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Given a graph X, we define a group GX as follows: GX is generated by
the vertices of X, with a defining relation xy = yx for each pair x, y of ver-
tices joined by an edge of X. A group is called a graph group if it is
isomorphic to GX for some graph X. We will not distinguish by notation in
what follows between a vertex of X and the corresponding element of GX.

We remark that the “extreme” cases of graphs, namely the complete and
the completely disconnected graphs, correspond, respectively, to free
abelian and free groups. It is well known that any subgroup of a group of
either of these types is again of the same type, and it is thus natural to ask
to what extent and in what form this is true of the graph groups that lie
“in-between” these extreme cases.

In this article we will prove the following:

THEOREM. Let X be a finite graph. Then every subgroup of the graph
group GX is itself a graph group if and only if no full subgraph of X has
either of the two forms

C4 L3

Certainly the theorem holds for the (unique) graph with one vertex. We
next demonstrate the sufficiency of the stated condition for graphs with
more than one vertex.

Suppose first that X is not connected, say the components of X are
X,, .., X,,. Then GX is the free product of the groups GX,, .., GX,,. If X has
no subgraphs isomorphic to either C, or L;, then neither has any of the
graphs X,, so by induction, any subgroup of any of the groups GX; is a
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graph group. But any subgroup of GX is isomorphic to the free product of
a free group and certain conjugates in GX of subgroups of the GX;. Since
both free groups and free products of graph groups are graph groups, so is
every subgroup of GX.

Now suppose X is connected.

LEMMA. If X is a finite connected graph with no full subgraph isomorphic
to either C, or L, then there is at least one vertex of X which is joined to
every other vertex of X.

Proof. 1If X is a complete graph, this is clear. Suppose X is not com-
plete. Let ¥ be the vertex set of X, and let S be any minimal separating set
of vertices of X. Since X is connected, S is nonempty. Clearly, every circuit
of X of length at least 4 has a chord, so by [2, Solution to Problem 9.29b],
S induces a complete subgraph of X. Let x be any vertex in S. We will
show that if y lies in ¥ — S, then x and y are adjacent. Let X5, denote the
graph obtained from X by deleting the vertices in S and all edges which
have an endpoint in S. Then X g, is not connected. Let C, denote the com-
ponent of X s, containing y, and let C be any other component of X s,.
Since S is a minimal separating set, there must be a vertex y’ in C, adjacent
to x, and a vertex z in C adjacent to x. Suppose x and y are not adjacent.
Since C, is connected, we may suppose that y and y’ are adjacent. But then
the subgraph of X induced by the vertices x, y, ¥, and z is isomorphic to
L, a contradiction.

Let z be any vertex of X which is adjacent to all the other vertices of X,
and let X ., denote the graph obtained from X by deleting the vertex z and
all edges of X which have z as an endpoint. Then z is in the center of GX,
so GX=<{z)xGX, Let p:GX—GX denote projection onto the
second summand. Then there is an exact sequence

1— () — GX GX,)— 1.

Let H be a subgroup of GX, and consider the corresponding exact
sequence

1— Hn{z)— H-25 pH— 1.

We will show that this sequence splits. By induction, pH is a graph group
(since X ., has fewer vertices than X, and X ., has no subgraph of either of
the “forbidden” forms), say pH = GY for some graph Y. Given any he€ H,
p(h) h—'e (z), so for each vertex y of Y, there is an element of the form
yz" in H. Define i(y)=yz" To see that this indeed defines a
homomorphism, suppose that y and y’ are adjacent vertices of Y. Then
[i(y), i(y')]=[yz", y'z"]1=[y, y¥’1=1, since z is in the center of GX.
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Clearly, pi=1,,. But Hn {z) is in the center of H, so H=Hn {z) x pH.
We claim that H is a graph group. If Hn (z) is trivial, this is clear. If
Hn {z) is infinite cyclic, then H=GY’, where Y’ is the graph obtained
from Y by appending a new vertex which is adjacent to all the other
vertices of Y.

We now demonstrate the necessity of the given condition. It will suffice
to find non-graphic subgroups of the groups GC, and GL,, since if Y is a
full subgraph of X, then the subgroup of GX generated by the vertices of Y
is isomorphic to GY.

GC, is isomorphic to the direct product of two free groups of rank two.
This group is not coherent [4]; that is, GC, has a subgroup which is
finitely generated but not finitely related. Clearly this subgroup cannot be a
graph group.

Let ¢ denote the generator of the group Z,, and let K denote the kernel
of the homomorphism s: GL; — Z, defined by setting s(v) = ¢ for each ver-
tex v of L;. We will show that K is not a graph group. To do this, we will
need the following observations: let X be a finite graph and let G= GX.
There is an exact sequence, due to Dicks [1]

O_'(ZG)ZI"—)(ZG)dnfl_) _.;(ZG)do_,2_,0

of left ZG-modules, where d; is the number of i-vertex complete subgraphs
of X (dy=1). Thus, G has Euler characteristic y(GX)=Y (—1)"d,. Note
that 4, is the number of vertices of X and d, is the number of edges. If X is
a tree, then d;=0 for all i>2, so y(GX)=1—d, +d,=0, by a well-known
fact about trees.

The other fact which follows from Dicks’ sequence is that the
cohomological dimension of GX, cd(GX), is equal to the size of the largest
complete subgraph of X. In particular, if X is a tree, then cd(GX) = 2.

Let us apply these facts to the subgroup K of G=GL;. K has index two
in G, so the above sequence is also a resolution of Z by finitely generated
free K-modules. Thus, cd(K) <cd(G)=2. Also, by Schanuel’s Lemma, the
Euler characteristic is independent of the choice of finitely generated
resolution, so because ZG is a free ZK-module of rank two,
x(K)=2x(G)=0.

Now, a straightforward (but tedious) application of the Reidemeister-
Schreier technique shows that K has the presentation

{a, b, c,d|ab=ba, bc = cd, bc*d = dbc*)

(The generators a, b, ¢, and d correspond, respectively, to the elements
x 'y, %,y 'z,and z7'w of K.)

Suppose that K is a graph group, say K= GY. Then, since K/K' is free
abelian of rank 4, Y must have 4 vertices. Also, since cd(K)<2, Y has no
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triangles. This, together with the fact that y(K) =0 implies that Y is a tree.
There are only two trees with 4 vertices,

and °

a b

To rule out graph (a), we note that K has trivial center. This follows from
the fact that K is isomorphic to the free product of the groups
{a,b,clab=ba, bc=cb) and {c’,d|c'd=dc’) amalgamating the infinite
cyclic subgroups generated by bc* (resp. ¢’). Since no power of bc? com-
mutes with @, [3, Corollary 4.5] implies that K has trivial center.

We will rule out graph (b) by proving that K is not isomorphic to GL;.
Denote by K, the quotient K/[K,K'] and by G, the quotient
GL,/[GLs, GL,]. In K,, 1=[bc? d]=[b,d][c,d]’ so that, modulo
(K3)? the image of b is central. Suppose the element g in G, is central
modulo (G5)?, say g=x”y"z°w'C, where Ce Gj.

Then [x, g]1=1[x, z]° [x, w]'€(G5)>. But G5 is a free abelian group
generated by the basic commutators [x, w], [x, z], and [y, w], so s and ¢
must be even. Considering [w, g] shows that p and r must also be even.
Thus, g is a square modulo G5. But K,/K,=K/K' is a free abelian group
generated by the images of a, b, ¢, and d, so that b cannot be a square
modulo Kj. Thus, K and GL; are not isomorphic, so K is not a graph
group.
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