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Abstract

An embedding of an infinite Cayley graph in the two—sphere has either one,
two, or an infinite number of essential accumulation points of vertices. W&o
a list of group presentations which includes every group possessiagley@raph
that can be embedded in the two—sphere with two essential accumulatios goin
vertices.

Let G be a group and leX be a generating set f@. Then the (rightICayley graph
€ (G, X) is defined to be the directed graph with vertex Geénd edge seG x X,
where the edgég, x) points from vertexg to vertexgx. If x € X has order two, then
we replace the oppositely directed edggs) and(gx,x) by a single undirected edge
joining g andgx. In this case, we refer t&’(G, X) as amodifiedCayley graph. We
shall be interested in finitely—generated groups whichgessplanar Cayley graphs. It
is clear that a modified Cayley graph is planar if and onlysiihmodified counterpart
is.

The finite groups with planar Cayley graphs were determingdéschke [7]; they
are just the finite groups of isometries of the 2-sphereuhioly those that contain
reflections.

If Gis infinite and%¢ = ¢(G,X) is planar, then any embedding @f in the 2-
sphere will have accumulation points of vertices. Follayith. Levinson [5], we will
say these accumulation points assentiaif given any two of them, there is a circuit
of ¥ that separates them; that is, there is a circuif’invhich corresponds to a Jordan
curveC in the embedding, and the two accumulation points lie on sp@aides ofC.
Levinson proved in [5] that the number of essential accutiarigoints is either 1 or 2,
or itis infinite. (In this way, the essential accumulatiorints are somewhat likes ends
of G, though the number of ends may be strictly greater than thebeu of essential
accumulation points. For example, a non-cyclic free groag infinitely many ends,
but its Cayley graph with respect to a free basis, being a taebe embedded in the
sphere with a single accumulation point of vertices.)
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Our goal is to determine the finitely—generated groups wpassess Cayley graphs
that can be embedded in the sphere with 2 essential accuomupstints of vertices;
that is, they can be embedded without accumulation poinigedfces in an infinite
cylinder. We will restrict our attention to Cayley graphstlare 3-connected, for if
G has a Cayley graph of connectivity 1 or 2, then it can be decmeq as either a
free-product-with-amalgamatios«y B or an HNN-extensioxy, where whereA
andB have planar Cayley graphs ahtdhas order 1 or 2 [2]. (We remind the reader
that a graph is said to b&“connected” for some integaiif deleting any subset af or
fewer vertices, along with all the edges incident to therayés a connected graph. A
graph is said to have “connectivity if it is n—connected but ngn+ 1)—connected.)

So suppos&” = (G, X) is 3—connected, and that it is embedded in the sphere
with two essential accumulation points of vertices, cadinth‘n” and “s.” Then each
vertex of¢” has degreé> 3, and there is a circuitin ¥ which separates andsin the
embedding.

We assume further that the embedding is tame in the followemgse: first, the
closure? of ¢ is the unions’ U {n,s}; second, the complement @f in S? consists of
pairwise disjoint subsets &?—called “regions”—which are homeomorphic to open
2—disks; and finally, the boundary of any region is homeoticrfo a circle.

Let us call a regioriinite if its boundary is a finite circuit o%’, andinfinite other-
wise. Since the accumulation pointsands are essential, the boundary of an infinite
region contains exactly one of them, and is therefore theruaf a two—way infinite
path in¢” with the common accumulation point of its two ends.

Theorem 1 There are no infinite regions.

PrROOFE We refer the reader to Figure 1. Suppose there is an infegiem. Then since
¢ is 3—connected, every vertex 6f must lie on the boundary of an infinite region [4].
Let.# be the hemisphere 67\ ¢ which containgh.

Letv be a vertex ofg which lies in.4", and whose distance tos > 2, and let#
be an infinite region whose boundary contamshen# C .4/, and the boundary of
Z is the union ofh and a two-way infinite path of” whose two ends both approach

Sincev has degree> 3, we may choose a vertexwhich is adjacent te but which
does not lie on the boundary of. Thenu € .4 andu lies on the boundary of a
different infinite regionZ’. Once againZ’ C .4+ and the boundary o’ is the union
of n and another two-way infinite path whose two ends both approatet A be an
arc inZ joining v to n and letA’ be an arc inZ’ joining uto n. Then it is clear that
the union of the arcé andA’, the pointn, and the edgév,u) is a Jordan curve which
separates the sphere into two components, each of themirdogteertices ofs’. That
is, {v,u} is a separation d¥, contradicting the assumption thétis 3—connected.]

Let # be the set of labels of circuits i that are boundaries of regions. Sir€és
3—connected, every circuit i whose label lies i4 is the boundary of a region [4].
In particular, for any vertex and any labeM € 4, there is a circuit beginning and
ending atv with labelM and a region whose boundary is this circuit.

Let% =S?\{n,p}. Note thatZ is homeomorphic to the punctured plaké\ {0},
and we may assume that the circtifias winding numbe#-1 aboutO.



Figure 1:

Let % be the universal cover & and let# be the preimage ¢of in %, where
each edge o¥ is oriented and labelled the same way as its |mag<é’ inLet 1 be the
vertex of ¢’ corresponding to the identity element Gf and letl be a vertex ofs’
which lies in the preimage df.

If M andN are words oveK which are congruent mo@, and ifv is any vertex of
¢, then the paths if#” beginning a and labelledV andN are homotopic irzz. Thus,
any two paths i beginning at the same vertex and labelMandN are homotopic
in % in particular, they have the same endpoint. Conversefyaihdd are two paths
in € with the same endpoints, then their imagegiare homotopic ir?/, and so their
labels are congruent mod.

Theorem 2 % is the Cayley graph of the grou® with presentation{X | ).

PROOF. We need to show thaf is connected, tha acts on¢ on the left, and that
the action is free and transitive on the verticegof
That¥ is connected follows immediately from the facts tiais connected, and
that the preimagé of ¢ in % is homeomorphic to the real line (and is therefore con-
nected). o B N
We define a left action o& on ¢’ as follows: letvbe a vertex ofs’, and letg € G.
LetM be a word oveK representing and letV be the label of a path it beginning at
1 and ending av."We defineg- V to be the vertex at the end of the pattrbeginning
at1and labelledM -V (see Figure 2). This is independent of the choicellafndV:
if M’ is another word oveX representingy, thenM’ andM are congruent mogd, and
hence the paths starting hand labelledM andM’ (and therefore also those labelled



Figure 2:

M-V andM’-V) have the same endpoint. A similar argument appli®s i the label
of a different path froni. to V.

It is straightforward to verify that this action can be exded to the edges of,
and soG acts oné. -

It is obvious that the action is transitive on vertices, siitis connected. To see
thatitis free on vertices, note thagfv = V, then the paths beginning hlabelledM -V
andV are homotopic inZ, which implies that their projections i’ are homotopic
in 7/ . But this is only possible if the path labelldd is null-homotopic in%, which
implies thatM is a product of conjugates of elements#f that is, thag = 1. O

Theorem 3 Let L be the label of the circuit Then(X | ZU{L}) is a presentation of
G.

ProOF Clearly, each word iU {L} represent4 € G. Conversely, ifmis any circuit
in ¢ beginning atl, thenmis homotopic inZ to ¢" for some integen, and sam- ¢~ " is
null-homotopic. Thus iM is the label ofm, the wordML " is a product of conjugates
of words in4, so thatM is a product of conjugates of words.4# U {L}. O

Next we determine the possibilities for the grcﬁpand for the word_..

Since is simply—connected, the union @f and all the finite regions i is in
fact a Cayleycomplexfor G. Furthermore, since each point of the complengnts
lies in a finite region, the same is true of each poin%‘(%g. Thus,% is homeomor-
phic to the plane, and so it follows from [6, Chapter I11] tiatas a presentation of
the following form (see also [3] and [10]):



Generators. X $>0,1<i<sri>1,1<j<r;
g 1<i<s

Ck t>0,1<k<t

ap g>0,1<p<g

bq eitherh=0orh=gand 1<qg<h

Relators: X3 foralli, |
(X% j42)™ 1<j<r,mj=2
XiriQXilefl for all i
ok W > 2
eIl"'es_lcfl"'CtilD

whereD = aZ---a3 if h=0andD = aibia; 'b; - -aghgay *by* if h=g. Let us call
any group with such a presentation a “planar group.”
To such a presentation we associate the number

pu=g+h+s—2+ i (1—1> +}z (1—1>
k=1 S 2|,J nij

The following facts about: can be found in [3]: (1u < 0if and only if G is finite,
(2) if u > 0, then its value is independent of which presentation ofathave type is
used to describ&, and so we may denote it py(G), and (3) ifH has finite index in
G, thenH is also a planar group, andH) = [G: H]u(G).

We observe that the planar groups wittG) = 0 are in fact the 17 euclidean plane
crystallographic (or “wallpaper”) groups. Planar groupgws = 0 are called--groups
in [6], and the F-groups witpy(G) > 0 are the Fuchsian groups. Finally, those vgith
0 andu > 0 are the (proper) non-euclidean crystallographic groopSEC-groups [9].

Recall that the circuit in ¢ has labelL and winding numbe#-1 about0. Since
¢ is 3—connected, it follows that any circuit @f with label L has winding number
+1 about0. Thus, for any wordM over X, one of the paths starting atand labelled
M~1LML ! or M~1LML is null-homotopic, and so the path#i with that same label
is a circuit. Thus, the element of G represented by the word has the following
property: for anyg € G, eitherA9 = g Ag=A orA9=2A"1 Ofcourse] has infinite
order inG.

For any grougK, letS(K) = {A € K | A has infinite order, andk € K, eitherAk =
A orAK=2"1}. ThusifA € S(K), then eithet belongs to the center & or there is
an elemenk € K such thatn K = A1, In the latter case, it is clear that the centralizer
of A in K has index two. That is, any element®K) lies either in the center df or
in the center of a subgroup of index twokn

It follows from [6, Chapter IlI, Proposition 7.10] that anyéhsian group has trivial
center. Since every subgroup of finite index in a Fuchsiangis also Fuchsian, this
implies thatS(K) = 0 for any Fuchsian grould.

As we shall see, the same is true of proper NEC groups:



Lemmal Let H be a subgroup of finite index in G. If no element of H bedottg
S(G), then 3G) = 0.

PrROOF If g € §(G), theng" € S(G) for all n € Z; since[G : H] is finite, g" € H for
somen, and soy" € S(G)NH. O

Since obvioushy§(G) NH C S(H), this implies
Corallary 1 If [G: H] is finite and $H) = 0, then $G) = 0.
Finally, any NEC-group has a Fuchsian subgroup of index 8}cend so

Corollary 2 If G is a proper NEC-group, then(&) = 0.

Thus, the only possibilities foB are the 17 wallpaper groups.

Wallpaper groups.

In this section, we will determin§(W) for each of the euclidean plane crystallographic
groupsW. We refer the reader to [1] for details about these groupduding the
notation we will use for them, as well as alternate presantst

pl has presentatiota,b | [a,b] = 1), soplis abelian and each non-identity element
has infinite order. Therefor&pl) = {a™" | (m,n) = (0,0)}.

p2 is an extension gb1 by an element of order two for whicha! = a1 andb! =b~1.
Each element op2 can be written uniquely in one of the forra8b" or a™b"t
for integersmandn.
If g=a™", theng! = g~1. Sinceg? = ¢° = g, all elementsa™o" with (m,n) #
(0,0) belong toS(G).
If g=a™o"t, theng? = 1, sog ¢ S(p2). Thus,S(p2) = {a™b" | (m,n) # (0,0)).
In terms of the elementis=tb, g=at, r =t andu =tba, p2 has the presentation
(p,q,r,u| P> = =r? =u? = pgru= 1) andS(p2) consists of the nontrivial
elements of even length.

pm is an extension g1 by an element of order two for whicha' = a~* andb! = b.
Again, each element gfm has one of the forma™b"t or a™b".
If g=a"b", theng? = a?g+# gandg?®-g=a 2b” # 1, sog? # g*. Thus,
g ¢ S(pm).
If g=a™b", theng' = a_™b", sog' = gif and only ifm=0, andg' = g~*if and
only if n= 0. Sinceg commutes with botl andb, S(pm) = {a™ | m#£ 0} U {b" |
n=# 0}.
In terms of the generatoks t andu = ta, pm has the presentatioff, t,u | t*> =
u? = 1,bt = tb,bu= ub), andS(pm) = {b" | n # 0} U {(tu)" | n # 0}.



pg has the presentatiofx,y | y~*xy = x"1) (it is the group of the Klein bottle). Each
element ofpg can be written ag"y™ for unique integers andm.
If g=xMy", theng® = x™ 1yx = xM1x(-D"y sog* = gif and only if nis even,
andg* =g tifand onlyifm=n=0.
On the other handyy = y~IxMy"*1 = x-™" sog’ = giff m=0andg’ =g*
iff n=0.
Thus, an elemerg = x™y" £ 1 belongs tdS(pg) if and only if eithern is even
andm= 0, or if n = 0; that is, iffg = y? or g = x¥ for some integek # 0.

In terms ofp =y andq = yx, pg has the presentatiqp, q | p?> = ¢°) andS(pg) =
{P"[n#0}u{(p~*a)" |n#0}.

Each of the next three groupsm, pmg and pgg—is an extension opg by an
involutiont. Forcm, pt = qandg' = p; for pmg, p' = p~* andq! = g~1; and forpgg,
pt —_ q—l andqt —_ p—l.

If W is any of these three groups, andjiE pg C W belongs toS(W), theng €
S(pg). In all three cases, conjugation bynaps each element &pg) either to itself
or to its inverse, s&pg) C W) in each of them.

Any element ofW which belongs taN\pg is equal togt for a unique nontrivial
g € pg. Since(gt)! =tg, if gt € (W), then eithetg = gt ortg = (gt) "' =tg~?. In the
latter casay has order two, which is impossible sinpgg has no nontrivial elements of
finite order. Thus, in all cases, gt € S(W), theng is fixed by conjugation by.

cm: the only elements qgfg fixed by conjugation by arep? for k € Z. If k0, then
(p%t)P = p?qt £ p%t. Also, (pt) 1 = p~%t, so(p?t)P # (p*t)~1. Thus,
no such element belongs 8cm); that is,S(cm) = S(pg).
In terms oft andp, cm has the presentatidm,t |t* = 1,tp? = pt) andS(cm) =
{P*"|n#0}U{(p~*tpt)" | n#0}.

pmg: conjugation byt fixes only the elementg1q)X € pg. If g= (p~1q)* for some
k#0, then(gt)P = p~?(p~*q)*t # gt. Also, (gt)~* = (p~*q) ™ # (gt)°. So
again in this cases(pmg) = S(pg).
In terms of the generatotsr = pt ands = qt, pmg has the presentatiof,r,s |
t2=r? =g =1 rtr = stg andS(pmg) = {(rs)" | n# 0} U{(rt)?" | n # 0}.

pgg: no nontrivial element ofg is fixed by conjugation by, soS(pgg) = S(pg).

In terms ofp andr = pt, pgg has the presentatiafp,r | (pr)? = (p~ir)? = 1),
ands(pgg) = {p** | n# 0} U {r™" | n#0}.

pmm is the direct produch x C of the infinite dihedral group& = (a,b|a® = b?> = 1)
andC = (c,d | ¢ = d? = 1). Note that if 1# a € A, thena? = a iff a =aand
a® = aiff a =b. Also,a® = a~1iff a has even length in terms afandb, and
in this casea® = a~1, too. Similar statements hold far.

Letl#a eAand 1# yeC. Then(ay)2=a?y=ayifandonly ifa =a, in
which casgay)® # (ay)*!, and(ay)? = (ay) ! = a1y Liff the length ofa
is even and the length ofis odd.



Similarly, each of(ay)¢ and(ay)? is equal to(ay)** if and only if the length
of a is odd and that of is even. Henceqy ¢ S(pmm).

Thus, S(pmm) consists of all the even length elementsfoind ofC; that is,

S(pmm) = {(ab)" | n # 0} U{(cd)" | n # O}.

cmm is an extension opmm by an involutiont for which a' = b andc! = d. Note
that conjugation by maps each of andC onto itself. Also, if 14 a € A, then
a'#aanda'=a"tifand only if a has even length in andb, and similarly
forl#yeC.

If g€ pmm C cmm belongs tdS(cmm), theng € S(pmm), so eitherg € A and
has even length ia andb, or g € C andg has even length in andd. In either
caseg! = g%, sog € S(cmm).

Any other element o§cmm) has the formo yt for somea € A andy € C, not
both of them 1. Thefayt)® = (aab)yt # ayt. Also, (ayt) ™t = (a1 (y Dt =
(ayt)? if and only if the length ofa is odd and that of/ is even. Similarly,
(ayt)® = (ayt)* if and only if the length ofr is even and that of is odd. In
short, no element of the formyt belongs tdS(cmm), soS(cmm) = S(pmm).

In terms of the elements c andt, cmm has the presentatia@a, c,t | a°> = ¢? =
t2 = (ac)? = (atct)? = 1), andS(cmm) = {(at)?" | n # 0} U {(ct)?" | n # 0}.

p4 is the extension op2 by an elemens of order 4 for whichp=q, g*=r,rS=u
andu® = p. In terms of the generatoes b andt of p2, a® = ba, b=a 2b~! and
tS=albt.
If g € p2 belongs toS(p4) theng € §(p2), sog = a™b" for somem andn, at
least one of which must be nonzero. Baf"h")® = a™2"b™ " which equals
(@b")*1 if and only if m=n=0. Thus, no element qi2 belongs toS(p4).
Since[p4: p2] = 4, Corollary 1 implies tha§(p4) = 0.

p3 is an extension opl = (a,b | [a,b] = 1) by an elemens of order three for which
a>=bandb®=a bt
For anymandn, (a™h")*=a "b™ ", and it is an easy matter to check that this
is equal to eithea™o" ora~™b~" if and only if m= n= 0. Thus, no element of
p1 belongs toS(p3). Sincepl has finite index irp3, S(p3) = 0.

Each of the remaining wallpaper groups has eifffor p4 as a subgroup of finite
index: p4 occurs as a subgroup of index two in the gropgm andp4g, andp3is a
subgroup of index two in each of the groyp@m1, p31m andp6, and a subgroup of
index four inpém. Thus,S(W) = 0 in each of these cases, as well.

Thus, any group with a 3—connected Cayley graph which is edddde in the
sphere with two accumulation points of vertices has oneafdHowing presentations:

e (a,b|[ab] =1,a"h™=1) for some(m,n) # (0,0)

e (p,g,r,u| p°P=q¢?=r?=u’=pgru=1,W = 1) whereW is any word of even
length inp, g, r andu.



or, for some integen # 0:

e (bit,u|t?=u?=1,bt=tb, bu=ub, b"=1)

b,t,u|t? = u? =1, bt =th, bu=ub, (tu)" = 1)

(

(

(palpPP=¢ p"=1)
(pal PP=d (pa)"=1)
(pt[t?=1,tp> = p%, p" =1)
(pt[t?=1,tp> = p*, (p 'tpt)" = 1)
(

(

(

(

(

trs|t?=r>2==1,rtr =sts (rs)"=1)

t,r,s|t?=r2=¢=1,rtr =sts ()" =1)

p.r | (pr)? —(p‘lr)zzl, P =1)
a,b,c,d|a?=b?=c?=d?= (ac)® = (ad)? = (bc)? = (bd)?> = 1, (ab)" = 1)

act|a?=c?>=t2=(ac)? = (atct)> =1, (at)?" = 1).

where we have taken account of the fact that in some casesndipg different words
in S\W) may give equivalent presentations. We note also that sortteesé presenta-
tions define isomorphic groups.

Finally, it is easy to verify that the Cayley graphs of theugye with these presen-
tations are planar with respect to the given generatorsigtn@ome of them are not
3—connected.
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