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1. INTRODUCTION

We study groups given by presentations each of whose defining relations
is of the form xy = yx for some generators x and y. To such a presentation
we associate a graph X whose vertices are the generators, two vertices x
and y being adjacent in X if and only if xy = yx is a defining relation.

Given a graph X, we denote by GX the group defined by the presen-
tation associated to X in this way. We call GX a graph group. These groups
have been studied by Kim and Roush [8], and by Dicks [3].

In this paper we prove the following:

THEOREM 1. If X is a finite graph, then the group GX is coherent if and
only if each circuit of X of length greater than three has a chord.

(Recall that a group is called coherent if each of its finitely generated sub-
groups is finitely presented.)

THEOREM 2. If X is a finite graph, then the group GX is the fundamental
group of a three-dimensional manifold if and only if each connected com-
ponent of X is either a tree or a triangle.

II. GRAPH-THEORETIC TERMINOLOGY

We refer the reader to [9] for terminology in graph theory not defined
here. A full subgraph U of a graph X is a graph whose vertex set is a subset
of the vertex set of X, two vertices being adjacent in U if and only if they
are adjacent in X. Since each full subgraph of X is determined by its vertex
set, we call U the subgraph of X induced by its vertex set. We denote by
{§) the subgraph of X induced by the subset S of the vertices of X. Note
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that the subgroup of GX generated by the elements of S is isomorphic to
G{S).

A vertex x of the graph X will be called central if x is adjacent to all the
other vertices of X.

I1I. GROUP-THEORETIC PRELIMINARIES

Let X be a finite graph. Given an element g€ GX, with g=x{' x3" " X},
where each x; is a vertex of X, we define

|g|=91+ez+ Sz ‘+‘ek.

|g| is independent of the expression of g as a product of powers of
generators, since each relator has exponent sum 0. Let KX=
{geGX:|g|=0}. Clearly KX is a subgroup of GX.

If U and V are full subgraphs of X, with X=Uu Vand W=UnV, then
GX=GU%, GV, as follows easily by examining generators and relations.
In particular, if U V is empty, then GX = GU*GV. Since free products of
3-manifold groups are 3-manifold groups [4, Lemma3.2], and free
products of coherent groups are coherent [7, Theorem 8], it will suffice to
prove Theorems 1 and 2 for connected graphs.

PROPOSITION. Let X be a finite connected graph, and let U and V' be full
subgraphs of X with X=Uu V and W=UnV. Then

KxX=KU x KV
Kkw

Proof. Since GX =GU %5, GV, [11, Theorem 137] implies that GX acts
on a directed tree Y, whose vertices are the left cosets of the subgroups GU
and GV in GX, and whose edges are the left cosets of GW in GX. Thus KX
acts on Y also. In fact, KX acts transitively on the edges of Y; to see this,
let w be any vertex of W, and let gGW be any edge of Y. Then
wielg~'e KX, and (w'¥' g~ ') (gGW)=w'*IGW=GW, so there is only one
orbit of edges under the action of KX. Since the vertices GU and GW lie in
different orbits of the KX-action on Y, the quotient directed graph Y/KX
consists of two vertices joined by an edge, so again by [11, Theorem 13],

KX=KXnGU = KXmGV=KUK* KV.
w

KXnGW

COROLLARY. Let T be a finite tree with n+ 1> 0 vertices. Then KT is a
free group of rank n. Further, KT is freely generated by a set of elements
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ki, ks, k, in one-to-one correspondence with the n edges of T; the
generator corresponding to the edge joining the vertices x and y may be
chosen equal to either x 'y or y~'x.

Proof. This is clear if n=0 or if n=1. If n> 1, choose a pendent vertex
x of T, let y be the unique vertex of T adjacent to x, and let 7" denote
the tree obtained from T by deleting the vertex x and the edge joining
x and y. Then GT=GT #*5,, G{x,y), so by the above proposition,
KT = KT %, K{x, y>. By induction, KT" is free of rank n— 1. Clearly
K{x, y> is infinite cyclic, and K{y) is trivial, so KT is free of rank n. The
assertion about generators follows from induction and the fact that each of
x 'y and y~'x generates K{x, y).

IV. PROOF OF THEOREM |

Suppose every circuit of X of length greater than three has a chord. If X
is complete, then GX is finitely generated free abelian, and so coherent.
Otherwise, X has a separating set A of vertices which induces a complete
subgraph of X [9, Solution to Problem 9.29b]. That is, there are proper
full subgraphs X, and X, of X such that X=X, U X,, (A>=X,nX,, and
(A is complete. Thus,

GX=GX, *» GX,
G{A>

Every circuit of either X, or X, of length greater than three has a chord, so
by induction, GX, and GX, are coherent. G{A ) is finitely generated free
abelian, so by [7, Theorem 8], GX is also coherent.

Now suppose that the graph X is a circuit of length greater than three
and let x and y be two nonadjacent vertices of X. Then there are proper full
subgraphs X, and X, of X such that X=X,0X,, X,nX,= {x,y>, and
X, and X, are trees. Thus,

KX=KX, +« KX,

K{x,y>

Each of KX, and KX, is a finitely generated free group, so KX is finitely
generated. K{x, y)> is the normal closure in the free group G(x, y> of
x 'y, so K{x,y) is not finitely generated. By [1], KX is not finitely
presented, so GX is not coherent. It follows that if some circuit of X of
length greater than 3 has no chord, then GX has a noncoherent subgroup,
and is thus itself not coherent.
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V. AN ORDERING OF THE VERTICES OF A TREE

Let T be a finite tree, and let x, be a pendent vertex of T. We will
describe a linear ordering of the vertices of T which we will use in the proof
of Theorem 2. Given a vertex y, denote by star *(y) the set {z: y lics on the
path joining x, to z}. This is well defined since T is a tree. Define star(y) to
be the set of vertices in star* () which are adjacent to y. We order the ver-
tices of T as follows: first, for each vertex y, arbitrarily order the set star(y).
Then, given 2 vertices y and z of T, set y <z if either of the two conditions
below is satisfied:

(i) zestar*(y),

(ii) there are vertices v, ¥o, and zo With yo, zpestar(v), yestar (o),
zestar*(zo), and y, < z, in the ordering chosen on star(v).

< is a linear ordering of the vertices of 7, since T is a tree.

V1. PROOF OF THEOREM 2

By [10], any 3-manifold group is coherent, so we need only consider
connected graphs in which every circuit of length greater than three has a
chord.

If the graph X is a triangle, then GX=m,(S" xS'x S'), so GX is a
3-manifold group. Let T be a finite tree and let x, be a pendent vertex of T.
We will show that GT is a three-manifold group. Let s: GT — gp{x, > be
the homomorphism determined by setting s(y) = Xo for each vertex y of T.
Then ker(s) = KT, so there is a split exact sequence

1 —s KT — GT—> gp{xyy — L.

Thus, GT is isomorphic to the semidirect product KT'X gplxg .

To show that GT is a 3-manifold group, we will use a different
generating set for KT than that described above. Let < denote an ordering
of the vertices of T as defined in section III. Given a vertex x other than
Xo, Set X=y 'x, where y is the unique vertex of T for which x e star(y).
By the above corollary the set {®|x#x,} freely generates KT. For
x#xy, let x*=x%' %1, %!, where star(x)= {xy, X3, Xz } and
X, <Xy < 0 <X (If star(x) is empty, we define x* = £.) A routine com-
putation shows that if star* (x) = {Xy, X35 Xn }, with x; <x, <+ <Xp,
then x*x¥x¥---x*=x. Thus, the set {x*|x#x,} also freely generates
KT. Let a: KT — KT be the automorphism defined by a(k)=xq "kx, for
each ke KT, If x is a vertex of T other than x,, then the elements x* and x
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of GT commute, so that a(x*)=(x 'x,) 'x*(x 'x,). Therefore, since
x 'xoe KT, a(x*) is conjugate in K7 to x* Furthermore, if the vertex set
of T is the set {xy, x,..x,}, with x,<x,<-'<x, then
Xfx¥-xf=x =x,"'x,. Because T is connected, the vertices x, and x,
must be adjacent, so

Kk — colYjenell Dy — k..,
a(xFxf - x¥)=xg' (x5 %)) xo=x5 ' x; =xFxF - x¥.

Let D} denote the space obtained by removing n interior points from the
disk D’ Then =n,(D2)=KT and by [2, Theorem 1.10], there is a
homeomorphism / of D} which fixes the boundary of D? pointwise and for
which a=h,, the automorphism of n,(D?) induced by h. Let ~ be
the least equivalence relation on the space D2x[0,1] for which
[p. O]~ [h(p), 1], and let M =D?x [0, 1]/~. Clearly, M is a 3-manifold.
The fundamental group of M is isomorphic to the semidirect product
n,(D;)X Z, where Z is an infinite cyclic group with generator ¢, and, for
each gen,(D;}), t 'gr=h,(g) [2, proof of Theorem 2.2]. Since h, = a, this
group is isomorphic to GT.

To complete the proof of Theorem 2, we shall need the following:

LEMMA. Let X be a finite graph with central vertex x, and suppose that
GX is a 3-manifold group. If y is any vertex of X other than x, then the graph
Y obtained from X by deleting the vertices x and y is totally disconnected.

Proof. Since X is finite, GX is finitely generated, so by [6], GX is the
fundamental group of a compact 3-manifold. Let X be the graph obtained
from X by deleting the vertex x. Then GX’ is a normal subgroup of GX
with infinite cyclic quotient, so by [12], GX" is the fundamental group of a
surface. GY is a subgroup of infinite index in GX’, so by [5], GY is free.
Thus, Y must be totally disconnected, since otherwise, GY would have a
free abelian subgroup of rank two.

Now, suppose that the graph X is neither a tree nor a triangle, and that
every circuit of X of length greater than three has a chord. Then X must
have an induced subgraph of one of the following forms:

i y ii y Pii y

It follows from the lemma that none of the graph groups associated with
these graphs is a 3-manifold group. Because every subgroup of the
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ndamental group of a 3-manifold is itself a 3-manifold group, GX is not a
manifold group.
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