ĉ2} = 0.46
Ĉ3 = 2.8, s{Ĉ3} = 0.66
Ĉ4 = 6.2, s{Ĉ4} = 0.66

c. Ho : C1 = 0, Ha : C1 ̸= 0, t = 1.73, Bonferroni t percentile =
t0.05/2(4);15 = 2.84, |1.73| < 2.84, do not reject Ho, There is not enough
evidence of a difference in mean abrasiveness averaged across all addi-
tives and mean abrasiveness with no additive.
Ho : C2 = 0, Ha : C2 ̸= 0, t = −11.74, |−11.74| ≥ 2.84, reject Ho,
There is evidence of a difference in mean abrasiveness with whitener
and mean abrasiveness with fluoride.
Ho : C3 = 0, Ha : C3 ̸= 0, t = 4.24, |4.24| ≥ 2.84, reject Ho, There is
evidence of a difference in mean abrasiveness with Whitener only and
mean abrasiveness with Whitener plus freshener
Ho : C4 = 0, Ha : C4 ̸= 0, t = 9.39, |9.39| ≥ 2.84, reject Ho, There is
evidence of a difference in mean abrasiveness with Fluoride only and
mean abrasiveness with Fluoride plus freshener

5.6 a. (12.27− 12.07)± 4.11√
2

√
5.74

√
1
20 + 1

8 = (−2.71, 3.11)
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b. B vs A, significant difference. Estimate that with B:Upper canines,
mean bond strength is greater than mean bond strength for A: upper
incisors by anywhere from 3.126 to 7.529 MPa.
B vs C, no significant difference
B vs D, significant difference. Estimate that with B:Upper canines,
mean bond strength is greater than mean bond strength for D: Lower
incisors by anywhere from 1.063 to 5.586 MPa.
B vs E, no significant difference.
B vs F, no significant difference.

c. We are (at least) 95% confident that all conclusions in part b. are
correct.
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B.6 Chapter 6

6.1 a. α̂1 = −1, α̂2 = 1

b. β̂1 = −2.175, β̂2 = −0.025, β̂3 = 3.025, β̂4 = −.825

c. α̂β11 = 1.85, α̂β21 = −1.85 α̂β12 = 0, α̂β22 = 0 α̂β13 = −0.65,

α̂β23 = 0.65 α̂β14 = −1.2, α̂β24 = 1.2

d. MSAB = 31.71
3 = 3.725, F = 10.58

3.625 = 2.92, 2.92 < F0.05;3,16 = 3.24, No
evidence of interaction

e. SSPotash = 24, MSPotash = 24
1 = 24, F = 24

3.625 = 6.62, 6.62 >
F.05;1,16 = 4.49, Evidence of Potash effects

f. SSNitrogen = 87.375, MSNitrogen = 87.375
3 = 29.125, F = 29.125

3.625 =
8.03, 8.03 > F.05,3,16 = 3.24, Evidence of Nitrogen Effects

6.2 a. Differences in accuracy between levels of distance don’t depend much
on hand.

b. Test of interaction between hand and distance not significant at the
0.10 level (F = 1.20, P − value = 0.3184, ν1 = 2, ν2 = 24
Test of Distance Effects significant at 0.05 level F = 15.74, P−value <
0.0001, ν1 = 2, ν2 = 24. For i = 1 (long), i = 2 (short), and i = 3
(short), y1· = 7.60, y2· = 2.70, y3· = 1.08,

1.88 ≤ µ1. − µ2. ≤ 7.92
3.50 ≤ µ1. − µ3. ≤ 9.55

−1.40 ≤ µ2. − µ3. ≤ 4.65

Test of Hand effects not significant at 0.05 level F = 0.35, P −value =
0.5607, ν1 = 1, ν2 = 24.

6.3 a. There is more variation in times when setting is medium as compared
to when setting is high. There appears to be no differences in brands
when setting is high - perhaps there are differences in brands when
setting is medium but this may depend on outliers. Caution should
be exercised in drawing conclusions because of possible outliers and
variation not being same across treatments.
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b. yijk = µ·· + αi + βj + αβij + ϵijk where

– i is an index on type of brand with i = 1(Food Lion), i = 2(Jet Puff),
i = 3(WalMart)

– j is an index on microwave level with j = 1(Medium), j = 2(High)

– k is an index on the amount of time for a particular brand and
microwave combination

– yijk is the kth observation on amount of time for the ith brand and
jth level

– µ·· = true grand mean amount of time averaged over all brands
and levels

– αi is the true effect of the ith brand on amount of time yijk

– βj is the true effect of the microwave level on amount of time yijk

– αβij is the true interaction effect between brand i and level j on
amount of time yijk

– ϵijk is the effect of extraneous variables on amount of time yijk.

– ϵijk are independent normal random variables, each with mean 0
and variance σ2

c.

Source of Variation Df SS MS F P-value

Store 2 300.250 150.125 2.70 0.0940
Level 1 1066.667 1066.667 19.21 0.0004

Store*Level 2 436.083 218.042 3.93 0.0384
Error 18 999.500 55.528

Total (Corrected) 23 2802.500

i. Estimate of variance is 55.528

ii. Interaction is significant (F = 3.93, P = 0.0384 < 0.10)
Comparison of Brands when Setting = Medium (j=1):
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3.8 ≤ µ21 − µ11 ≤ 30.7
2.1 ≤ µ31 − µ11 ≤ 29.0

−15.2 ≤ µ31 − µ21 ≤ 11.7

Comparisons of Brands when Setting = High (j=2):

−16.0 ≤ µ22 − µ12 ≤ 11.0
−13.7 ≤ µ32 − µ12 ≤ 13.2
−11.2 ≤ µ32 − µ22 ≤ 11.2

6.4 a. There appears to be a heat source effect with amount of time larger
for the oven. There appears to be a brand effect with Cabot and Land
of Lake resulting in smaller times to melt but this comparison may
depend on heat source.

b. yijk = µ+ αi + βj + αβij + ϵijk where

– i is an index on brand with i = 1(Cabot), i = 2(GreatValue),
i = 3(LandOLake)

– j is an index on method with j = 1(Oven), j = 2(Stove)

– k is an index on the amount of time for a particular brand and
method of melting combination

– yijk is the kth observation on amount of time for the ith brand and
jth method

– µ·· = true grand mean amount of time averaged over all brands
and methods

– αi is the true effect of the ith brand on amount of time yijk
– βj is the true effect of the method on amount of time yijk
– αβij is the true interaction effect between brand i and method j

on amount of time yijk
– ϵijk is the effect of extraneous variables on amount of time yijk.

– ϵijk are independent normal random variables, each with mean 0
and variance σ2
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c.

Source of Variation Df SS MS F P-value

Brand 2 2683.0 1341.5 6.09 0.0149
Heat 1 11806.7 11806.7 53.63 < .0001

Brand*Heat 2 1470.8 735.4 3.34 0.0703
Error 12 2642.0 220.2

Total (Corrected) 17 18602.5

i. Interaction is significant (F = 3.34, P = 0.0703 < 0.10)
Comparisons of Brands when Heat = Oven (j = 1):

−16.0 ≤ µ21 − µ11 ≤ 48.6
−35.3 ≤ µ31 − µ11 ≤ 29.3
−19.3 ≤ µ31 − µ21 ≤ 13.0

Comparisons of Brands when Heat = Stove (j=2):

10.4 ≤ µ22 − µ12 ≤ 75.0
8.7 ≤ µ32 − µ12 ≤ 73.3

−34.0 ≤ µ32 − µ22 ≤ 30.6

6.5 a. 4 levels of A; 3 levels of B

b. 35 + 1 = 36

c. Degrees of freedom for interaction = 6; MSAB = 80/6 = 13.3; MSE
= 400/24 = 16.7; F = 13.3/16.7 = 0.80 < 2.51, not significant.

d. MSA = 310/3 = 103.3, MSE = 400/24 = 16.7, F = 103.3/16.7 = 6.19
> 3.01, significant

e. SSB = 100, MSB = 100/2 = 50.0, MSE = 400/24 = 16.7, F = 50.0/16.7
= 2.99 < 3.40, not significant

6.6 All diets contain a basal diet. What changes is whether or not cholesterol
and thiouracil is added. Let factor A: cholesterol or not and factor B:
thiouracil or not. Then the four combinations of A and B determine the
diets in the table.
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B.7 Chapter 7

7.1 a. Time periods at which the two treatments (waterbed, regular) were
assigned for each baby. Total of 18 EUs, 2 for each baby

b. An example of a completely randomized design, say 18 babies, are
randomly assigned to the two treatments with 9 babies sleeping on the
waterbed and 9 babies sleeping on a regular mattress.

7.2 a. Type C blocking; a block is a sample of coal

b. Experimental units are halves of the sample assigned at random for
each sample to the two labs.

c. In a completely randomized design the 10 samples could have been
assigned completely at random to the two labs, with Lab1 receiving 5
samples and Lab2 receiving a different 5 samples.

7.3 a. Time to exhaustion; Diets 1, 2, 3; Time slots (3 day periods) assigned
to 3 diets for each person.

b. Subject. Variation in subjects which might affect time to exhaustion
such as general health, weight.

c. Have 18 subjects, say, assigned completely at random to the 3 diets,
with 6 persons per diet. Different groups of subjects for the 3 diets.

7.4 a. Replication/Day

b. Time slots of the burning of a candle

c. Location effect on table, changes in micro-environment from one candle
lighting to another.

d. In a completely randomized design the 28 time slots at which the
candles are to be burned would be randomly assigned to the 28 candles.
With this design in theory 8 tan candles might be lit first, etc.

e. yij = µ·· + ρi + τj + ϵij where

– i = 1, 2, ..., 7 is an index on the replication/day j = 1, 2, 3, 4 is
an index on the color of the candle j = 1(Tan), j = 2(Blue),
j = 3(Purple), j = 4(White).

– yij is the observation on burning time for the ith block and jth

color.

– µ·· is the grand mean of burning time

– ρi is the true effect of the ith block on the burning time yij
– τj is the true effect of the jth color on the burning time yij
– ϵij is the effect of extraneous variable on the burning time yij

f.

Source of Variation Df SS MS F P-value

Color 3 12398.4 4132.8 2.77 0.0713
Day 6 17795.7 2966.0 1.99 0.1204
Error 18 26820.9 1490.0

Total (Corrected) 27 57015.0
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F = 2.77, P = 0.0713, not enough evidence at α = 0.05 of differences
in mean burn time across colors.

7.5 a. Groups of 48 hens (4 levels) and periods (4 levels)

b. EUs are time periods at which mean eggs are calculated, total of 16
EUs, 4 for each group of 48 hens

c. yijk = µ··· + ρi + κj + τk + ϵijk
i = 1, 2, 3, 4 representing the 4 groups of 48 hens
j = 1, 2, 3, 4 representing the 4 periods
k = 1, 2, 3, 4 representing the 4 concentrations of molasses with k =
1(0g/kg), k = 2(70g/kg), k = 3(140g/kg), k = 4(210g/kg)
and where

– yijk represents the mean egg weight of the ith group of hens at the
jth period, getting the kth concentration of molasses

– µ··· represents the true grand mean of mean egg weight

– ρi (i = 1, ..., r) represents the true main effect of the ith group of
chickens on mean egg weight

– κj (j = 1, ..., r) represents the true main effect of the jth period
on mean egg weight

– τk (k = 1, ..., r) represents the true main effect of the kth concen-
tration of molasses on mean egg weight

– ϵijk represents the effects of extraneous variables on mean egg
weight

Assume that the ϵijk’s are independent normal random variables,each
with mean of 0 and common variance σ2

Assume that there is no interaction between each of the blocking fac-
tors, group, period and molasses concentration

d.

Source of Variation df SS MS F Pvalue
Group 3 9.03 3.01 8.26 0.0150
Period 3 5.07 1.69 4.64 0.0525
Molasses 3 6.37 6.37 5.83 0.0327
Error 6 2.19 0.36
Total 15 22.66

Significant difference in mean egg weights among the diets/molasses
concentrations (F = 5.83, P = 0.0327

e. 0 - 70: (-1.427152,1.527152)
0 - 140: (-0.602152,2.352152)
0 - 210: (0.047848,3.002152)
70 - 140: (-0.652152, 2.302152)
70 - 210: (-0.002152,2.952152)
140 - 210: (-0.827152, 2.127152)
There was a significant difference in mean egg weight only with the 0
and 210 mg/kg diets.
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7.6 a.

Source of Variation df SS MS F Pvalue
Car 3 149.2 49.7 11.5 0.0067

Position 3 573.2 191.1 44.3 0.0002
Brand 3 185.2 61.7 14.3 0.0038
Error 6 25.9 4.3
Total 15 933.4

Significant differences in treadwear among the brands (F = 14.3, P =
0.0038

b. A-B: (-0.333230, 9.833230)
A-C: (-9.083230, 1.083230)
A-D: (-1.583230, 8.583230)
B-C: (-13.833230, -3.666770)
B-D: (-6.333230, 3.833230)
C-D: (2.416770, 12.583230)
Significant differences in treadwear between B and C, C and D.

7.7 a. Blocks are the subjects, 12 altogether. Treatments are the three levels
of caffeine (0, 1, 3 mg per kg body weight). Experirmental units are
the time slots/days since treatments are assigned (at random) to days
for each subject.

b. The type of blocking is Type B[i], reusing subjects at different time
slots/days in order to receive different treatments. To balance out any
order effects of the treatments on the responses.

c. GM = 59. SSTR = 96, MSTR = 96/(3-1) = 48. Not possible to
determine MSE, would need individual heart rates in order to calculate
block effects.

7.9 a. Factors are type of container and type of liquid. Response variable is
number of minutes for ice cube to melt.

b. Treatments are the combinations (styrofoam, cola), (styrofoam, wa-
ter), (styrofoam, juice), (glass,cola), (glass, water), (glass,juice), (plas-
tic, cola), (plastic, water), (plastic,juice). There are 9 treatments.

c. Since melting is done one cup at a time then experimental units are
cups at time slots. 30 experimental units.

d. One extraneous variable would be the micro-environment at the time
when a cube is being melted. Another extraneous variable would be
the size of the cube which may vary from melting to melting. These
two variables are controlled by randomization of treatments to cubes
and time slots.

e. Blocks are the days on which complete replications of the 9 treatments
is conducted. There are 5 blocks.

7.11 a. Factor of interest = air conditioning system with 4 levels

b. Twenty homes, 4 per block. Within each block, four air conditioning
systems were randomly assigned to the homes.

c. Response variable = electricity usage (KWh) in 1-month period
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d. Purpose of blocking is to reduce the size of experimental error by re-
moving the blocking effects (floor space, type of insulation, etc.), likely
resulting in a more precise comparison of the four air conditioning sys-
tem since the systems are now compared within each block where floor
space, type of insulation, etc. are similar. The effects of floor space,
insulation system, etc. are taken out of experimental error and now
represented as a non-error term in the model.

e. Assuming 20 homes, in a completely randomized design, the 20 homes
would be assigned completely at random to the 4 air-conditioning sys-
tems, 5 per system. The homes would NOT be blocked/grouped be-
fore randomization. The effects of floor space, type of insulation, etc.
would be part of experimental error.

f.

yij = µ·· + ρi + τj + ϵij (B.1)

where

– yij = electricity usage for home in the ith block (i=1,2,3,4,5) and
jth system (j=1,2,3,4)

– µ·· represents the true grand mean of electricity usage

– ρi represents the true effect of ith level of the blocking variable
(floor space, type of insulation, etc.) on electricity usage

– τj represents the true effect of the j
th level of system on electricity

usage

– ϵij represents as usual the effects of extraneous variables on the
observation of yij , electricity usage at the ij combination of the
blocking variable (floor space, type of insulation) and system type.
This would include the effects of extraneous variables other than
those used to block the homes.
Assume that the 20 errors are values of independent normal ran-
dom variables, each with mean of 0 and same variance, σ2. Assume
that there is no interaction between the blocking factor and air-
conditioning system.

g.

Source of Variation Df SS MS F P-value

System 3 930.15 310.05 2.18 0.1431
Block 4 4959.70 1239.93 8.73 0.0015
Error 12 1705.10 142.09

Total (Corrected) 19 7594.95

h. If the analysis had been analyzed incorrectly as a completely random-
ized design (CRD) then the error would be 116 minus the mean of
usage for all homes with system 1, 109.4, and thus 116 - 109.4 = 6.6
Using the correct block design analysis the error would be
116-(grand mean + block 1 effect + system 1 effect)
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Grand mean = 118.45
Block 1 effect = block 1 mean - grand mean = 142.25 - 118.45 = 23.8
System 1 effect = system 1 mean - grand mean = 109.40 - 118.45 =
-9.05
Correct error using block design model is thus:
116 - (118.45 + 23.8 - 9.05) = 116 - 133.2 = -17.2
Note that block design error, -17.2, can also be calculated as
-17.2 = incorrect error - block effect = 6.6 - 23.8 = -17.2.
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B.8 Chapter 8

8.1 No, the errors appear to be dependent. After the residual at time 1, there
appears to be an upward trend, implying that time to melt was lower than
expected in the early trials and then higher than expected in the later
trials.

8.2 a.

Fan Status Flavor Burning Time TimeOrder Predicted Residual
On2 Vanilla 15 5 14.7 0.3
On2 Vanilla 16 11 14.7 1.3
On2 Vanilla 13 18 14.7 -1.7
On2 Cinnamon 14 2 15.7 -1.7
On2 Cinnamon 17 8 15.7 1.3
On2 Cinnamon 16 14 15.7 0.3
On4 Vanilla 19 6 19.3 -0.3
On4 Vanilla 21 15 19.3 1.7
On4 Vanilla 18 17 19.3 -1.3
On4 Cinnamon 21 1 20.3 0.7
On4 Cinnamon 20 3 20.3 -0.3
On4 Cinnamon 20 12 20.3 -0.3
Off Vanilla 27 4 27.0 0.0
Off Vanilla 29 7 27.0 2.0
Off Vanilla 25 10 27.0 -2.0
Off Cinnamon 26 9 27.3 -1.3
Off Cinnamon 28 13 27.3 0.7
Off Cinnamon 28 16 27.3 0.7

b. Check for assumption of constant variance of error terms. Plot does
not indicate extreme violation of assumption. Spread of points (burn
times) roughly same across treatments.

c. Check for assumption of independence of errors. No pattern of resid-
uals versus time and thus no evidence assumption violated.

d. Check for assumption of constant variance of error terms. Plot does not
indicate any gross violation of assumption - spread of points (residuals)
roughly same across all treatments

e. Check for assumption of constant variance of error terms. Plot does not
indicate any gross violations of assumption. No widening or narrowing
of plot as predicted burn time increases.

f. Histogram of residuals - used to check normality of errors. No evidence
that assumption is grossly violated. Histogram of residuals approxi-
mately symmetric bell-shaped.

g. Quantile-quantile plot of residuals - used to check normality of errors.
No evidence that assumption is grossly violated - plot is roughly linear.

8.3 Yes, homogeneity of variance assumption. Sample standard deviations in-
crease with increasing mean. Largest standard deviation is approximately
10 times the smallest standard deviation.

8.4 Residuals are given in the table below.
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Time Order Cup Liquid Amount of Time(mins) Predicted Residual
1 Paper Coffee 40.3 46.24 -5.94
2 Plastic Coffee 37.1 40.48 -3.38
3 Styrofoam Water 47.6 49.66 -2.06
4 Plastic Water 40.0 41.14 -1.14
5 Styrofoam Coffee 49.9 51.62 -1.72
6 Styrofoam Coffee 51.2 51.62 -0.42
7 Styrofoam Coffee 46.9 51.62 -4.72
8 Paper Coffee 45.3 46.24 -0.94
9 Paper Coffee 47.2 46.24 0.96
10 Paper Water 43.6 43.96 -0.36
11 Plastic Water 38.8 41.14 -2.34
12 Styrofoam Water 51.2 49.66 1.54
13 Styrofoam Water 50.4 49.66 0.74
14 Plastic Coffee 39.8 40.48 -0.68
15 Paper Coffee 51.2 46.24 4.96
16 Plastic Coffee 43.3 40.48 2.82
17 Plastic Coffee 40.7 40.48 0.22
18 Styrofoam Coffee 52.9 51.62 1.28
19 Styrofoam Coffee 57.2 51.62 5.58
20 Plastic Water 42.3 41.14 1.16
21 Paper Water 47.0 43.96 3.04
22 Plastic Water 42.0 41.14 0.86
23 Paper Water 43.6 43.96 -0.36
24 Plastic Coffee 41.5 40.48 1.02
25 Plastic Water 42.6 41.14 1.46
26 Styrofoam Water 47.30 49.66 -2.36
27 Paper Water 42.3 43.96 -1.66
28 Paper Water 43.3 43.96 -0.66
29 Styrofoam Water 51.8 49.66 2.14
30 Paper Coffee 47.2 46.24 0.96
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The assumption of independence of errors appears to be in question. The
early trials appear to result in more negative residuals implying amounts
of time smaller than predicted.

The assumption of homogeneity of error variances appears to be approxi-
mately satisfied as there appears to be no relationship between spread of
the residuals and predicted amount of time.
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The assumption of normality of the errors holds approximately as the resid-
uals have a bell shaped histogram and the qqplot shows a linear relation-
ship.
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B.9 Chapter 9

9.1 a. Whole plot factor is temperature. Whole plot experimental unit is
growth chamber. Variations in treatment (temperature) within a cham-
ber; environmental location of chamber

b. Completely randomized design. Chambers are not blocked. Tempera-
tures assigned completely at random to chambers.

c. Split plot factor is strain of petunia (A,B,C). Split plot experimental
unit is pot/location in chamber. Some experimental error factors are
variation in pot soil, locations of pots within chambers.

d. The whole units, here growth chambers, serve as blocks or groups of
petunias.

e.
yijk = µ+ αi + ϵwk(i) + βj + αβij + ϵsijk (B.2)

where i = 1, 2, 3 indexes temperature, j = 1, 2, 3 strain of petunia, and
k = 1, 2, 3 indexes chamber associated with a particular temperature,
and

– Yijk is the growth of the petunia, at the ith level of temperature,
kth chamber nested within the ith level of temperature, and jth

level of petunia strain.

– µ is the grand mean of growth averaged over a population of cham-
bers, all levels of temperature, and all levels of strain of petunia.

– αi is the true effect of the ith level of the temperature on growth
of petunia.

– ϵwk(i) is the error term for the kth chamber nested within the ith level
of the temperature, representing the effect of extraneous variables
associated with the chamber.

– βj is the true effect of the jth level of strain on growth

– αβij is the true interaction effect on growth of the ith level of
temperature and the jth strain.

– ϵsijk is the error term for the split unit, here pot/location, associ-

ated with the ith level of temperature, kth chamber nested under
the ith level of temperature,and the jth strain, representing the
effect of extraneous variables for this unit.
It is assumed that the 9 whole unit(chamber) errors are normally
distributed each with mean of 0 and constant variance. It is as-
sumed that the 27 split unit (pot) errors are normally distributed
each with mean of 0 and constant variance. It is assumed that the
whole unit and split unit errors are independent. It is assumed
that the growths within each chamber are equally correlated.

9.2 a. Whole plot factor is music type. Whole plot experimental unit is
session or time period of session. Variation in environmental conditions
associated with different sessions such as other noise, etc.
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b. Completely randomized design. Music types assigned completely at
random to 9 sessions (sessions are not grouped in any way).

c. Split plot factor is font of list of words. Split plot experimental unit is
subject. Extraneous variables associated with subject are memorizing
ability, health of person, etc.

d. The whole units, here sessions, serve as blocks of three subjects.

e.

yijk = µ+ αi + ϵwk(i) + βj + αβij + ϵsijk (B.3)

where i = 1, 2, 3 indexes music type, j = 1, 2, 3 font color, and k =
1, 2, 3 indexes session associated with a particular music type, and

– Yijk is the proportion of correctly memorized words, at the ith level
of music, kth session nested within the ith level of music, and jth

level of font color.

– µ is the grand mean of proportion of correctly memorized words
averaged over a population of sessions, all levels of music, and all
levels of font color.

– αi is the true effect of the i
th level of the music type on proportion

of correctly memorized words.

– ϵwk(i) is the error term for the kth session nested within the ith

level of music type, representing the effect of extraneous variables
associated with the session.

– βj is the true effect of the jth level of font color on proportion of
correctly memorized words

– αβij is the true interaction effect on proportion of correctly mem-
orized words of the ith level of music type and the jth font color.

– ϵsijk is the error term for the split unit, here subject, associated

with the ith level of music type, kth session nested under the ith

level of music type,and the jth font color, repesenting the effect of
extraneous variables for the subject.
It is assumed that the 9 whole unit(session) errors are normally dis-
tributed each with mean of 0 and constant variance. It is assumed
that the 27 split unit (subject) errors are normally distributed
each with mean of 0 and constant variance. It is assumed that the
whole unit and split unit errors are independent. It is assumed
that the fractions of words correct within each session are equally
correlated.

9.3 a. Whole unit factor is oven temperature. Whole unit is oven run/session.
Characteristics of oven runs/sessions such as slight variations in oven
temperature at different runs with same temperature setting

b. Completely randomized design. Oven temperatures are assigned com-
pletely at random to the runs. Runs are not grouped in any way and
then temperatures assigned at random within groups.
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c. Split unit factor is Type of Ice Cube (bottle, tap, and salt). Split
unit factor is type of cube. Extraneous variables include size of cube,
temperature variability within parts of oven, etc.

d.

yijk = µ+ αi + ϵwk(i) + βj + αβij + ϵsijk (B.4)

where i = 1, 2, 3 indexes oven temperature, j = 1, 2, 3 ice type, and
k = 1, 2, 3 indexes oven run/session associated with a particular oven
temperature

– Yijk is the amount of time for cube to melt, at the ith level of tem-
perature, kth oven run nested within the ith level of temperature,
and jth level of ice cube type.

– µ is the grand mean of amount of time averaged over a population
of oven runs/sessions, all levels of temperature, and all levels of ice
cube type.

– αi is the true effect of the ith level of temperature on amount of
time for ice cube to melt.

– ϵwk(i) is the error term for the kth oven run nested within the ith

level of temperature, representing the effect of extraneous variables
associated with the run

– βj is the true effect of the jth level of ice type on amount of time
to melt

– αβij is the true interaction effect on amount of time to melt for
the ith level of temperature and the jth ice type.

– ϵsijk is the error term for the split unit, here ice cube, associated

with the ith level of temperature, kth oven run nested under the
ith level of temperature,and the jth type, repesenting the effect of
extraneous variables for the cube.
It is assumed that the 9 whole unit (oven runs) errors are nor-
mally distributed each with mean of 0 and constant variance. It is
assumed that the 27 split unit (ice cube) errors are normally dis-
tributed each with mean of 0 and constant variance. It is assumed
that the whole unit and split unit errors are independent. It is
assumed that the amounts of time of within each run are equally
correlated.

e.
Source of Variation df SS MS F P-value
Temperature 2 89149.4 44574.7 10.32 0.0114
Error (Run(Temperature)) 6 25906.4 4317.7
IceType 2 59849.2 29924.6 13.53 0.0008
Temperature*IceType 4 10491.3 2622.8 1.19 0.3659
Error (Cube) 12 26544.2 2212.0
Total (corrected) 26 211940.5

f. No evidence of interaction (F = 1.19, P-value = 0.3659)
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g. Evidence of temp main effects (F = 10.32, P-value = 0.0114)
Tukey-Kramer pairwise comparisons of temperatures with i = 1(250), i =
2(300), i = 3(350)

−6.9 ≤ µ1· − µ2· ≤ 183.1
44.1 ≤ µ1· − µ2· ≤ 234.1

−44.0 ≤ µ2· − µ3· ≤ 146.0

Evidence of Ice Type main effects (F = 13.53, P-value = 0.0008)
Tukey-Kramer pairwise comparisons of ice cube type with j = 1(tap), j =
2(bottle), j = 3(salt)

−15.8 ≤ µ·1 − µ·2 ≤ 102.5
55.1 ≤ µ·1 − µ·3 ≤ 173.4
11.7 ≤ µ·2 − µ·3 ≤ 130.0

h. Normality and homogeneity of split plot errors satisfied approximately.

9.4 a. Whole plot factor is fertilizer. Whole plot experimental unit is plot.

b. Block design. Plots grouped by blocks and then fertilizer assigned at
random to plots within a block.

c. Split plot factor is variety of wheat. Split plot experimental unit is
smaller plot.

d. The model for the split plot design in this example is:

yijk = µ+ αi + ρk + ϵwik + βj + αβij + ϵsijk (B.5)

where

– Yijk is the observation on yield at the ith fertilizer, kth block, and
jth wheat variety

– µ is the grand mean of yields averaged over a population of blocks,
all levels of fertilizer, and both wheat varieties.

– αi is the true effect of the ith level of fertilizer on yield

– ρk is the true effect of the kth level of block

– ϵwik is the error term for the whole plot assigned to fertilizer i in
block k representing the effect of extraneous variables associated
with the whole plot.

– βj is the true effect of the jth level of variety on yield

– αβij is the true interaction effect on the yield of the ith level of
fertilizer and the jth level of wheat variety

– ϵsijk is the error term for the smaller plot receiving the jth level

of wheat variety in the kth block for fertilizer i, representing the
effects of extraneous variables associated with the smaller plot.
It is assumed that the 8 whole unit (plot) errors are normally dis-
tributed each with mean of 0 and constant variance. It is assumed
that the 16 split unit (smaller plots) errors are normally distributed
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each with mean of 0 and constant variance. It is assumed that the
2 block effects are normally distributed each with mean of 0 and
constant variance. It is assumed that the whole unit, split unit,
and block effects are independent. It is assumed that the yields
within each yield are equally correlated.

e.
Source of Variation df SS MS F P-value
Block 1 131.1 131.1 56.77 0.0048
Fertilizer 3 40.2 13.4 5.80 0.0914
Error (Block*Fertilizer)) 3 6.93 2.30
Wheat 1 2.25 2.25 1.07 0.3599
Fertilizer*Wheat 3 1.55 0.52 0.25 0.8612
Error 4 8.43 2.12
Total (corrected) 15 190.4

f. No evidence of interaction (F = 0.25, P-value = 0.8612)

g. No evidence of fertilizer main effects (F = 5.80, P-value = 0.0914)
No evidence of wheat variety main effects (F = 1.07, P-value =
0.3599)
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B.10 Chapter 10

10.1 a. 9 planes. Variation from plane to plane for given design such as quality,
weight of printer paper, inability to construct plane exactly same way
from plane to plane

b. 3 different throws with same plane. Inability to throw the same plane
with the same force, direction, from throw to throw, drafts in dormi-
tory hallway.

c. The model for the data is:

yijk = µ+ αi + ϵij + ηijk (B.6)

where i = 1, ..., t = 3, with i being an index on the plane design,
j = 1, ..., r = 3, with j being an index on the replicate plane at each
level of design, and k = 1, ..., n = 3, with k being an index on the
measurement unit (throw) for the jth replicate plane for the ith design.

– yijk is the value of flight distance for the kth flight for the jth

replicate plane with the ith design.

– µ is the grand mean of flight distances averaged over a population
of flights, all design levels and a population of planes.

– αi is the true effect of the ith design on flight distance

– ϵij is the error term associated with the jth replicate plane of the ith

design, representing the effect of extraneous variables associated
with the plane.

– ηijk is the error for the kth flight of the jth replicate plane asso-
ciated with the ith design, representing the effect of extraneous
variables associated with the flight

The model assumes that the experimental or plane errors are indepen-
dent normal random variables each with mean 0 and common variance
σ2
ϵ and that the flight errors are independent normal random variables

each with mean 0 and common variance σ2
η. It is also assumed that

the plane errors are independent of flight errors.

d. Mean distances for Dart, Lightning, and Thunder are 575.2, 474.2, and
171.9, respectively. Mean Square for Design = 396426.3, Mean Square
Error for Planes is 230.9, Mean Square Error for Flights is 230.9. F
= 601.8, P < 0.0001 with 2 and 6 numerator, denominator degrees of
freedom.

e. Calculate mean distance for each plane and analyze means using the
analysis for one factor completely randomized design (Ch. 4)

10.2 a. Experimental units are pens. Extraneous variables include microcli-
mate/location effects of pen, variation in application of test diet to
pen, social interaction of 8 hens in pen

b. Measurement units are individual hens within a pen. Extraneous vari-
ables include variation in starting weight of hen, genetics affecting
weight gain of individual hens.
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c. Yes, since we have standard deviations, MSE could be calculated by
Equation 4.9, Chapter 4. Also, since we have means treatment effects
could be calculated as well and thus a test for diet effects could be
conducted.

10.3 a. Whole units are large time slots for a particular balloon being blown
up. Split units are smaller time slots at which particular balloon par-
ticular repeated blown up.

b. Whole unit factor is color of balloon blown up at a large time slot.
Split unit factor is time scale of the smaller time slots at which the
balloon is blown up (0, 5, 10 minutes).

c. Completely randomized design. Colors of balloons assigned completely
at random to the larger time slots.

d. Each balloon serves as a block of 3 times slots when inflation time is
measured.

10.4 a. Brand of Gum and Chewing Time

b. One type, time slot when a stick of gum of a particular brand and
chewing time is chewed.

c. No. While there is an amount of time scale, each stick of gum is not re-
peated measured through time. Each stick of gum is only chewed once
for a certain amount of time. The design is a two factor completely
randomized design (Chapter 6).

10.5 Two types of experimental units are individual planes and time slots when
individual plane is flown. Whole unit factor is plane design. Split unit fac-
tor is time scale (time = 1, 2, 3) corresponding to the three flights. Blocks
are individual planes or set of 3 time slots corresponding to individual
planes.

10.6 a. Whole units are branches. Split units are time points when repeated
measures on number of mealybugs is observed.

b. Whole unit factor is treatment for mealybugs. Split unit factor is time
scale for day on which repeated observations on number of mealybug
taken (baseline before treatment, Day 1, 2, 3,4,5,6,7)

c. Whole units are branches which are blocked by plant.

d. Two types of blocking. Blocking of branches by plant. Each branch is
a block of time points for the repeated measures.

10.7 a. Whole units are the beakers with their liquids. Position of beakers on
the burner, amount of liquid in a beaker.

b. Split units are the time slots or occasions for each beaker/liquid when
the temperatures are measured. Extraneous variables include variables
in effect at the particular time slots, such as position of thermometer
in the beaker, environmental conditions at that occasion.

c. Whole unit factor is type of liquid. Split unit factor is time vari-
able, here number of minutes (1,2,3,4,5) after liquid removed from the
burner.



361

d. Whole units are blocked by Day. Randomization occurs within each
day. Within each day the three liquids are assigned at random to the
three beakers.

e. There are two types of blocking. One blocking variable is Day, a
grouping of beakers by Day (Type A). The other blocking variable
is the beaker/liquid since each beaker with its liquid is reused (Type
B[ii]).

10.8 a. Type of Box Packaging. Treatments are control, wax paper, metal foil,
plastic, metal foil/plastic.

b. Experimental units are boxes. 5 boxes per treatment for a total of 25
boxes.

c. Measurement units are crackers, 3 per box, for a total of 75 crackers.

d. Randomized complete block design. Experimental units are blocked
by chamber.

10.9 a. Whole units are ice masses or ice masses at time slots when an ice mass
was tested. Extraneous variables include size of the ice mass, amount
of salt put on the ice mass, environmental conditions when ice mass
tested.

b. Split units are the time slots or occasions when the ice masses are mea-
sured. Extraneous variables include micro environment, measurement
error, when amount of melted water measured.

c. Whole unit factor is type of salt since types of salt are are assigned to
the ice masses at time slots. Split unit factor is time variable, number
of minutes after ice mass treated with type of salt.

d. The whole units are blocked by Day, with randomization of types of
salt to ice masses occurring independently from day to day.

e. Days are blocks, groupings (Type A) of ice masses. Ice masses are
blocks since each ice mass is reused over time (Type B[ii]).
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Index of Subjects

ANOVA table
Latin Square Design, 194
one factor CRD with subsam-

pling, 278
one factor RCBD, 180
single factor CRD, 90
split plot design, whole units

blocked, 254
split plot design, whole units in

CRD, 241
two factor CRD, 141, 148

assumptions
checking, 205
checking, homogeneity of error

variances, 214
checking, independence, 207
checking, normality, 223
checking, residuals for one fac-

tor RCBD, 207
checking, residuals two factor

CRD, 206
checking, residuals, one factor

CRD, 206
checking, split plot design with

whole units blocked, 259
model for one factor CRD, 83
model for one factor CRD with

subsampling, 277
model for one factor Latin Square

Design, 193
model for one factor RCBD, 177
model for split plot design, whole

units blocked, 253
model for split plot design, whole

units in CRD, 241
model for two factor CRD, 137

before and after studies, 173
blocking

before and after designs, 173
definition of randomized com-

plete block design (RCBD),
171

equivalence to paired/dependent
samples t test, 186

experimental units for different
types, 171

factorial treatment structure in
RCBD, 190

loss of degrees of freedom, 185
missing observations, 185
one factor model and analysis,

176
population effects model, 177
random block effects, 185
replication of treatments within

blocks, 185, 187
restricted randomization, 171
subsampling, 185, 190
time order and interference ef-

fects, 185
two blocking variables,Latin Square

design, 191
types:reusing, grouping, split-

ting, 171

Compound symmetry
repeated measures, 296

confidence interval
connection with hypothesis test-

ing, 59
pooled variances, 52
single mean, 34
two dependent samples, 58
two independent sample means,

48
confounding variable, 8
contrast

confidence interval, 109
definition, 108
test statistic, 110

correlation coefficient, 57
repeated measures, 285

decomposition
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one factor CRD, corrected for
GM, 91

single factor, 77
degrees of freedom

loss in blocking, 185
Satterthwaite, 49
single factor completely random-

ized design, 82
design structure, 17

split plot, whole units in blocks,
239

split plot, whole units in CRD,
238

effects
treatment for single factor CRD,

80
error

block design as adjusted error
of CRD, 180

single factor CRD, 79
expected mean squares

one factor RCBD, 184
two factor CRD, 141

experiment
blocking, 10, 169
design, 9
direct control, 13, 169
Latin Square design, 191
one factor CRD with subsam-

pling, 277
randomization, 9, 169
replication, 14
scope of conclusions, 21
single factor completely random-

ized design, 77
split plot design, 236
split plot, whole units blocked,

253
experimental error, 7
experimental units, 1, 15

split units in split plot design,
237

whole units in split plot design,
237

experiments

definition, 1
extraneous variable, 6

F test
one factor CRD, 84
one factor RCBD, 182
two factor CRD, 141

factor, 5

Huyhn-Feldt condition
Mauchly test, 300

Huynh-Feldt condition, 289
hypothesis testing

beta, power, 40
connection with confidence in-

tervals, 59
interaction and alpha, 144
Mauchly test, 300
null and alternative hypotheses,

37
one normal mean, 36
P-value, 37
pooled variances, 52
significance level, 37
strategy two factor CRD, 144
t test and one factor CRD F

test, 93
test statistic, 37
two dependent samples, 58
two independent sample means,

49
Type I,II errors, 40
unpooled vs pooled variances,

55

interaction
additivity of main effects, 133
difference of differences, 133
effects defined, 136
plot, 134
split plot design example, 248

mean squares
Latin Square Design, 194
one factor CRD, 85
split plot design, whole units in

CRD, 241



INDEX OF SUBJECTS 367

measurement units, 15
model

population effects for Latin Square
Design, 193

population effects for one fac-
tor CRD, 82

population effects for one fac-
tor GRCBD, 189

population effects for two fac-
tor CRD, 137

population effects, one factor CRD
with subsampling, 277

population means for one fac-
tor CRD, 82

popululation effects for one fac-
tor RCBD, 177

sample effects for one factor CRD,
82

sample means for one factor CRD,
82

split plot design, whole units
in completely randomized
design, 240

split plot, whole units blocked,
253

MSE
sample variances, 89

multiple comparison
Tukey-Kramer, two factor main

effect means, 150
multiple comparisons

Bonferroni method, 115
comparison of methods, 120
comparison-wise, experiment-wise

confidence level, 114
comparison-wise, experiment-wise

significance level, 114
paired for one factor CRD, 105
Studentized Range Distribution,

118
Tukey-Kramer for one factor RCBD,

184
Tukey-Kramer for RCBD, 180
Tukey-Kramer for split plot de-

sign, whole units in CRD,
246

Tukey-Kramer method, 118
Tukey-Kramer with interaction,

154
Tukey-Kramer, one factor CRD

with subsampling, 278
Tukey-Kramer, split plot with

whole units blocked, 258
unadjusted t CI one factor CRD,

106

observational studies
definition, 1

placebo, 3
pooling variances, 52
population, 29

mean, 29
normal, 29
parameter, 29
variance,standard deviation, 29

power
pooled two sample t test, 62

random effect, 7
random variable, 30
repeated measures

compound symmetry, 296
correlation coefficients, 285
equal correlations, 285
Greenhouse-Geisser P-value ad-

justment, 301
Huynh-Feldt condition, 289
Huynh-Feldt P-value adjustment,

301
Mauchly test, 300
mixed model approach, 302
multivariate methods, 301
related to split plot designs, 282
relation to blocking, 171
summary of repeated measures,

301
response variable, 1

sample, 29
mean, 30
random, 30
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two dependent samples, 56
two independent samples, 47
variance,standard deviation, 30

sampling distribution
Central Limit Theorem, 32
F for one factor CRD, 87
sample mean, 31
Studentized Range Distribution,

118
two independent sample means,

48
standard error of mean, 35
standard normal random variable,

30
Student’s t distribution

properties, 34
Table A.2, 34

subsampling
analysis, 275

sum of squares
identity for one factor CRD, 91
one factor CRD, 85
one factor CRD with subsam-

pling, 278
one factor Latin Square Design,

194
split plot design, whole units in

CRD, 241
two factor CRD, 140

systematic effect, 7

table
F distribution, A.7,A.8, 87

treatment structure, 17
treatments, 1, 6
two factor CRD, 137

variable, 5
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Index of Studies

accident loss working hours, 173
alcohol and glass shape, 45, 72
alzheimers and ginkgo, 69
auditing training, 178, 220, 228

back pain and exercise, 100
back pain treatment, 283
balloon inflation, 23, 209, 311
battery lifetimes, 207, 214, 226
beer drinking and music, 74
blood flow in humans, 284
bone marrow, 23
bread baking, 19, 242, 284
breast cancer and exercise, 24
broiler hens and groundnuts, 310
butter melting times, 161, 231

caffeine and muscles, 199
caffeine drinks and sprinting, 283
cake baking, 254
candle burning, 68, 197
canine atherosclerosis, 234
cereal box covers and sales, 106
chick weight gain, 73
chicken manure and alfalfa growth,

269
chocolate endurance, 13
cookie diameters, 12
cookie diameters two, 271
cookie dipping, 25
cooling liquids, 234
cooling liquids 2, 249
cooling liquids three, 269
cooling liquids two, 272
credit card fees, 173
cupcake heights, 276
cupcake heights two, 279
cups and cooling liquids, 26

depth perception, 3, 6, 14
divers and recall, 193
dryer balls, 24, 73, 101
duck decoys, 26

egg buoyancy, 165, 235
experiment

two factor CRD, 131

fish and acid rain, 102
fish feeding, 20
freeze-dried strawberries, 17
frozen dinners and calories, 44

grass seed growth promotion, 151
gum chewing and stretching, 312

ice melting and beverages, 99, 124
ice melting and oven, 266
incense burning, 231
infants and breathing, 196

laying hens and eggs, 198
leaf folding and red light, 103, 128,

236
leghorn chickens and protein, 200
lip forces, 71
liquid evaporation, 18
loin steak thawing, 18

marginal means in two-factor study
definition, 132

marigold plant growth, 27
marshmallows and microwaving, 160
mealy bug treatment, 276
meat heating, 4, 9, 12, 14, 27
meditators quality of life, 24, 44
memory distraction, 3, 5
music and font color and memory,

265
music and plant growth, 98
music and treadmill running, 27

Nerf gun shooting, 159, 211, 220

obsessive compulsive disorder, 20

paper planes flight distance, 310
paper towels and absorption, 145,

166, 216, 228
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pasta boiling, 25
petunia growth, 265
pigs and garlic, 24
pine tree production, 70
premenstrual syndrome, 172

rat weights over time, 285
reading scores, 52
recalling words, 59, 187
resin lifetimes, 218
rubber band strength, 17, 43, 163

salt and boiling temperature, 26
salt dissolution and pH, 268
SAT prep course, 174
serum lipids and cholesterol, 163
sexual stimuli and eye tracking, 101,

125
soda crackers and moisture, 313
soil mulching on moisture, 276
squirrel feeding, 70
sugar and hunger, 291

teaching stats methods, 110
textbook costs, 35
tomato yields and fertilizer, 159
tooth types and bond strengths, 127
toothpaste and abrasiveness, 126
trucking routes, 69, 94

yogurt quality, 175


