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Abstract

We find necessary and sufficient conditions for a finitely generated group with
more than one end to have a planar Cayley graph.

1 Introduction
Given a group G and a set X of generators of G, the Cayley graph C

�
G � X � has vertex

set G, and for each g � G and x � X , an edge directed from g to gx and labelled “x.” If
x � X has order two, then for each g � G, we replace the edges labelled x directed from
g to gx and from gx to g by a single undirected edge joining g and gx and also labelled
x.

A graph is called planar if it can be drawn in the 2-sphere � 2 (or, equivalently, in the
plane) in such a way that the interiors of different edges are disjoint. The finite groups
which have planar Cayley graphs were enumerated by Maschke in 1896 [13]—they are
just the finite subgroups of the full symmetry group of � 2.

Finitely generated infinite groups whose Cayley graphs can be embedded in the
2–sphere with a single accumulation point of vertices have also been enumerated, by
Zieschang, Vogt and Coldewey [19] and Wilkie [18]. For such an embedding, the union
of the embedded graph and the regions whose boundaries are finite circuits of the graph
is a Cayley complex for the group; in these cases, if the group is one–ended, then it is
either a Fuchsian group or a non–euclidean crystallographic group. (See also chapter 3
of [12].)

If the Cayley graph of an infinite, finitely generated group can be embedded in the
sphere, but only with two or more accumulation points of vertices, then the group has
more than one end [9, Theorem 3]. In this case, a celebrated theorem of Stallings [15]
asserts that the group is either a free product with finite amalgamated subgroups or an
HNN extension with finite associated subgroups.

In this article, we find necessary and sufficient conditions for such a group to have
a planar Cayley graph. In addition, we show that any finitely generated group with a
planar Cayley graph is accessible. Since the one-ended ones have been determined, it



is possible that these groups can be effectively enumerated, though we do not yet know
if this is the case.

2 Sufficient conditions
In this section, we will describe certain somewhat technical sets of conditions which
guarantee that a free product with finite amalgamations or an HNN extension with finite
associated subgroups possesses a planar Cayley graph.

Given a 5-tuple
�
G � A � H � B � φ � , where G and H are groups with subgroups A and B,

respectively, and φ : A � B is an isomorphism, the free product with amalgamations is
the group FPA

�
G � A � H � B � φ ��� �

G � H �
	 N, where N is the normal closure in G � H of
the set � a � 1φ

�
a ��
 a � A � . G and H are called the base groups and A and B are called

the amalgamated subgroups. Given a 4-tuple
�
G � A � B � ψ � , where G is a group, A and

B are subgroups of G, and ψ : A � B is an isomorphism, the HNN extension is the
group HNN

�
G � A � B � ψ ��� �

G ������	 N, where N is the normal closure in G ��� of the set
� t � 1a � 1tψ

�
a ��
 a � A � and t is a generator of the infinite cyclic factor � . G is called

the base group and A and B the associated subgroups of the HNN extension.
Suppose G is a group with a finite subgroup A, and suppose some Cayley graph of

G has an embedding G in the 2–sphere � 2 with the following properties:

1. for each left coset gA of A in G, there is an open disk DG
�
gA � in � 2 which is

disjoint from G , and whose boundary ∂DG
�
gA � contains the elements of gA and

is otherwise disjoint from G .

2. the disks DG
�
gA � and DG

�
g � A � are disjoint if gA �� g � A

3. for any g � G, the cyclic order of the vertices in ∂DG
�
A � coincides up to orienta-

tion with that of their images under left multiplication by g in ∂DG
�
gA �

Then we will call
�
G � A � a planar pair. In particular, note that if A is trivial, then these

three conditions are satisfied by any embedding of any Cayley graph of G in � 2, and
the same is true if A has order two, provided the non-trivial element of A belongs to the
set of generators of G which define G . Note also that the third condition implies that A
acts on an 
 A 
 –gon whose vertices are the elements of A; that is, A is a finite cyclic or
dihedral group.

Now suppose that A is a subgroup of G and that B is a subgroup of H. Further
suppose that G and H have Cayley graphs with embeddings G and H , respectively, in
� 2 such that

�
G � A � and

�
H � B � are both planar pairs. Finally, suppose that φ : A � B is

an isomorphism, and that the cyclic order of the vertices on ∂DG
�
A � agrees up to ori-

entation with that of their images under φ on ∂DH
�
B � . Then we will call

�
G � A � H � B � φ �

a planar 5-tuple.

Example 2.1 ([4]) Consider the Coxeter groups

G ��� x � y � z 
 x2 � y2 � z2 � �
xy � 2 � �

yz � 2 � �
zx � 2 � 1 �

and
H ��� a � b � c 
 a2 � b2 � c2 � �

ab � 2 � �
bc � 2 � �

ca � 3 � 1 �
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and let G and H be the usual embeddings of their Cayley graphs with respect to the
given generators in � 2. G can be thought of as the 1–skeleton of a 3–cube and H as
that of a hexagonal cylinder (see figure 1.) Let A be the subgroup of G generated by

G H

Figure 1: Cayley graphs of G and H

� x � y � and let B be the subgroup of H generated by � a � b � . Define φ : A � B by φ
�
x ��� a

and φ
�
y ��� b. Then it is straightforward to verify that

�
G � A � H � B � φ � is a planar 5-tuple.

Let L � FPA
�
G � A � H � B � φ � . Then L is generated by � x � y � z � c � . We can build an

embedding L of the Cayley graph of L with respect to these generators in � 2 by the
following iterative construction: begin with a copy of G . Then to each face of G
corresponding to a left coset of A, attach a copy of H along its unit left coset of B (ie,
the coset 1 � B.) Next, attach to each new non-unit left coset of B a copy of G along
its unit left coset of A, and repeat these steps (see figure 2.) Note that the portion of L

Figure 2: A portion of the Cayley graph of FPA
�
G � A � H � B � φ �

constructed after each finite stage can be embedded in the connected sum of 2–spheres,
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which is to say, in the 2–sphere itself, and so L , which is the limit of these, is also
planar. �

Next suppose G is a group with two finite subgroups A and B which are isomorphic
via a map ψ : A � B. We will call

�
G � A � B � ψ � a planar quadruple if some Cayley graph

of G has an embedding G in � 2 with these properties:

1.
�
G � A � and

�
G � B � are both planar pairs.

2. DG
�
gA � is disjoint from DG

�
g � B � for all g � g ��� G.

3. The cyclic order of the vertices around ∂DG
�
A � coincides up to orientation with

that of their images under ψ around ∂DG
�
B � .

Once again, these conditions are satisfied by any embedding of the Cayley graph of G
in � 2 if A and B are trivial, or if they both have order two, and both nontrivial elements
belong to the generating set used to define G . Also, as before, these conditions imply
that A and B are finite cyclic or dihedral groups.

Example 2.2 Let G and A be as in the previous example, and let B be the subgroup
of G generated by � y � z � . Define ψ : A � B by ψ

�
x ��� y and ψ

�
y ��� z. It is again

straightforward to see that
�
G � A � B � ψ � is a planar quadruple.

Let K � HNN
�
G � A � B � ψ � . Then K is generated by � x � y � z � t � , and an embedding K

in � 2 of its Cayley graph with respect to these generators can be built by an iterative
procedure similar to the one above. Beginning with a copy of G , we attach to each face
of G corresponding to a left coset of A another copy of G joining the vertices in the
given coset of A in the old copy to the vertices of the unit left coset of B in the new with
edges labelled “t”, and directed from the old copy of G to the new. Similarly, to each
left coset of B we attach a new copy of G , with edges labelled “t” joining the vertices
of the unit left coset of A to the vertices of the given left coset of B, this time directed
from new to old. Then we repeat these constructions with each new coset of A and of
B that is added (see figure 3.) As before, we see that the graph produced at each finite
stage of the construction is planar, and so K is, as well. �

In fact, it is easy to see that the procedures of the above examples can be applied
to produce embeddings in � 2 of a Cayley graph of FPA

�
G � A � H � B � φ � for any planar

quintuple
�
G � A � H � B � φ � , and of one for HNN

�
G � A � B � ψ � for any planar quadruple�

G � A � B � ψ � .
The purpose of this note is to prove the converse of this statement; that is, any

finitely-generated group with more than one end which has a planar Cayley graph is
either an amalgamated free product or an HNN extension of one of the above kinds.

3 Groups with more than one end
Most of the ideas in this section had their origins in the work of Stallings [15, 16];
our formulation is taken primarily from [5], [6] and [14] (see also [2].) Let G be a
finitely generated group, and let X be a finite generating set for G. Let C

�
G � X � denote
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Figure 3: A portion of the Cayley graph of HNN
�
G � A � B � ψ �

the Cayley graph of G with respect to X . If X � is any other finite generating set for
G, then the number of ends of C

�
G � X � is the same as that of C

�
G � X � � , and so we

refer to this number as the number of ends of G. It is well-known that the number of
ends of a finitely generated group is either 0 (in case G is finite), 1 (for example, if
G !"�"#$� ), 2 (if G is virtually infinite cyclic) or uncountably infinite (if G is free of
rank two, for example.)

Stallings’s Theorem [15, 16] states that any finitely generated group with more than
one end is either a nontrivial free product with finite amalgamated subgroups, or an
HNN extension with finite associated subgroups—that is, G is the fundamental group
of a graph of groups which has one edge, where the edge group is finite.

Given a subgraph f of a graph Γ, we define f to be the subgraph of Γ spanned by
the vertices which do not belong to f . We call f the complement of f . The set of edges
which belong neither to f nor to f (that is, the set of edges which have one endpoint
in f and the other in f ) is called the coboundary of f , and is denoted δ f . Note that
δ f � δ f .

Let C be a Cayley graph for G, and suppose that G (and hence C ) has more than
one end. Then there is a cut in C : that is, an infinite connected subgraph e0 whose
complement e0 is also connected and infinite, and whose coboundary is finite. Let%
E �"� ge0 
 g � G �'&$� ge0 
 g � G � . Then there is an equivalence relation on

%
E, defined

as follows: given x and y in
%
E, we set x ( y if x is, among elements of

%
E, a maximal

proper subset of y. (Note that x �( x for all x, and that if x ( y, then δx is disjoint from
y.) Let

%
V denote the set of ( –classes.

Lemma 3.1 [5, 6] The sets
%
V and

%
E are, respectively, the vertex and edge sets of an

undirected tree
%
T , on which G acts. Each pair � x � x ��)

%
E represents the two possible
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orientations of an edge of
%
T. The initial vertex of any (oriented) edge x �

%
E is * x +,�

%
V,

and its terminal vertex is * x + .
Next, we observe that G also acts on a directed tree. If e0 and e0 lie in different

orbits under the G–action on
%
E, then we define V �

%
V , E �-� ge0 
 g � G � , and T is

the tree with vertex set V and edge set E. Suppose, on the other hand, that there is
an element t � G such that te0 � e0 (ie, t reverses the undirected edge � e0 � e0 � .) Then
each undirected edge of

%
T is reversed by some element of G. In this case, we subdivide

the edges of
%
T ; formally, we let V �

%
V &.�/� ge0 � ge0 ��
 g � G � (that is, we add a new

vertex � ge0 � ge0 � for each undirected edge of
%
T ), and we let E �

%
E. For any x � E, we

let * x +�� V be the initial vertex of x, and we let � x � x �0� V be its terminal vertex (see
figure 4.) In either case, T , with vertex set V and edge set E, is a directed tree, and G
acts on T with one orbit of edges.

121323 424525 626727 828929:2:;2;
e

e

w v < e = e > w

e e

v

Figure 4: Subdividing an edge

4 Planar Cayley graphs
Now suppose G is a group with a Cayley graph that is planar and has more than one
end, and let G be an embedding of this graph in � 2. Then there is a cut e0 in G , and
a directed tree T as above on which G acts with one orbit of edges. Let v be a vertex
of T . Then v is a set of G–translates of e0 and e0, which may consist of a single pair
� ge0 � ge0 � in the case of a vertex added during the “subdivision” process discussed
above. Thus, G � � & x ? vx �@& P, where P consists of all the vertices and edges of G
that belong to no x � v—in particular, P contains the edges in δx for each x � v (see
figure 5.) Let e � v (so that v is the initial vertex of e and the terminal vertex of e.) Let
Gv be the G–stabilizer of v under the action of G on T . If g � Gv, then g permutes the
elements x � v setwise among themselves, and gP � P.

Suppose for the moment that G is three–connected. Then it follows from the infinite
version of Whitney’s theorem [8] that if x � y � v belong to the same G–orbit, then the
cyclic orders of the edges in their respective coboundaries agree, up to orientation.
Thus, we may modify G by replacing each subgraph x � v with a circuit Cx whose
length is 
 δx 
 , and in this way we obtain a new graph (which we will call Gv) on which
G acts (see figure 6.) Note that Gv is also three–connected.

Let a be any vertex of Ce. Since G acts freely on the vertices and edges of G ,
it follows that if 1 �� g � Gv, then g can fix no vertex of Gv. Therefore, Gv can be
contracted onto a graph

%
Gv which is a Cayley graph for Gv, and in which the image of

a corresponds to 1 � Gv [1]. To construct
%
Gv, we choose any spanning subtree Y of the

quotient Gv 	 Gv, and identify each connected component of the preimage of Y in Gv to a
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Figure 5: A vertex v

point. (Note that each such preimage contains exactly one vertex from each Gv–orbit.)
Any g � Gv corresponds in

%
Gv to the image of the vertex ga � Gv; in particular, the

vertices corresponding to the elements of the stabilizer Ge of e are the images in
%
Gv of

the vertices of Ce, and those corresponding to the elements of any left coset gGe of Ge
in G to the images of the vertices of gCe � Cge. Furthermore, since Gv is 3–connected,
the cyclic order of the vertices around ∂Ce coincides with that of their images under
left multiplication by any g � Gv around ∂

�
gCe � , and so the same is true in

%
Gv. That is,� %

Gv � Ge � is a planar pair.
Suppose there are two orbits of vertices under the G–action on T . Then G is the

fundamental group of a graph of groups, where the graph may be taken to consist of e0
and its two endpoints v and w in T . That is, G is the free product of Gv and Gw, amal-
gamating the subgroups Ge0 � Ge0 . Furthermore, as above,

� %
Gv � Ge0 � and

� %
Gw � Ge0 �

are planar pairs, and it follows from the fact that G is three-connected that the identity
map 1 : Ge0 � Ge0 respects the cyclic order of vertices—that is,

�
Gv � Ge0 � Gw � Ge0 � 1 �

is a planar 5–tuple, and G � FPA
�
Gv � Ge0 � Gw � Ge0 � 1 � .

One the other hand, suppose there is just one orbit of vertices. Let v0 �A* e0 + . Then
given any e � v0, there is an element g � G such that gv0 � τ

�
e � , and so g � 1e � v0.

Thus, v0 contains translates of both e0 and of e0. Since no vertex in any Gge0 lies in
the same Gv0–orbit as a, there is an element t � G and a vertex v1 � Gte0 such that a
and v1 belong to the same component of the preimage of Y , and so the image of v1 inB
Gv0 also represents 1 � Gv0 . Thus, any element of Gte0 is represented in

B
Gv0 by the

image of a vertex of Cte0 , and the elements of any left coset of Gte0 are represented
by the images of the vertices of the corresponding translate of Cte0 . Note that these
images lie on the boundaries of disks in

B
Gv0 which are disjoint from those containing

the cosets of Ge0 . Further, since G is three–connected, the homomorphism t C : Ge0 �
Gte0 � tGe0t � 1 given by t C �

g �D� tgt � 1 preserves the cyclic order of vertices. Thus, in
this case,

�
Gv0 � Ge0 � Gte0 � t CE� is a planar 4–tuple, and G � HNN

�
Gv0 � Ge0 � Gte0 � t CF� .
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Figure 6: Gv

Theorem 4.1 Let G be a group, and suppose G has a planar Cayley graph with more
than one end. Then G is either a free product with amalgamations FPA

�
H � A � K � B � φ �

where
�
H � A � K � B � φ � is a planar 5-tuple, or it is an HNN extension HNN

�
H � A � B � ψ � ,

where
�
H � A � B � ψ � is a planar 4-tuple.

PROOF. Let G be an embedding of a Cayley graph for G in � 2. If G is either one– or
two–separable, then the theorem follows from Theorems 4.1 and 4.4 of [3], and from
the above discussion if G is three–connected. �

5 Accessibility
Theorem 5.1 A finitely generated group with a planar Cayley graph is finitely pre-
sented.

PROOF. Let G be such a group. Then G can be written as the fundamental group
of a finite graph of groups whose edge groups all have order two or less, and whose
vertex groups cannot be decomposed over � 2 [11] (that is, none of them has a graph
of groups decomposition with an edge group of order one or two.) Each vertex group
has a planar Cayley graph [1], and these are all three–connected [3, Theorem 2.1].
Therefore, by Whitney’s theorem, the Cayley graphs of the vertex groups have planar
embeddings in which the cyclic orders of the edge labels around any two vertices agree
up to orientation. This implies that the vertex groups are finitely presented [10], which
implies in turn that G is finitely presented. �

Possession of a planar Cayley graph is a Markov property, which means that there
is no algorithm for deciding whether the group described by a given presentation has
a planar Cayley graph, and so the best one can ask for is an effective enumeration of
such groups.
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A group is said to be accessible if it is the fundamental group of a finite graph
of groups whose edge groups are all finite, and whose vertex groups are all one-ended.
Finitely presented groups are accessible [7]. Suppose G has a planar Cayley graph. If G
has more than one end, then it can be decomposed as a free product with amalgamations
of some planar 5-tuple or an HNN extension of a planar 4-tuple, and in either case, the
base groups also have planar Cayley graphs [1]. Thus, any of these which have more
than one end can be further decomposed. The fact that G is accessible implies that
this process must terminate after a finite number of steps [5]. Thus, any group with a
planar Cayley graph can be “built” by a finite sequence of amalgamated free products
and HNN extensions, beginning with the one–ended groups. This raises the question

Is there an effective enumeration of groups with planar Cayley graphs?

We cannot immediately answer this in the affirmative, due to the possibility that a
group FPA

�
G � H � A � B � φ � or HNN

�
G � A � B � ψ � may have a planar Cayley graph which is

different in some essential way from the one obtained by the construction of section 2
from the planar Cayley graph(s) of its base group(s).
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