from "Topology and Combinatorial Group Theory," Springer Lecture Notes in Mathematics, Vol. 1440

The Finite Basis Extension Property and Graph Groups

Herman Servatius College of the Holy Cross, Worcester, MA 01610

Carl Droms James Madison University, Harrisonburg, VA 22807

Brigitte Servatius Worcester Polytechnic Institute, Worcester, MA 01609

INTRODUCTION: A theorem of Marshall Hall, Jr. [5] (cf. also [2], [4]) states that if $B = \{h_1, ..., h_k\}$ is a free basis for a finitely generated subgroup H of a f.g. free group F, and if $\{x_1, ..., x_n\}$ is a finite subset of F - H, then B can be extended to a free basis for a f.g. subgroup H^* of finite index in F such that $\{x_1, ..., x_n\} \subset F - H^*$.

A similar theorem holds for free abelian groups, and this may be regarded as a generalization of the fact that in a vector space, every linearly independent set can be extended to a basis.

We will prove that an analogous *basis extension property* holds in a class of groups which contains the f.g. free and free abelian groups.

Given a graph $\Gamma = (V, E)$, let F_{Γ} denote the group with presentation

$$\langle V \mid \{xy = yx : (x,y) \in E\} \rangle$$

Any group G isomorphic to F_{Γ} for some Γ is called a *graph group*, and the image of the vertex set V under any isomorphism $F_{\Gamma} \to G$ will be called a *basis* for G. Note that free groups and free abelian groups are graph groups, and for these groups this corresponds to the usual notion of basis.

A graph group F_{Γ} is said to have the *finite basis extension property*, FBEP for short, if F_{Γ} satisfies the following analog of Marshall Hall's property: given any f.g. subgroup H of F_{Γ} such that H is itself a graph group, and given a finite set $\{x_1, \ldots, x_n\} \subset F_{\Gamma} - H$, then H has a basis which can be extended to a basis for a subgroup H^* of finite index in F_{Γ} such that $\{x_1, \ldots, x_n\} \subset F - H^*$.

We remark that not every subgroup of a graph group need have a basis, that is, not every subgroup of a graph group need be a graph group. Indeed, the following are equivalent [3]:

- 1. every f.g. subgroup of F_{Γ} is a graph group
- 2. Γ has no full subgraph isomorphic to either a square or the three edge path, $\circ - \circ - \circ - \circ$

- 3. F_{Γ} belongs to the smallest collection of groups containing the infinite cyclic group \mathbb{Z} , and closed under the binary operation (-)*(-) (free product) and unary operation $\mathbb{Z} \oplus (-)$ (direct product with \mathbb{Z} .)
- If Γ satisfies 2, Γ is called a *special assembly*. Our main result is:

THEOREM 1 Let Γ be a finite graph. Then F_{Γ} has FBEP if and only if Γ is a special assembly.

A group has the *finitely generated intersection property*, FGIP, if the intesection of any two of its f.g. subgroups is f.g. Howson [6] proved that free groups have FGIP. In section 4 we will show that a graph group F_{Γ} has FGIP iff every component of Γ is complete.

THEOREM 1 - SUFFICIENCY: Let A = (V, E) be a finite special assembly. For each $a \in F_{\Gamma}$, we define $|a|_A$, the *A*-length of *a*, to be the length of the shortest word in $V^{\pm 1}$ which represents *a*. If it is clear which graph is meant, we will often refer to the length, |a|, of *a*.

PROPOSITION 1 Let H be a f.g. subgroup of F_A and let $M \ge 0$. Then H has a basis which can be extended to a basis for a subgroup $H^* \le F_A$, with $[F_A : H^*] < \infty$, and such that if $x \in H^*$ and $|x|_A < M$, then $x \in H$. In particular, F_A has FBEP.

The length condition has the following topological interpretation: let C_A be the Cayley complex of the presentation

$$\langle V \mid \{xy = yx : (x,y) \in E\} \rangle$$

That is, C_A has one 0-cell, an oriented 1-cell for each vertex in V, and for each edge $(a, b) \in E$, a 2-cell attached by

Words in $V^{\pm 1}$ correspond to cellular loops in C_A , and the length of a word is equal to the total number of edges traversed, counting multiplicity. For subgroups $H \leq H^* \leq F_A$, take covers $X_H \to X_{H^*} \to C_A$, with base points v_H and v_{H^*} realizing these subgroups, giving X_H and X_{H^*} the induced cell decompositions. Let k > 0, and define $[X_H]_k$ to be the subcomplex of X_H consisting of those vertices which are joined to the basepoint by a cellular path of length < k, together with all 1 and 2-cells spanned by those vertices. Elementary covering space theory gives **PROPOSITION 2** The following are equivalent:

- 1. For all $x \in H^*$, if |x| < 2M then $x \in H$,
- 2. The covering map $X_H \to X_{H^*}$ maps $[X_H]_M$ homeomorphically onto $[X_{H^*}]_M$.

PROOF: (of Proposition 1) We assume that F_A is not infinite cyclic, so there are two cases: either A is disconnected, so $F_A = F_{A_1} * F_{A_2}$ or $F_A = \mathbb{Z} \oplus F_{A_1}$, for smaller special assemblies A_1 and A_2 .

Case 1 Realize each F_{A_i} by its Cayley complex, \mathcal{A}_i , with vertex p_i , as described before. F_A is then realized by attaching p_1 and p_2 to a third vertex, p, by edges e_1 and e_2 respectively, as shown below: Denote this complex by \mathcal{F} , and take p to be the

Figure 1: The complex \mathcal{F}

base point. Realize $H \leq F_A$ by a cover \mathcal{H} with base point p_H covering p. \mathcal{A}_i lifts to a disjoint union of covers $\mathcal{A}_i^{(j)}$ of \mathcal{A}_i in \mathcal{H} . H is finitely generated, and since it is a graph group, it is finitely presented as well, so $\pi_1(\mathcal{H}, p_H)$ is carried by some finite subcomplex of \mathcal{H} . Thus, there is some $M' \geq M$ such that $\pi_1([\mathcal{H}]_{M'}, p_H) =$ $\pi_1(\mathcal{H}, p_H)$. Let \mathcal{U} denote the union of $[\mathcal{H}]_{M'}$ and all those $\mathcal{A}_i^{(j)}$ which intersect $[\mathcal{F}_H]_{M'}$ non-trivially, noting that there are only finitely many such $\mathcal{A}_i^{(j)}$'s. Then

$$H = \pi_1(\mathcal{H}, p_H) = \pi_1([\mathcal{H}]_{M'}, p_H) = \pi_1(\mathcal{U}, p_H).$$

Now, choose a maximal tree for each $\mathcal{A}_i^{(j)}$, their union is a forest for \mathcal{U} . Extend this to a maximal tree T of \mathcal{U} by adding only lifts of the edges e_1 and e_2 . Choose a base point p_{ij} for each $\mathcal{A}_i^{(j)}$ and a path w_{ij} in T from the base point to p_{ij} .

For each $\mathcal{A}_{i}^{(j)}$ contained in \mathcal{U} , $\pi_{1}(\mathcal{A}_{i}^{(j)}, p_{ij})$ is a finitely generated special assembly group, so, by induction, $\mathcal{A}_{i}^{(j)}$ has a cover $\mathcal{B}_{i}^{(j)}$ such that $\pi_{1}(\mathcal{B}_{i}^{(j)})$ has a basis $B_{i}^{(j)}$ which is an extension of a basis $A_{i}^{(j)}$ of $\pi_{1}(\mathcal{A}_{i}^{(j)})$, and such that $[\mathcal{B}_{i}^{(j)}]_{2M'} = [\mathcal{A}_{i}^{(j)}]_{2M'}$. $\pi_{1}(\mathcal{U}, p)$ has a basis A', (see [9], page 167), whose connected components are $w_{ij}A_{i}^{(j)}w_{ij}^{-1}$, together with a set of isolated vertices, E, corresponding to lifts of e_{1} and e_{2} which are not in T. If we replace each $\mathcal{A}_{i}^{(j)}$ with $\mathcal{B}_{i}^{(j)}$ along $[\mathcal{A}_{i}^{(j)}]_{2M}$ to form \mathcal{U}' , then $\pi_{1}(\mathcal{U}', p)$ has a basis B whose connected components are $w_{ij}B_{i}^{(j)}w_{ij}^{-1}$, together with E. So B is an extension of A', and $[\mathcal{U}']_{2M} = [\mathcal{F}_{H}]_{2M}$.

 \mathcal{U}' is a finite complex, but it is not a cover, since there may be a lift of p_i which is not adjacent to a lift of e_i . At each such vertex attach a copy of $\mathcal{F} - \mathcal{A}_i$, to form \mathcal{H}^* . \mathcal{H}^* is a finite cover of \mathcal{F} , and $\pi_1(\mathcal{H}^*, p)$ has a basis B', which is the union of B with some connected components isomorphic to either A_1 or A_2 , hence B' is an extension of A', and since $[\mathcal{H}^*]_{2M} = [\mathcal{F}_H]_{2M}$, the length condition is also satisfied. **Case 2** $F_A = \langle t \rangle \oplus F_{A_1}$, where A_1 is a smaller special assembly. Let $M \ge 0$ be given, and let $H \le F_A$ be finitely generated. Then there is an exact sequence

$$1 \to H \cap \langle t \rangle \to H \to \rho(H) \to 1$$

where $\rho: F_A \to F_{A_1}$ is the natural projection. Now, $\rho(H)$ is finitely generated, so there is a subgroup K of finite index in F_{A_1} , with a basis Y such that:

- 1. some subset X of Y is a basis for $\rho(H)$, and
- 2. if $k \in K$ has A-length $\leq M$, then $k \in \rho(H)$.

Let X^* be any preimage of X in H, let Y^* be any preimage of Y containing X^* , and let K^* be the group generated by Y^* .

Suppose first that $H \cap \langle t \rangle = \langle t^k \rangle$, for some k > 0. Then the set $\{t^k\} \cup X^*$ is a basis for H, [3]. Clearly $\{t^k\} \cup Y^*$ is a basis for $\langle t^k \rangle \oplus K = K^*$, and this set contains a basis for H. Let $k \in K^*$ have A-length $\leq M$. Then $\rho(k)$ has A_1 -length $\leq M$, and so $\rho(k) \in \rho(H)$. Thus, $k \in \operatorname{gp}\langle t^k, X^* \rangle = H$.

Now suppose that $H \cap \langle t \rangle = \{1\}$. Let $X^* = \{t^{n_i}x_i\}$, where each $x_i \in F_{A_1}$, and let $N = \max|n_i|$. Since F_{A_1} contains only finitely many elements of length $\leq M$, we can choose T such that any reduced product of T or more x_i 's and their inverses has length > M. Let L = M + TN + 1, and let $K^* = K \otimes \langle t^L \rangle$. Then, as before, if $k \in K^*$ has A-length $\leq M$, then $\rho(k) \in \rho(H)$, so that $k \in \operatorname{gp}\langle t^L, X^* \rangle$. Suppose $k = (t^L)^s(t^{m_1}y_1t^{m_2}y_2\cdots t^{m_r}y_r)$, where each $t^{m_i}y_i = (t^{n_j}x_j)^{\pm 1}$, for some j. Suppose $s \neq 0$. Then $|k|_A = |sL + \sum m_i| + |y_1y_2\cdots y_r|_A$, and, since $|k|_A \leq M$, r < T. Therefore, $|k|_A \geq |s|L - |\sum m_i| \geq |s|L - \sum |m_i| \geq |s|L - TN \geq L - TN = M + 1$, a contradiction. Therefore, s = 0, and $k \in H$.

THEOREM 1 - NECESSITY:

PROPOSITION 3 If Γ is finite and F_{Γ} has FBEP, then Γ is a special assembly.

We prove this via a sequence of lemmas:

LEMMA 1 If Γ is a connected graph, then F_{Γ} is (freely) indecomposable, that is, F_{Γ} is not the free product of two of its nontrivial subgroups.

PROOF: This is clear if F_{Γ} is infinite cyclic, so suppose Γ has more than one vertex, and that $F_{\Gamma} = G * H$. Let v be a vertex of Γ . Then v is adjacent to at least one other vertex of Γ , so the centralizer of v in F_{Γ} is not cyclic. Therefore, v belongs to a conjugate either of G or of H, so we may suppose that $v \in G$. But then any element which commutes with v must also lie in G, in particular, any vertex adjacent to v must lie in G. Thus, since any vertex of Γ can be reached by a path from v, G must contain all the vertices of Γ . But the vertices of Γ generate F_{Γ} , so H = 1. \Box LEMMA 2 Let Γ be finite graph such that F_{Γ} has FBEP, and suppose that Γ and its complement are both connected. Then Γ consists of a single vertex. (In particular, any graph group which has FBEP is either infinite cyclic, or it is the free or the direct product of two of its subgroups.)

PROOF: Suppose Γ has more than one vertex. Then F_{Γ} contains a free abelian subgroup of rank 2, and is indecomposable, by Lemma 1. Thus, if H is a subgroup of finite index in F_{Γ} , then H is not infinite cyclic, and H is indecomposable. Let v_1, \ldots, v_k be the vertices of Γ , and let H be the infinite cyclic subgroup generated by the element $v = v_1 \cdots v_k$. Suppose H^* has finite index in F_{Γ} , and suppose H^* has a basis B containing v. Since Γ has connected complement, the centralizer of v in F_{Γ} is cyclic, [7]. Thus, v does not commute with any other elements of B. Thus, either H is a proper free factor of H^* , or $H^* = H$, neither of which is possible. So Γ has only one vertex. \Box

LEMMA 3 If $G_1 \oplus G_2$ is the direct product of two f.g. graph groups and $G_1 \oplus G_2$ has FBEP, then each of G_1 and G_2 has FBEP.

PROOF: Let A be a basis for $H \leq G_1$, and let C_2 be a basis for G_2 . Then $A \cup C_2$ is a basis for a subgroup $H \oplus G_2 \leq G_1 \oplus G_2$. Since $G_1 \oplus G_2$ has FBEP, there is a set D such that $A \cup C_2 \cup D$ is a basis for a subgroup H^* of finite index in $G_1 \oplus G_2$. Let $p: G_1 \oplus G_2 \to G_1$ denote the natural projection. Then $p: \langle A \cup D \rangle \to G_1$ is injective, since the sets $A \cup D$ and C_2 generate subgroups with trivial intersection. Thus $p(A \cup D) = A \cup p(D)$ is a basis for a subgroup K^* of G_1 . Moreover, $H^* = K^* \oplus G_2$, and since H^* has finite index in $G_1 \oplus G_2$, K^* has finite index in G_1 . \Box

LEMMA 4 Let $A = A_1 * \cdots * A_k$ be the free product of f.g. graph groups, where the underlying graphs of the free factors are connected. If A has FBEP, then each A_i does, as well.

PROOF: Let B_1 be a finite basis for a subgroup H_1 of A_1 , and let $B = B_1 \cup B_2$ be a basis for a subgroup H^* of finite index in A. Now, B is the set of vertices of a graph Γ ; let Cdenote the set of all vertices which can be reached by a path in Γ from some vertex in B_1 . Clearly, $B_1 \subset C$, and by an argument similar to that in Lemma 1, $C \subset A_1$. Let H_1^* be the group generated by C. To show that A_1 has FBEP, it will suffice to show that H_1^* has finite index in A_1 . C is a union of connected components of Γ , so H_1^* is a free factor of H^* . Thus, $H_1^* \cap A_1 = H_1^*$ is a free factor of $H^* \cap A_1$, and $H^* \cap A_1$ has finite index in A_1 . But A_1 is indecomposable, so $H^* \cap A_1$ is indecomposable. Therefore, $H_1^* = H^* \cap A_1$. Thus H_1^* has finite index in A_1 , so A_1 has FBEP. \Box

We have shown so far that if F_{Γ} has FBEP, then it belongs to the smallest class of groups containing the integers which is closed with respect to free products and direct products. We remark that F_{Γ} belongs to this class if and only if Γ has no full subgraphs isomorphic to $\circ - \circ - \circ - \circ$, such a graph is called an *assembly*. To finish the proof of Proposition 3, it will therefore suffice to show:

LEMMA 5 If Γ is finite and F_{Γ} has FBEP, then Γ has no full subgraph isomorphic to the square.

PROOF: Since the square is connected, we may suppose that Γ is connected. If Γ contains a square, then F_{Γ} has a direct factor of the form $A = (A_1 * A_2) \oplus (A_3 * A_4)$, where each $A_i = F_{\Gamma_i}$ for some assembly F_{Γ_i} . If F_{Γ} has FBEP, then, by the above, so does A. Consider an element $a = a_1 a_2 a_3 a_4$, where a_i is a vertex of Γ_i . We will show that the set $\{a\}$ cannot be extended to a basis for a subgroup of finite index in $(A_1 * A_2) \otimes (A_3 * A_4)$. Suppose $H^* \equiv F_{\Sigma}$ has finite index in A, and that a is a vertex of Σ . Then Σ must be an assembly, [8], and it must be connected since A is indecomposable. By [7], the centralizer in A of a is the subgroup $\langle a_1 a_2 \rangle \oplus \langle a_3 a_4 \rangle$, which is a free abelian group of rank two. So if a is a vertex of Σ , it must be a pendant vertex. But a connected assembly with a pendant vertex is a star, so $H^* \equiv F \oplus \mathbb{Z}$, where F is free. Thus, any subgroup of H^* is either free or the direct product of \mathbb{Z} with a free group [3]. Now, A contains a subgroup K isomorphic to $F_2 \oplus F_2$, where F_2 is free of rank 2, and $H^* \cap K$ has finite index in K. But it is straightforward to see that any subgroup of finite index in K contains a subgroup isomorphic to $F_n \oplus F_m$, where F_n and F_m are non-cyclic free groups. This is impossible, since $H^* \cap K \leq H^*$. Thus, A does not have FBEP. \Box

The finitely-generated intersection property:

THEOREM 2 The graph group F_{Γ} has FGIP iff each connected component of Γ is a complete graph.

PROOF: The given condition is equivalent to requiring that no full subgraph of Γ be isomorphic to L_2 ,

$$L_2 = \overset{x}{\circ} - \overset{y}{\longrightarrow} \overset{y}{\circ} - \overset{z}{\longrightarrow} \overset{z}{\circ} .$$

Suppose first that every connected component of X is a complete graph. Then F_X is either a free abelian group, or it is a free product of free abelian groups, which has FGIP by [1].

For the converse, it will suffice to show that the group F_{L_2} does not have FGIP, since any subgroup of a group with FGIP must itself have FGIP. Let H be the subgroup of F_{L_2} generated by the elements $x^{-1}y$ and $y^{-1}z$. Let t be a generator of an infinite cyclic group. Then H is the kernel of the homomorphism $f : F_{L_2} \to \langle t \rangle$ defined by f(x) = f(y) = f(z) = t. Let K be the subgroup of F_{L_2} generated by x and z. Clearly K is free. Now H and K are both finitely generated, but their intersection is the kernel of the restriction of f to K; since this kernel is the normal closure in K of the element $x^{-1}z$, it is free of infinite rank. Thus, F_{L_2} does not have FGIP. \Box

References

- B. Baumslag, Intersections of finitely generated subgroups in free products, J London Math Soc 41 (1966), 673-679.
- [2] R. G. Burns, A note on free groups, Proc. Amer. Math. Soc. 23 (1969), 14-17.
- [3] C. Droms, Subgroups of graph groups, J Algebra 110 (1987), 519-522.
- [4] A. Karras and D. Solitar, On finitely generated subgroups of a free group, Proc. Amer. Math. Soc. 22 (1969), 209-213.

- [5] M. Hall, Jr., Subgroups of finite index in free groups, Canad. J Math. 1 (1949), 187-190.
- [6] A. G. Howson, On the intersection of finitely generated free groups, J London Math Soc 29 (1954), 428–434.
- [7] H. Servatius, Automorphisms of graph groups, J Algebra, Vol 126, No. 1 (1989), 34–60.
- [8] H. Servatius, C. Droms, B. Servatius, *Groups assembled from free and direct products*, preprint.
- [9] J. Stillwell, *Classical Topology and Combinatorial Group Theory*, Springer-Verlag, New York, 1980.