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Abstract

An embedding of an infinite Cayley graph in the two–sphere has either one,
two, or an infinite number of essential accumulation points of vertices. We obtain
a list of group presentations which includes every group possessing a Cayley graph
that can be embedded in the two–sphere with two essential accumulation points of
vertices.

Let G be a group and letX be a generating set forG. Then the (right)Cayley graph
C (G,X) is defined to be the directed graph with vertex setG and edge setG×X,
where the edge(g,x) points from vertexg to vertexgx. If x ∈ X has order two, then
we replace the oppositely directed edges(g,x) and(gx,x) by a single undirected edge
joining g andgx. In this case, we refer toC (G,X) as amodifiedCayley graph. We
shall be interested in finitely–generated groups which possess planar Cayley graphs. It
is clear that a modified Cayley graph is planar if and only if its unmodified counterpart
is.

The finite groups with planar Cayley graphs were determined by Maschke [7]; they
are just the finite groups of isometries of the 2-sphere, including those that contain
reflections.

If G is infinite andC = C (G,X) is planar, then any embedding ofC in the 2-
sphere will have accumulation points of vertices. Following H. Levinson [5], we will
say these accumulation points areessentialif given any two of them, there is a circuit
of C that separates them; that is, there is a circuit inC which corresponds to a Jordan
curveC in the embedding, and the two accumulation points lie on opposite sides ofC.
Levinson proved in [5] that the number of essential accumulation points is either 1 or 2,
or it is infinite. (In this way, the essential accumulation points are somewhat likes ends
of G, though the number of ends may be strictly greater than the number of essential
accumulation points. For example, a non-cyclic free group has infinitely many ends,
but its Cayley graph with respect to a free basis, being a tree, can be embedded in the
sphere with a single accumulation point of vertices.)

∗The author gratefully acknowledges the support of a semester–long Educational Leave from James
Madison University.

1



Our goal is to determine the finitely–generated groups whichpossess Cayley graphs
that can be embedded in the sphere with 2 essential accumulation points of vertices;
that is, they can be embedded without accumulation points ofvertices in an infinite
cylinder. We will restrict our attention to Cayley graphs that are 3-connected, for if
G has a Cayley graph of connectivity 1 or 2, then it can be decomposed as either a
free-product-with-amalgamationsA∗H B or an HNN-extensionA∗H , where whereA
andB have planar Cayley graphs andH has order 1 or 2 [2]. (We remind the reader
that a graph is said to be “n–connected” for some integern if deleting any subset ofn or
fewer vertices, along with all the edges incident to them, leaves a connected graph. A
graph is said to have “connectivityn” if it is n–connected but not(n+1)–connected.)

So supposeC = C (G,X) is 3–connected, and that it is embedded in the sphere
with two essential accumulation points of vertices, call them “n” and “s.” Then each
vertex ofC has degree≥ 3, and there is a circuitℓ in C which separatesn ands in the
embedding.

We assume further that the embedding is tame in the followingsense: first, the
closureC of C is the unionC ∪{n,s}; second, the complement ofC in S

2 consists of
pairwise disjoint subsets ofS2—called “regions”—which are homeomorphic to open
2–disks; and finally, the boundary of any region is homeomorphic to a circle.

Let us call a regionfinite if its boundary is a finite circuit ofC , andinfinite other-
wise. Since the accumulation pointsn ands are essential, the boundary of an infinite
region contains exactly one of them, and is therefore the union of a two–way infinite
path inC with the common accumulation point of its two ends.

Theorem 1 There are no infinite regions.

PROOF. We refer the reader to Figure 1. Suppose there is an infinite region. Then since
C is 3–connected, every vertex ofC must lie on the boundary of an infinite region [4].
Let N be the hemisphere ofS2\ℓ which containsn.

Let v be a vertex ofC which lies inN , and whose distance toℓ is ≥ 2, and letR
be an infinite region whose boundary containsv. ThenR ⊆ N , and the boundary of
R is the union ofn and a two-way infinite path ofC whose two ends both approachn.

Sincev has degree≥ 3, we may choose a vertexu which is adjacent tov but which
does not lie on the boundary ofR. Thenu ∈ N and u lies on the boundary of a
different infinite regionR ′. Once again,R ′ ⊆ N and the boundary ofR ′ is the union
of n and another two-way infinite path whose two ends both approach n. Let A be an
arc inR joining v to n and letA′ be an arc inR ′ joining u to n. Then it is clear that
the union of the arcsA andA′, the pointn, and the edge(v,u) is a Jordan curve which
separates the sphere into two components, each of them containing vertices ofC . That
is, {v,u} is a separation ofC , contradicting the assumption thatC is 3–connected.¤

Let B be the set of labels of circuits inC that are boundaries of regions. SinceC is
3–connected, every circuit inC whose label lies inB is the boundary of a region [4].
In particular, for any vertexv and any labelM ∈ B, there is a circuit beginning and
ending atv with labelM and a region whose boundary is this circuit.

Let U = S
2\{n,p}. Note thatU is homeomorphic to the punctured planeR

2\{0},
and we may assume that the circuitℓ has winding number+1 about0.
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Figure 1:

Let Ũ be the universal cover ofU and letC̃ be the preimage ofC in Ũ , where
each edge ofC̃ is oriented and labelled the same way as its image inC . Let 1 be the
vertex ofC corresponding to the identity element ofG, and let1̃ be a vertex ofC̃
which lies in the preimage of1.

If M andN are words overX which are congruent modB, and ifv is any vertex of
C , then the paths inC beginning atv and labelledM andN are homotopic inU . Thus,
any two paths inC̃ beginning at the same vertex and labelledM andN are homotopic
in Ũ ; in particular, they have the same endpoint. Conversely, ifp̃ andq̃ are two paths
in C̃ with the same endpoints, then their images inC are homotopic inU , and so their
labels are congruent modB.

Theorem 2 C̃ is the Cayley graph of the group̃G with presentation〈X | B〉.

PROOF. We need to show that̃C is connected, that̃G acts onC̃ on the left, and that
the action is free and transitive on the vertices ofC̃ .

That C̃ is connected follows immediately from the facts thatC is connected, and
that the preimagẽℓ of ℓ in C̃ is homeomorphic to the real line (and is therefore con-
nected).

We define a left action of̃G on C̃ as follows: let ˜v be a vertex ofC̃ , and letg∈ G̃.
Let M be a word overX representingg and letV be the label of a path iñC beginning at
1̃ and ending at ˜v. We defineg· ṽ to be the vertex at the end of the path iñC beginning
at 1̃ and labelledM ·V (see Figure 2). This is independent of the choices ofM andV:
if M′ is another word overX representingg, thenM′ andM are congruent modB, and
hence the paths starting at1̃ and labelledM andM′ (and therefore also those labelled
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M

V

g· ṽ
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M ·V andM′ ·V) have the same endpoint. A similar argument applies ifV ′ is the label
of a different path from̃1 to ṽ.

It is straightforward to verify that this action can be extended to the edges of̃C ,
and soG̃ acts onC̃ .

It is obvious that the action is transitive on vertices, since C̃ is connected. To see
that it is free on vertices, note that ifg· ṽ= ṽ, then the paths beginning at1̃ labelledM ·V
andV are homotopic inŨ , which implies that their projections inC are homotopic
in U . But this is only possible if the path labelledM is null-homotopic inU , which
implies thatM is a product of conjugates of elements ofB; that is, thatg = 1. ¤

Theorem 3 Let L be the label of the circuitℓ. Then〈X | B∪{L}〉 is a presentation of
G.

PROOF. Clearly, each word inB∪{L} represents1 ∈G. Conversely, ifm is any circuit
in C beginning at1, thenm is homotopic inU to ℓn for some integern, and som·ℓ−n is
null-homotopic. Thus ifM is the label ofm, the wordML−n is a product of conjugates
of words inB, so thatM is a product of conjugates of words inB∪{L}. ¤

Next we determine the possibilities for the groupG̃ and for the wordL.
SinceŨ is simply–connected, the union of̃C and all the finite regions iñU is in

fact a Cayleycomplexfor G̃. Furthermore, since each point of the complementU \C

lies in a finite region, the same is true of each point of̃U \C̃ . Thus,Ũ is homeomor-
phic to the plane, and so it follows from [6, Chapter III] thatG̃ has a presentation of
the following form (see also [3] and [10]):
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Generators: xi j s≥ 0, 1≤ i ≤ s, r i ≥ 1, 1≤ j ≤ r i

ei 1≤ i ≤ s

ck t ≥ 0, 1≤ k≤ t

ap g≥ 0, 1≤ p≤ g

bq eitherh = 0 orh = g and 1≤ q≤ h

Relators: x2
i j for all i, j

(xi j xi j+1)
ni j 1≤ j < r i , ni j ≥ 2

xir i eixi1e−1
i for all i

cγk
k γk ≥ 2

e−1
1 · · ·e−1

s c−1
1 · · ·c−1

t D

whereD = a2
1 · · ·a

2
g if h = 0 andD = a1b1a−1

1 b−1
1 · · ·agbga−1

g b−1
g if h = g. Let us call

any group with such a presentation a “planar group.”
To such a presentation we associate the number

µ = g+h+s−2+
t

∑
k=1

(
1−

1
γk

)
+

1
2 ∑

i, j

(
1−

1
ni j

)

The following facts aboutµ can be found in [3]: (1)µ < 0 if and only ifG is finite,
(2) if µ ≥ 0, then its value is independent of which presentation of theabove type is
used to describeG, and so we may denote it byµ(G), and (3) ifH has finite index in
G, thenH is also a planar group, andµ(H) = [G : H]µ(G).

We observe that the planar groups withµ(G) = 0 are in fact the 17 euclidean plane
crystallographic (or “wallpaper”) groups. Planar groups with s= 0 are calledF-groups
in [6], and the F-groups withµ(G) > 0 are the Fuchsian groups. Finally, those withs>

0 andµ > 0 are the (proper) non-euclidean crystallographic groups,or NEC-groups [9].
Recall that the circuitℓ in C has labelL and winding number+1 about0. Since

C is 3–connected, it follows that any circuit ofC with label L has winding number
±1 about0. Thus, for any wordM overX, one of the paths starting at1 and labelled
M−1LML−1 or M−1LML is null-homotopic, and so the path iñC with that same label
is a circuit. Thus, the elementλ of G̃ represented by the wordL has the following
property: for anyg∈ G̃, eitherλ g = g−1λg= λ or λ g = λ−1. Of course,λ has infinite
order inG̃.

For any groupK, let S(K) = {λ ∈ K | λ has infinite order, and∀k∈ K, eitherλ k =
λ or λ k = λ−1}. Thus ifλ ∈ S(K), then eitherλ belongs to the center ofK or there is
an elementk ∈ K such thatλ k = λ−1. In the latter case, it is clear that the centralizer
of λ in K has index two. That is, any element ofS(K) lies either in the center ofK or
in the center of a subgroup of index two inK.

It follows from [6, Chapter III, Proposition 7.10] that any Fuchsian group has trivial
center. Since every subgroup of finite index in a Fuchsian group is also Fuchsian, this
implies thatS(K) = /0 for any Fuchsian groupK.

As we shall see, the same is true of proper NEC groups:
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Lemma 1 Let H be a subgroup of finite index in G. If no element of H belongs to
S(G), then S(G) = /0.

PROOF. If g ∈ S(G), thengn ∈ S(G) for all n ∈ Z; since[G : H] is finite, gn ∈ H for
somen, and sogn ∈ S(G)∩H. ¤

Since obviouslyS(G)∩H ⊆ S(H), this implies

Corollary 1 If [G : H] is finite and S(H) = /0, then S(G) = /0.

Finally, any NEC-group has a Fuchsian subgroup of index two [8], and so

Corollary 2 If G is a proper NEC-group, then S(G) = /0.

Thus, the only possibilities for̃G are the 17 wallpaper groups.

Wallpaper groups.

In this section, we will determineS(W) for each of the euclidean plane crystallographic
groupsW. We refer the reader to [1] for details about these groups, including the
notation we will use for them, as well as alternate presentations.

p1 has presentation〈a,b | [a,b] = 1〉, sop1 is abelian and each non-identity element
has infinite order. Therefore,S(p1) = {ambn | (m,n) 6= (0,0)}.

p2 is an extension ofp1 by an elementt of order two for whichat = a−1 andbt = b−1.
Each element ofp2 can be written uniquely in one of the formsambn or ambnt
for integersm andn.

If g = ambn, thengt = g−1. Sincega = gb = g, all elementsambn with (m,n) 6=
(0,0) belong toS(G).

If g = ambnt, theng2 = 1, sog 6∈ S(p2). Thus,S(p2) = {ambn | (m,n) 6= (0,0)〉.

In terms of the elementsp= tb, q= at, r = t andu= tba, p2 has the presentation
〈p,q, r,u | p2 = q2 = r2 = u2 = pqru= 1〉 andS(p2) consists of the nontrivial
elements of even length.

pm is an extension ofp1 by an elementt of order two for whichat = a−1 andbt = b.
Again, each element ofpm has one of the formsambnt or ambn.

If g = ambnt, thenga = a−2g 6= g andga ·g = a−2b2n 6= 1, soga 6= g−1. Thus,
g 6∈ S(pm).

If g = ambn, thengt = a−mbn, sogt = g if and only if m= 0, andgt = g−1 if and
only if n= 0. Sinceg commutes with botha andb, S(pm) = {am |m 6= 0}∪{bn |
n 6= 0}.

In terms of the generatorsb, t andu = ta, pm has the presentation〈b, t,u | t2 =
u2 = 1,bt = tb,bu= ub〉, andS(pm) = {bn | n 6= 0}∪{(tu)n | n 6= 0}.
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pg has the presentation〈x,y | y−1xy= x−1〉 (it is the group of the Klein bottle). Each
element ofpg can be written asxnym for unique integersn andm.

If g= xmyn, thengx = xm−1ynx= xm−1x(−1)n
yn, sogx = g if and only if n is even,

andgx = g−1 if and only if m= n = 0.

On the other hand,gy = y−1xmyn+1 = x−myn, sogy = g iff m= 0 andgy = g−1

iff n = 0.

Thus, an elementg = xmyn 6= 1 belongs toS(pg) if and only if eithern is even
andm= 0, or if n = 0; that is, iffg = y2k or g = xk for some integerk 6= 0.

In terms ofp= y andq= yx, pg has the presentation〈p,q | p2 = q2〉 andS(pg) =
{p2n | n 6= 0}∪{(p−1q)n | n 6= 0}.

Each of the next three groups—cm, pmg andpgg—is an extension ofpg by an
involution t. Forcm, pt = q andqt = p; for pmg, pt = p−1 andqt = q−1; and forpgg,
pt = q−1 andqt = p−1.

If W is any of these three groups, and ifg ∈ pg ⊆ W belongs toS(W), theng ∈
S(pg). In all three cases, conjugation byt maps each element ofS(pg) either to itself
or to its inverse, soS(pg) ⊆ S(W) in each of them.

Any element ofW which belongs toW\pg is equal togt for a unique nontrivial
g∈ pg. Since(gt)t = tg, if gt ∈ S(W), then eithertg= gt or tg= (gt)−1 = tg−1. In the
latter caseg has order two, which is impossible sincepg has no nontrivial elements of
finite order. Thus, in all cases, ifgt ∈ S(W), theng is fixed by conjugation byt.

cm: the only elements ofpg fixed by conjugation byt arep2k for k∈ Z. If k 6= 0, then
(p2kt)p = p2k−1qt 6= p2kt. Also, (p2kt)−1 = p−2kt, so(p2kt)p 6= (p2kt)−1. Thus,
no such element belongs toS(cm); that is,S(cm) = S(pg).

In terms oft andp, cm has the presentation〈p, t | t2 = 1, t p2 = p2t〉 andS(cm) =
{p2n | n 6= 0}∪{(p−1t pt)n | n 6= 0}.

pmg: conjugation byt fixes only the elements(p−1q)k ∈ pg. If g = (p−1q)k for some
k 6= 0, then(gt)p = p−2(p−1q)−kt 6= gt. Also, (gt)−1 = (p−1q)−kt 6= (gt)p. So
again in this case,S(pmg) = S(pg).

In terms of the generatorst, r = pt ands= qt, pmg has the presentation〈t, r,s |
t2 = r2 = s2 = 1, rtr = sts〉 andS(pmg) = {(rs)n | n 6= 0}∪{(rt )2n | n 6= 0}.

pgg: no nontrivial element ofpg is fixed by conjugation byt, soS(pgg) = S(pg).

In terms ofp andr = pt, pgg has the presentation〈p, r | (pr)2 = (p−1r)2 = 1〉,
andS(pgg) = {p2n | n 6= 0}∪{r2n | n 6= 0}.

pmm is the direct productA×C of the infinite dihedral groupsA= 〈a,b | a2 = b2 = 1〉
andC = 〈c,d | c2 = d2 = 1〉. Note that if 16= α ∈ A, thenαa = α iff α = a and
αb = α iff α = b. Also,αa = α−1 iff α has even length in terms ofa andb, and
in this case,αb = α−1, too. Similar statements hold forC.

Let 1 6= α ∈ A and 16= γ ∈C. Then(αγ)a = αaγ = αγ if and only if α = a, in
which case(αγ)b 6= (αγ)±1, and(αγ)a = (αγ)−1 = α−1γ−1 iff the length ofα
is even and the length ofγ is odd.
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Similarly, each of(αγ)c and(αγ)d is equal to(αγ)±1 if and only if the length
of α is odd and that ofγ is even. Hence,αγ 6∈ S(pmm).

Thus,S(pmm) consists of all the even length elements ofA and ofC; that is,
S(pmm) = {(ab)n | n 6= 0}∪{(cd)n | n 6= 0}.

cmm is an extension ofpmm by an involutiont for which at = b andct = d. Note
that conjugation byt maps each ofA andC onto itself. Also, if 16= α ∈ A, then
α t 6= α andα t = α−1 if and only if α has even length ina andb, and similarly
for 1 6= γ ∈C.

If g∈ pmm ⊆ cmm belongs toS(cmm), theng∈ S(pmm), so eitherg∈ A and
has even length ina andb, or g∈C andg has even length inc andd. In either
case,gt = g−1, sog∈ S(cmm).

Any other element ofS(cmm) has the formαγt for someα ∈ A andγ ∈C, not
both of them 1. Then(αγt)a =(aαb)γt 6= αγt. Also,(αγt)−1 =(α−1)t(γ−1)tt =
(αγt)a if and only if the length ofα is odd and that ofγ is even. Similarly,
(αγt)b = (αγt)±1 if and only if the length ofα is even and that ofγ is odd. In
short, no element of the formαγt belongs toS(cmm), soS(cmm) = S(pmm).

In terms of the elementsa, c andt, cmm has the presentation〈a,c, t | a2 = c2 =
t2 = (ac)2 = (atct)2 = 1〉, andS(cmm) = {(at)2n | n 6= 0}∪{(ct)2n | n 6= 0}.

p4 is the extension ofp2 by an elements of order 4 for whichps = q, qs = r, rs = u
andus = p. In terms of the generatorsa, b andt of p2, as = ba, bs = a−2b−1 and
ts = a−1b−1t.

If g ∈ p2 belongs toS(p4) theng ∈ S(p2), sog = ambn for somem andn, at
least one of which must be nonzero. But(ambn)s = am−2nbm−n which equals
(ambn)±1 if and only if m= n = 0. Thus, no element ofp2 belongs toS(p4).
Since[p4 : p2] = 4, Corollary 1 implies thatS(p4) = /0.

p3 is an extension ofp1 = 〈a,b | [a,b] = 1〉 by an elements of order three for which
as = b andbs = a−1b−1.

For anym andn, (ambn)s = a−nbm−n, and it is an easy matter to check that this
is equal to eitherambn or a−mb−n if and only if m= n = 0. Thus, no element of
p1 belongs toS(p3). Sincep1 has finite index inp3, S(p3) = /0.

Each of the remaining wallpaper groups has eitherp3 or p4 as a subgroup of finite
index: p4 occurs as a subgroup of index two in the groupsp4m andp4g, andp3 is a
subgroup of index two in each of the groupsp3m1, p31m andp6, and a subgroup of
index four inp6m. Thus,S(W) = /0 in each of these cases, as well.

Thus, any group with a 3–connected Cayley graph which is embeddable in the
sphere with two accumulation points of vertices has one of the following presentations:

• 〈a,b | [a,b] = 1, anbm = 1〉 for some(m,n) 6= (0,0)

• 〈p,q, r,u | p2 = q2 = r2 = u2 = pqru= 1,W = 1〉 whereW is any word of even
length inp, q, r andu.
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or, for some integern 6= 0:

• 〈b, t,u | t2 = u2 = 1, bt = tb, bu= ub, bn = 1〉

• 〈b, t,u | t2 = u2 = 1, bt = tb, bu= ub, (tu)n = 1〉

• 〈p,q | p2 = q2, p2n = 1〉

• 〈p,q | p2 = q2, (p−1q)n = 1〉

• 〈p, t | t2 = 1, t p2 = p2t, p2n = 1〉

• 〈p, t | t2 = 1, t p2 = p2t, (p−1t pt)n = 1〉

• 〈t, r,s | t2 = r2 = s2 = 1, rtr = sts, (rs)n = 1〉

• 〈t, r,s | t2 = r2 = s2 = 1, rtr = sts, (rt )2n = 1〉

• 〈p, r | (pr)2 = (p−1r)2 = 1, p2n = 1〉

• 〈a,b,c,d | a2 = b2 = c2 = d2 = (ac)2 = (ad)2 = (bc)2 = (bd)2 = 1, (ab)n = 1〉

• 〈a,c, t | a2 = c2 = t2 = (ac)2 = (atct)2 = 1, (at)2n = 1〉.

where we have taken account of the fact that in some cases, appending different words
in S(W) may give equivalent presentations. We note also that some ofthese presenta-
tions define isomorphic groups.

Finally, it is easy to verify that the Cayley graphs of the groups with these presen-
tations are planar with respect to the given generators, though some of them are not
3–connected.
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