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Abstract

We expand on Tutte’s theory of 3-blocks for 2-connected graphs, generalizing it to
apply to infinite, locally finite graphs, and giving necessary and sufficient conditions for
a labeled tree to be the 3-block tree of a 2-connected graph.
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1 Introduction

Connectivity properties of graphs are among the basic aspects of graph theory. Every graph is
the disjoint union of its connected components, and every connected graph is the edge disjoint
union of its maximal 2-connected subgraphs, encoded in the block-cutpoint tree. A canonical
decomposition for finite 2-connected graphs was given by Tutte [11] in the form of the 3-block
tree, and generalized to matroids by Cunningham and Edmonds [1]. Such decompositions are
important tools in inductive arguments and constructions. Hopcroft and Tarjan [4] gave an
important algorithm for computing the 3-block tree of a graph in O(V + E) time, which is
comparable to the complexity of computing other non-canonical decompositions, say the ear
decomposition, and is also applicable to matroids. Effective decompositon schemes for graphs
of connectivity 3 and higher have been given, but none are canonical, and in Section 6 we
argue that none will be forthcoming. The uniqueness of Tutte’s construction may be exploited
to study the symmetry properties of graphs with low connectivity, [8] and [2], particularly in
the case of planar graphs [3]. In this paper we will examine the interpretation of Tutte’s
decomposition and extend the theory to infinite graphs.

2 n-Connectivity

We are concerned with the structure of locally finite graphs of connectivity less than 4, allowing
graphs to have loops and multiple edges. If a graph G has at least 3 vertices and is not a
triangle, then G is defined to be n-connected if G has girth at least n and any two vertices
of G are joined by n internally disjoint paths. To avoid uninteresting special cases, the
connectivities of the small graphs in Figure 1 are said to be infinite. This definition of n-

1Supported by a James Madison University Faculty Summer Research grant.
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Figure 1: Infinitely connected graphs.

connectivity, also known as Tutte connectivity, was introduced in [9], see also [6], and differs
for simple graphs from the usual definition of n-connectivity only for n > 3, with the exception
of the special cases in Figure 1, and has the advantage of being generalizable to matroids, [10],
and being invariant under dualization.

We call a graph on two vertices connected by parallel edges a multilink. Note, that with
the above definition, multilinks on more than three edges are only 2–connected.

For any graph G , there is an equivalence relation defined on the edges of G by setting
e ∼= e′ if e and e′ lie on a common cycle, or e = e′. The equivalence classes are either single
edges or induce maximal 2-connected subgraphs of G, and are called the blocks (or 2-blocks)
of G. The block–cutpoint tree is the graph defined on the union of the set of blocks and the
set of cutpoints, with a cutpoint adjacent to each of the blocks to which it belongs. It is
obvious that this graph is a tree. In general, one might hope that any k–connected graph
decomposes as the union of subgraphs which are either k + 1–connected or have at most k
vertices. However, this is not the case, since a 2-connected graph may have no non-trivial
3-connected subgraphs at all, as in Figure 2.

In the interest of analogy, therefore, it is preferable to regard a block–cutpoint tree as an
encoding of the instructions for assembling a 1-separable graph from simpler pieces using the
operation of vertex–union.

Let A and B be graphs and suppose there are functions fA : e → A and fB : e → B,
where e is a graph consisting of two vertices 1 and 2 joined by an edge which we will also call
e. Define the edge amalgam of A and B over f—denoted A +f B—to be the graph obtained
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Figure 2: Edge amalgamation.

from the disjoint union of A and B by identifying vertex fA(1) with fB(1), vertex fA(2) with
fB(2), and erasing the edges fA(e) and fB(e), see Figure 2. The edge amalgam, also called
2–sum in [6], is analogous to the symmetric difference of sets, and in A +f B we can regard
the graph B− fB(e) as taking the place of fA(e) in A, and vice versa. Whenever possible, we
will indicate the edge functions fA and fB by simply labeling the edges fA(e) and fB(e) the
same in A and B, in which case we write A +e B or just A + B.

It is clear that A and B are 2-connected if and only if A +f B is 2-connected. The edge
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fA(e) is called an amalgamated edge of A. If X denotes the subgraph of A obtained by erasing
the amalgamated edge, X is also a subgraph of A +f B and we write A = X.

Edge amalgamation is a commutative operation, so A+fB ∼= B+fA. but it is not in general
associative, since (A +f B) +g C may be rewritten as A +f (B +g C) only if gA+B(e) belongs
to B. If both expressions are defined, they are equal, and note that, since the amalgamated
edges are erased, it must be true that fB(e) 6= gB(e). Since the associativity is conditional, it
is not in general possible to simply ignore the parentheses in a long expression, in particular
whenever some term has more than two amalgamated edges. A more convenient notation for
the result of a sequence of edge amalgamations, therefore, is a labeled tree in which the nodes
are labeled with graphs, and the edges are labeled with the two functions indicating which
edges are amalgamated in the endpoint graphs. Necessarily, the amalgamating edges at any
node of this tree must be distinct. We call such a labeled tree T an edge amalgam tree, and let
G(T ) denote the graph obtained from the disjoint union of the node labels by amalgamating
along the edges determined by the edge functions.

To avoid confusion between G(T ) and T , we will hereafter refer to the vertices and edges of
an edge amalgam tree as nodes and links, and denote them with Greek as opposed to Roman
letters.

For a finite edge amalgam tree T , it is clear that G(T ) is 2-connected if and only if the
node graphs are 2-connected, and that G(T ) is locally finite if and only if the node graphs are
locally finite. For infinite trees, however, neither is the case, as can be seen from Figures 3
and 4. Accordingly, we shall give conditions under which an edge amalgam tree defines a
locally finite 2-connected graph.

3 The 3-block tree

A graph G is said to be a 3-block if it contains at least three edges and is either a circuit, a
finite multilink, or a simple, locally finite 3-connected graph.

Let T be a countable edge amalgam tree. We call T a 3-block tree if the following conditions
are satisfied:

1. If {α, β} ∈ E(T ) then Gα and Gβ are not both circuits, nor are they both multilinks.

2. If η = {α, β} is a link in T amalgamating an edge e in Gα, then there is a finite subtree
T ′ ≤ T with α ∈ T ′ and β 6∈ T ′, and a path in G(T ′) joining the endpoints of e which
is made up entirely of edges unamalgamated in G(T ).

3. For each vertex v of Gα, α is contained in a finite subtree Tv < T such that star(v) in
G(Tv) consists entirely of edges unamalgamated in T .

We impose condition 1 since circuits and multilinks would otherwise have many inequiva-
lent 3-block trees. Condition 2 avoids the situation of Figure 3 in which each amalgamation
increases the length of a circuit, resulting in a graph with cut vertices. Condition 3 insures
local finiteness, disallowing amalgamations such as in Figure 4. Note that we do not require
T itself to be locally finite; for instance, one may amalgamate a triangle to each of the edges
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Figure 4:

of an infinite locally finite 3-connected graph (effectively subdividing each edge). In order to
describe this graph as G(T ), T must be an infinite star.

Note also that, while the edges of G(T ) are partitioned according to the 3-blocks to which
they belong, all edges of a particular 3-block may be amalgamated, in which case the 3-block
will not correspond to any collection of edges of G(T ).

Lemma 1 If T ′ is a finite subtree of T , then G(T ′) is homeomorphic to a subgraph of G(T ).

Proof: Every edge in G(T ′) which is not in G(T ) is amalgamated, so replace each with the
path of unamalgamated edges in G(T ) − G(T ′) which is guaranteed to exist by condition 2.
2

Lemma 2 For any 3-block tree T , G(T ) is locally finite and 2-connected.

Proof: G(T ) is locally finite by condition 3.
Clearly, any finite 3-block tree represents a 2-connected graph. Let v and w be distinct

vertices of G(T ), and suppose they correspond to vertices v′ ∈ Gα and w′ ∈ Gβ. Let T ′ be
any finite subtree of T containing α and β. Then G(T ′) is 2-connected, so there are two
internally disjoint paths in G(T ′) from v′ to w′. Since G(T ′) is homeomorphic to a subgraph
of G(T ), there are two such paths joining v and w in G(T ), as well. 2

It is our aim to prove

Theorem 1 Any locally finite 2-connected graph G corresponds to a unique 3-block tree T .

We will prove Theorem 1 in two steps. In the next section, we will show how to construct
a particular 3-block tree for G, and in the one following, we show that this tree is unique.
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4 Existence of 3-block trees.

Given a pair of vertices {a, b} in a graph G, there is an equivalence relation defined on the
edges of G by setting e and e′ equivalent if there is a path in G containing both e and e′,
and which has neither a nor b as an internal vertex. The subgraphs of G which carry the
equivalence classes are called the bridges of G with respect to {a, b}. Two distinct bridges
clearly can intersect only at a and b, and if G is 2-connected, their intersection is exactly {a, b}.
G may thus be regarded as the union of its bridges along {a, b}. However, these bridges may
not be themselves 2-connected. If a bridge with respect to {a, b} in a 2-connected graph G
consists of more than a single edge, then adding a new edge connecting a and b to that bridge
does give a 2-connected graph, and we call these graphs the branches of G with respect to
{a, b}.

The deletion of e from G, denoted G − e, is the graph obtained from G by deleting the
edge e, but not its endpoints. The contraction of e in G, denoted G · e, is obtained from G− e
by identifying the endpoints of e.

Let G be a locally finite 2-connected graph. Choose an arbitrary edge e of G, and let a
and b be its endpoints. We will construct a 3-block tree Te with G(Te) = G.

We call e undeletable if G − e is 1-separable, incontractible if G · e is 1-separable, and
ordinary otherwise. An edge e cannot be both undeletable and incontractible. since the first
requires that every cycle containing the endpoints of e also contain e, while the second insures
two vertices u and v so that every path from u to v passes through one of the endpoints of e,
so neither the two disjoint paths from u to v could contain e. Note that if T is a 3-block tree,
then condition 3, and the fact that edge amalgamation does not destroy cutpoints, guarantees
that if the edge e ∈ G(T ) belongs to the 3-block Gα, then its type—undeletable, incontractible
or ordinary—in G(T ) is the same as its type in Gα.

We begin the construction of Te by defining T0 to consist of a single vertex α0 labeled “G,”
with distinguished edge e. Then T0 is an edge amalgam tree (though not a 3-block tree) and
G = G(T0).

To define T1, we perform what we will call a simple expansion of the vertex α0 at the edge
e; that is, we will replace α0 with a star which is an edge–amalgam tree for Gv0 (though,
again, not a 3-block tree.)

First, we define the graph Be—the 3-block of G containing e. This will be the label of the
central node of T1. We consider three cases, depending on the type of the edge e.

e undeletable. In this case, G− e is not 2-connected, and its block–cutpoint tree is a
non-trivial path A1, v1, A2, . . . , vk−1, Ak, where the vertices Ai correspond to blocks of
G − e and the vi are the cut vertices of G − e. Set v0 = a and vk = b. Let Be be the
(k + 1)–cycle with vertices v0, v1, . . . , vk, and let ei denote the edge of Be joining vi and
vi+1 (subscripts modulo n.) If some Ai consists of more than a single edge, we define
Ai to be the graph obtained from Ai by adding an edge ei joining vi and vi+1. G is
then obtained by amalgamating each Ai to Be along ei, identifying any unamalgamated
edges ei with the corresponding edge in G (see Figure 5.)

Remark 1. If Ai is not a single edge then it is 2-connected (since it is a block of G−e),
so the edge ei is not undeletable in Ai.
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Figure 5: Simple expansion at an undeletable edge.

e incontractible. Let A1, . . . , Ak denote the bridges of the endpoints of e; there are
only finitely many of them, since G is locally finite. Then k ≥ 3 and one of the Ai is
the edge e itself. If Ai consists of more than a single edge, let Ai denote the graph Ai

with a new edge ei joining a and b. If Ai is a single edge, set ei = Ai. Let Be denote the
multilink consisting of e together with all the edges “ei.” G is again the amalgam of Be

with the graphs Ai along the edges ei (see Figure 6.)

−→

�
�

���
�

�
��

J
J

JJ
Z

Z
Z

ZZ�
�

�
��
Z

Z
Z

ZZJ
J

JJ
�

�
��

t t
t

t
t t

�
�

���
�

�
��

J
J

JJ
Z

Z
Z

ZZ

t t
t

t

t

t �
�

�
��
Z

Z
Z

ZZJ
J

JJ
�

�
��

t

t
t te e

Figure 6: Simple expansion at an incontractible edge.

Remark 2. Since Ai has a single bridge with respect to {a, b}, ei is not incontractible
in Ai.

e ordinary. We first define a partial order on the collection of all subgraphs Yi ⊆ G for
which G = Xi + Yi for some Xi properly containing e. Specifically, we set Yj � Yi if
Yi = Z + Yj for some subgraph Z. Let {Ai} denote the collection of maximal elements
with respect to this partial order, and let ai and bi be the vertices of attachment of Ai.

Lemma 3 Two maximal elements Ai and Aj intersect in at most one common vertex
of attachment.

Proof: Let G = Xi + Ai = Xj + Aj. If Ai and Aj had both vertices of attachment in
common, then we could write G = Xi ∩Xj + Ai ∪ Aj, and Ai ∪Aj = Ai + Aj, contrary
to the maximality of Ai and Aj.

Suppose Ai and Aj have an interior vertex v in common. Then there are two internally
disjoint paths joining v and e, each passing from Ai to Xi and also from Aj to Xj. By
the above, not both ai and bi can belong to Ai nor to Aj. Choose notation so that the
paths are labeled as in Figure 7. Thus bj ∈ Ai and bi ∈ Aj, and every path from any
internal vertex of Ai to e which does not pass through ai must pass through bi, which
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is in Aj. Thus, the path must continue through aj, since if it continued through bj,
it would still be within Ai. But then {ai, aj} separates Ai ∪ Aj from e, violating the
maximality of Ai, so Ai and Aj have no interior vertex in common. 2

In this case, we form Be by replacing each Ai with a new edge ei joining ai and bi, and
we form Ai by adding the edge ei to Ai. It follows from the maximality of the Ai that Be

is simple (since otherwise a multilink could be split off of Be) and that Be is 3-connected
(since if there were a two-cutset, one of its bridges could be split off of Be.) Further,
Be is locally finite since no vertex of Be has larger valence in Be than it has in G. Once
again, G is the amalgam of Be with the {Ai} (see Figure 8.)
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Figure 8: Simple expansion at an ordinary edge.

T1 is a star whose central vertex β is labeled “Be,” and whose pendant vertices {αi} are
labeled with the various Ai. Given a link η = {β, αi} in T1, define the edges ηβ and ηαi to be
the edges ei in Be and Ai, respectively, with the obvious orientations. Clearly, G = G(T1).

Next, suppose Tn has been defined and construct Tn+1 by performing, for each pendant
node α of Tn which is not a 3-block, a simple expansion of α at the edge ηα (where η is the
unique edge of Tn incident to α).

Then G = G(Tn+1), and each nonpendant node of Tn+1 is labeled with a 3-block. Moreover,
by remarks 1 and 2 above, no two adjacent nodes of Tn+1 are labeled with either links or
circuits.

Let Te = lim Tn.
Let T 0

n denote the edge amalgam tree obtained from Tn by removing the pendant nodes
which are not 3-blocks and let G0(Tn) be the graph obtained from G(T 0

n ) by removing the
edge ηα for each pendant link η ∈ Tn with endpoint α ∈ T 0

n (in effect, we remove from G(T 0
n )

all those edges which are amalgamated in G(Te)).
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It is clear that the G0(Tn) constitute an increasing sequence of subgraphs of G(Te) and
that lim G0(Tn) = G(Te). It is also clear that the G0(Tn) are subgraphs of G; thus, to prove
that G = G(Te), it suffices to show

Lemma 4 Each finite subgraph of G is contained in G0(Tn) for some n.

Proof: It suffices to show that each edge of G belongs to one of the graphs Gα for some
node α ∈ T , for then we may choose n so large that α is a node of T 0

n .
Let e′ be any edge of G. If e′ ∈ Be, then e′ ∈ G0(T1), so suppose e′ 6∈ Be. Let d be

the length of a shortest circuit in G containing both e and e′. Let α be the node of T1 with
e′ ∈ Gα, and let e′′ = ηα, where η is the link of T1 connecting α to the central vertex. Then the
length of a shortest circuit in Gα containing both e′ and e′′ is either d (if Be is a multilink) or
strictly less than d (otherwise). Since two multilinks cannot be adjacent in any Tn, it follows
by induction that e′ belongs to Gγ for some node γ ∈ T 0

n for some n, and since e′ is not
amalgamated, it belongs to G0(Tn+1). 2

So we have that G = G(Te), and by the lemma, Te satisfies conditions 2 and 3, and so Te

is a 3-block tree representing G.

5 Invariance of Te

Proposition 1 Let G be a locally finite 2-connected graph, and let e be an edge of G. If T is
any 3-block tree for G, then T = Te.

Proof: We will show that the 3-block of T which contains the edge e is equal to Be in Te.
Once this is established, then the subgraphs Ai are determined, and an induction shows that,
for all k, the subtree of T consisting of all nodes a distance k from the node labeled Be is
identical with the corresponding subtree of Te, and the result follows.

Let α be the node of T whose graph Gα contains e.
If e is undeletable, then Gα is a cycle C, and the internal vertices of C − e correspond to

cutpoints of G−e. Let e′ be an amalgamated edge along this cycle. Then e′ = ηα for some link
η with endpoint α. Let β be the other endpoint of η. Let T ′ denote the component of T − η
containing β, and let e′′ = ηβ. Then e′′ is not undeletable in G(T ′), since otherwise, Gβ would
be a cycle, as well. Therefore, every cutpoint of G− e is a vertex of C, and Gα = C = Be.

If e is incontractible, then Gα is a multilink, and each component of T − α corresponds
to a union of some of the bridges of the endpoints of e. If some such component, say T ′,
corresponds to more than one branch, then its amalgamated edge e′ will be incontractible in
G(T ′), and so the 3-block Gβ containing it is a multilink. But β is adjacent to α in T , so this
is impossible. Therefore, each component of T −α corresponds to exactly one branch, and so
Gα = Be.

If Gα is simple, locally finite and 3-connected, then e is ordinary in G. Thus, Be is also
simple, locally finite and 3-connected. We must show that Be = Gα.

Let η be a link in T joining α with, say, β, and let T ′ be the component of T −α containing
β. Then it is clear that the subgraph G(T ′)−ηβ of G(T ) is maximal with respect to the partial
order defined earlier, and the same is true for every link of T incident with α. Since these
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maximal elements are uniquely determined once e has been chosen, it follows that Gα = Be.
2

6 Higher connectivity

The decomposition of a 2-connected graph into its 3-block tree is distinguished from other
decompositions of 2-connected graphs by the fact that the 3-block tree is uniquely defined.
Thus any symmetry exhibited by the graph T (G) will be reflected in the tree T . Specifically,
any automorphism of G(T ) induces an automorphism of T . This is also true in the case of
the block-cutpoint tree, however, analogous decompositions of graphs of higher connectivity,
see [7], are not unique.

Theorem 2 Let G be a simple 1-connected vertex transitive graph. Then either G is 2-
connected or its block-cutpoint tree is infinite.

Proof: Let T be the block-cutpoint tree. If T is finite, then it has a center, which is an
edge or a vertex. The center cannot be an edge, since the cutpoint corresponding to one of its
endpoints would be distinguished in G. Similarly, the center cannot be a node corresponding
to a cutpoint, so the center is a node corresponding to a block. Moreover, the central block
must contain every vertex of G, so any other block can at most be a loop, and since G is
simple, there is only one block. 2

A similar result is also true for 2-connected graphs.

Theorem 3 Let G be a simple 2-connected vertex transitive graph. Then either G is either a
cycle, 3-connected or its 3-block tree is infinite.

Proof: Let T be the 3-block tree. If T is finite, then it has a center, which is an edge or a
vertex. The center cannot be a link of T , since the two endpoints of the amalgamated edge
corresponding to it would be distinguished, and G is not a multilink.

Thus the center is a node, and that node cannot represent a multilink, since, again, its
endpoints would be distinguished in G. Every vertex of G must be in the 3-block of the central
node, hence every other 3-block is a mulitlink. Since G is simple, T consists of exactly one
3-block, hence G is a cycle or 3-connected. 2

The pattern of these two proofs indicates the “meta-result” that there cannot be a canon-
ical tree decomposition of 3-connected graphs in analogy with two and one connectivity, since
we know there exists infinitely many finite 3-connected vertex transitive graphs which are not
4-connected, e.g. the Cayley graphs of finite groups with three generators, and these graphs
would have to be indecomposable.
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