Critical groups of strongly regular graphs

Josh Ducey James Madison University

> Algebra Seminar University of Florida

April 22, 2016

Outline

- 1 The critical group of a graph
- Strongly regular graphs
- Some examples

The critical group of a graph
Strongly regular graphs
Some examples

• Γ a simple graph

- Γ a simple graph
- A adjacency matrix

- Γ a simple graph
- A adjacency matrix
- L = D A Laplacian matrix

An example

An example

ullet Both A and L define a map $\mathbb{Z}^{V(\Gamma)}
ightarrow \mathbb{Z}^{V(\Gamma)}$

- ullet Both A and L define a map $\mathbb{Z}^{V(\Gamma)} o \mathbb{Z}^{V(\Gamma)}$
- $\operatorname{Coker}(A) = \mathbb{Z}^{V(\Gamma)} / \operatorname{Im}(A)$ is the *Smith group* of Γ

- ullet Both A and L define a map $\mathbb{Z}^{V(\Gamma)} o \mathbb{Z}^{V(\Gamma)}$
- $\operatorname{Coker}(A) = \mathbb{Z}^{V(\Gamma)} / \operatorname{Im}(A)$ is the *Smith group* of Γ
- $\operatorname{Coker}(L) = \mathbb{Z}^k \oplus \mathcal{K}(\Gamma)$

- Both A and L define a map $\mathbb{Z}^{V(\Gamma)} \to \mathbb{Z}^{V(\Gamma)}$
- $\operatorname{Coker}(A) = \mathbb{Z}^{V(\Gamma)} / \operatorname{Im}(A)$ is the *Smith group* of Γ
- $\operatorname{Coker}(L) = \mathbb{Z}^k \oplus \mathcal{K}(\Gamma)$
- $\mathcal{K}(\Gamma)$ is the *critical group* (or *sandpile group*)

Known critical groups

- trees, {0}
- n-cycle, Z_n
- complete graph K_n , $(Z_n)^{n-2}$
- wheel graph W_n (n odd), $(Z_{\ell_n})^2$
- line graphs (partial information)
- abelian Cayley graphs (partial information)
- Hypercube graph Q_n (2-part unknown)
- Payley, Peisert graphs
- many others

Smith normal form

• Start with a homomorphism of free abelian groups

$$M \colon \mathbb{Z}^n \to \mathbb{Z}^m$$

Smith normal form

- Start with a homomorphism of free abelian groups $M \colon \mathbb{Z}^n \to \mathbb{Z}^m$
- There exist bases of domain and codomain so that M has matrix

where the s_i are integers with $s_i | s_{i+1}$ for all i.

Smith normal form

- Start with a homomorphism of free abelian groups $M \colon \mathbb{Z}^n \to \mathbb{Z}^m$
- There exist bases of domain and codomain so that M has matrix

where the s_i are integers with $s_i|s_{i+1}$ for all i.

• The s_i are called the invariant factors of M, and

$$\operatorname{Coker}(M) \cong \mathbb{Z} / s_1 \mathbb{Z} \oplus \mathbb{Z} / s_2 \mathbb{Z} \oplus \cdots$$

Outline

- The critical group of a graph
- 2 Strongly regular graphs
- Some examples

• Let Γ be an $srg(v, k, \lambda, \mu)$

• Let Γ be an $srg(v, k, \lambda, \mu)$

•
$$A^2 = kI + \lambda A + \mu (J - I - A)$$

- Let Γ be an $srg(v, k, \lambda, \mu)$
- $A^2 = kI + \lambda A + \mu(J I A)$
- L = kI A

- Let Γ be an $srg(v, k, \lambda, \mu)$
- $A^2 = kI + \lambda A + \mu(J I A)$
- L = kI A

- Let Γ be an $srg(v, k, \lambda, \mu)$
- $A^2 = kI + \lambda A + \mu (J I A)$
- L = kI A

$$L^{2} + (\lambda - \mu - 2k)L = (k - k^{2} + \lambda k - \mu - \mu k)I + \mu J$$

- Let Γ be an $srg(v, k, \lambda, \mu)$
- $A^2 = kI + \lambda A + \mu (J I A)$
- L = kI A

$$L^{2} + (\lambda - \mu - 2k)L = (k - k^{2} + \lambda k - \mu - \mu k)I + \mu J$$

Lemma

If p is a prime and p^a exactly divides $k - k^2 + \lambda k - \mu - \mu k$, then p^a is an upper bound for the exponent of the p-primary component of $\mathcal{K}(\Gamma)$.

•
$$L \colon \mathbb{Z}^{V(\Gamma)} \to \mathbb{Z}^{V(\Gamma)}$$

- $I : \mathbb{Z}^{V(\Gamma)} \to \mathbb{Z}^{V(\Gamma)}$
- Restrict *L* to the subgroup

$$Y = \left\{ \sum_{v \in V(\Gamma)} a_v v \mid \sum_{v \in V(\Gamma)} a_v = 0 \right\}.$$

- $I \cdot \mathbb{Z}^{V(\Gamma)} \to \mathbb{Z}^{V(\Gamma)}$
- Restrict *L* to the subgroup

$$Y = \left\{ \sum_{v \in V(\Gamma)} a_v v \mid \sum_{v \in V(\Gamma)} a_v = 0 \right\}.$$

• The previous equation becomes

$$(L + (\lambda - \mu - 2k)I) L = (k - k^2 + \lambda k - \mu - \mu k)I.$$

- $I \cdot \mathbb{Z}^{V(\Gamma)} \to \mathbb{Z}^{V(\Gamma)}$
- Restrict *L* to the subgroup

$$Y = \left\{ \sum_{v \in V(\Gamma)} a_v v \mid \sum_{v \in V(\Gamma)} a_v = 0 \right\}.$$

• The previous equation becomes

$$(L + (\lambda - \mu - 2k)I) L = (k - k^2 + \lambda k - \mu - \mu k)I.$$

Consider SNF bases.

Outline

- The critical group of a graph
- Strongly regular graphs
- Some examples

• Let R_n be the graph having vertex set the squares of an $n \times n$ grid.

• Let R_n be the graph having vertex set the squares of an $n \times n$ grid.

 Two squares are adjacent when they lie in the same row or column.

•
$$v = n^2$$

The rook's graph $\overline{R_n}$

•
$$v = n^2$$

•
$$v = n^2$$

• $k = 2(n-1)$

•
$$v = n^2$$

•
$$k = 2(n-1)$$

•
$$\lambda = n-2$$

•
$$v = n^2$$

•
$$k = 2(n-1)$$

•
$$\lambda = n - 2$$

•
$$\mu = 2$$

$$L^{2} + (\lambda - \mu - 2k)L = (k - k^{2} + \lambda k - \mu - \mu k)I + \mu J$$

$$L^{2} + (-3n)L = (-2n^{2})I + 2J$$

$$L^{2} + (\lambda - \mu - 2k)L = (k - k^{2} + \lambda k - \mu - \mu k)I + \mu J$$

$$L^{2} + (-3n)L = (-2n^{2})I + 2J$$

When *n* is odd, the 2-part of $\mathcal{K}(R_n)$ is elementary abelian.

$$L^{2} + (\lambda - \mu - 2k)L = (k - k^{2} + \lambda k - \mu - \mu k)I + \mu J$$

$$L^{2} + (-3n)L = (-2n^{2})I + 2J$$

When n is odd, the 2-part of $\mathcal{K}(R_n)$ is elementary abelian. In general,

$$\mathcal{K}(R_n) \cong (\mathbf{Z}_{2n})^{(n-2)^2+1} \oplus (\mathbf{Z}_{2n^2})^{2(n-2)}$$

• R_n is an $SRG(n^2, 2(n-1), n-2, 2)$

- R_n is an SRG $(n^2, 2(n-1), n-2, 2)$
- Its adjacency spectrum is

$$[-2]^{(n-1)^2}, [n-2]^{2n-2}, [2(n-1)]^1.$$

- R_n is an SRG $(n^2, 2(n-1), n-2, 2)$
- Its adjacency spectrum is

$$[-2]^{(n-1)^2}$$
, $[n-2]^{2n-2}$, $[2(n-1)]^1$.

•

$$|S(R_n)| = 2^{(n-1)^2} \cdot (n-2)^{2n-2} \cdot 2(n-1)$$

= $2^{(n-2)^2} \cdot (2(n-2))^{2n-3} \cdot 2(n-1)(n-2).$

- R_n is an SRG $(n^2, 2(n-1), n-2, 2)$
- Its adjacency spectrum is

$$[-2]^{(n-1)^2}$$
, $[n-2]^{2n-2}$, $[2(n-1)]^1$.

•

$$|S(R_n)| = 2^{(n-1)^2} \cdot (n-2)^{2n-2} \cdot 2(n-1)$$

= $2^{(n-2)^2} \cdot (2(n-2))^{2n-3} \cdot 2(n-1)(n-2).$

L has spectrum

$$[2n]^{(n-1)^2}, [n]^{2n-2}, [0]^1.$$

- R_n is an SRG $(n^2, 2(n-1), n-2, 2)$
- Its adjacency spectrum is

$$[-2]^{(n-1)^2}$$
, $[n-2]^{2n-2}$, $[2(n-1)]^1$.

•

$$|S(R_n)| = 2^{(n-1)^2} \cdot (n-2)^{2n-2} \cdot 2(n-1)$$

= $2^{(n-2)^2} \cdot (2(n-2))^{2n-3} \cdot 2(n-1)(n-2)$.

L has spectrum

$$[2n]^{(n-1)^2}, [n]^{2n-2}, [0]^1.$$

Matrix tree theorem implies

$$|\mathcal{K}(R_n)| = \frac{1}{n^2} \cdot (2n)^{(n-1)^2} \cdot n^{2n-2}$$
$$= (2n)^{(n-2)^2+1} \cdot (2n^2)^{2(n-2)}.$$

Lemma

Let G be a finite abelian group, generated by the elements x_1, x_2, \ldots, x_k . Suppose that there exist integers r_1, r_2, \ldots, r_k so that $|G| = r_1 \cdot r_2 \cdots r_k$ and $|x_i|$ divides r_i , for $1 \le i \le k$. Then

$$G \cong \mathbf{Z}_{r_1} \oplus \mathbf{Z}_{r_2} \oplus \cdots \oplus \mathbf{Z}_{r_k}.$$

Chip-firing

 We label each vertex of the graph with an integer—we call the result a configuration

Chip-firing

- We label each vertex of the graph with an integer—we call the result a configuration
- Two configurations v_1 and v_2 represent the same element of the critical group if $v_1 v_2 = Lu$, or

$$v_1 - Lu = v_2$$

We can get from v_1 to v_2 by *chip-firing*.

Chip-firing

- We label each vertex of the graph with an integer—we call the result a *configuration*
- Two configurations v_1 and v_2 represent the same element of the critical group if $v_1 v_2 = Lu$, or

$$v_1 - Lu = v_2$$

We can get from v_1 to v_2 by *chip-firing*.

 We may also restrict to configurations with vertices summing to zero.

-8	8			-2	7	-1	-1
8	-8		⇒	7	-8		
			7	-1			
				-1			

-8	8			-2	7	-1
8	-8		⇒	7	-8	
			7	-1		
				-1		

	-1	1	
\Rightarrow	7	-7	
_	-1	1	
	-1	1	

-8	8			-2	7	-1
8	-8		⇒	7	-8	
			7	-1		
				-1		

	-1	1		
\Rightarrow	7	-7		_
~	-1	1		
	-1	1		

	-1			
⇒	6	-1	-1	-1
~	-1			
	-1			

								,				,					,		
-8	8			-2	7	-1	-1		-1	1			-1						
8	-8		→	7	-8				7	-7		_ ⇒	6	-1	-1	-1	_		
			→	-1				⇒	-1	1		7	-1] →		
				-1					-1	1			-1						

The order of the critical group, $\mathcal{K}(R_4)$, is $2^{35} = 34359738368$.

The order of the critical group, $\mathcal{K}(R_4)$, is $2^{35} = 34359738368$.

$$\mathcal{K}(\textit{R}_{4})\cong (\textbf{Z}_{8})^{5}\oplus (\textbf{Z}_{32})^{4}\,.$$

		-1	1		-1	1		-1	1	-1	1			
		1	-1							1	-1			
					1	-1		1	-1					
											$\overline{}$			
-1	1			-1	1		-1		-1		-3	1	1	1
							1							
									1					

-32	32			-27	2	5	5
			→		5		
			7		5		
					5		

-32	32			-27	2	5	5
			⇒		5		
			7		5		
					5		

	3	-3	
\Rightarrow	-5	5	
7	-5	5	
	-5	5	

-32	32			-27	2	5	
			→		5		
			7		5		
					5		

	3	-3	
_	-5	5	
_	-5	5	
	-5	5	

	3			
\Rightarrow	-4	1	1	1
	-4	1	1	1
	-4	1	1	1

-32	32			-27	2	5	5
			\Rightarrow		5		
			→		5		
					5		

⇒	3	-3	
	-5	5	
	-5	5	
	-5	5	

	3				
⇒	-4	1	1	1	
7	-4	1	1	1	
	-4	1	1	1	

These elements generate the group.

-1	1		-1	1		-1	1	-1	1	
1	-1							1	-1	
			1	-1		1	-1			

-1	1		-1	1	-1		-1		-3	1	1	1
					1							
							1					

A similar game can be played with the adjacency matrix, and with the graph R_n^c .

A similar game can be played with the adjacency matrix, and with the graph R_n^c .

Theorem (D, Gerhard, Watson)

The critical group and Smith group of R_n and its complement R_n^c are given by the following isomorphisms:

$$\mathcal{K}(R_n) \cong (\mathbf{Z}_{2n})^{(n-2)^2+1} \oplus (\mathbf{Z}_{2n^2})^{2(n-2)}
S(R_n) \cong (\mathbf{Z}_2)^{(n-2)^2} \oplus (\mathbf{Z}_{2(n-2)})^{2n-3} \oplus \mathbf{Z}_{2(n-1)(n-2)}
\mathcal{K}(R_n^c) \cong (\mathbf{Z}_{n(n-2)})^{(n-2)^2-1} \oplus (\mathbf{Z}_{n(n-1)(n-2)})^2 \oplus (\mathbf{Z}_{n^2(n-1)(n-2)})^{2(n-2)}
S(R_n^c) \cong (\mathbf{Z}_{(n-1)})^{2(n-1)} \oplus \mathbf{Z}_{(n-1)^2}.$$

Suppose that Γ is an srg(3250, 57, 0, 1).

Suppose that Γ is an srg(3250, 57, 0, 1). L has spectrum $[50]^{1729}$, $[65]^{1520}$, $[0]^{1}$, so

$$|\mathcal{K}(\Gamma)| = \frac{1}{3250} \cdot 50^{1729} \cdot 65^{1520}$$

= $2^{1728} \cdot 5^{4975} \cdot 13^{1519}$.

Suppose that Γ is an srg(3250, 57, 0, 1). L has spectrum $[50]^{1729}$, $[65]^{1520}$, $[0]^1$, so

$$|\mathcal{K}(\Gamma)| = \frac{1}{3250} \cdot 50^{1729} \cdot 65^{1520}$$

= $2^{1728} \cdot 5^{4975} \cdot 13^{1519}$.

$$L^{2} + (\lambda - \mu - 2k)L = (k - k^{2} + \lambda k - \mu - \mu k)I + \mu J$$

$$L^{2} + (-115)L = -(2 \cdot 5^{3} \cdot 13)I + J$$

Suppose that Γ is an srg(3250, 57, 0, 1). L has spectrum $[50]^{1729}$, $[65]^{1520}$, $[0]^1$, so

$$|\mathcal{K}(\Gamma)| = \frac{1}{3250} \cdot 50^{1729} \cdot 65^{1520}$$

= $2^{1728} \cdot 5^{4975} \cdot 13^{1519}$.

$$L^{2} + (\lambda - \mu - 2k)L = (k - k^{2} + \lambda k - \mu - \mu k)I + \mu J$$

$$L^{2} + (-115)L = -(2 \cdot 5^{3} \cdot 13)I + J$$

$$\mathcal{K}(\Gamma) \cong (\textbf{Z}/2\textbf{Z})^{1728} \oplus (\textbf{Z}/13\textbf{Z})^{1519} \oplus (\textbf{Z}/5\textbf{Z})^{e_1} \oplus \left(\textbf{Z}/5^2\textbf{Z}\right)^{e_2} \oplus \left(\textbf{Z}/5^3\textbf{Z}\right)^{e_3}$$

$$L \colon \mathbb{Z}^{V(\Gamma)} \to \mathbb{Z}^{V(\Gamma)}$$

$$L\colon \mathbb{Z}^{V(\Gamma)} \to \mathbb{Z}^{V(\Gamma)}$$

$$L\colon\thinspace \mathbb{Z}_p^{\ V(\Gamma)}\to \mathbb{Z}_p^{\ V(\Gamma)}$$

$$L \colon \mathbb{Z}^{V(\Gamma)} \to \mathbb{Z}^{V(\Gamma)}$$

$$L\colon\thinspace \mathbb{Z}_p^{\ V(\Gamma)}\to \mathbb{Z}_p^{\ V(\Gamma)}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 6
\end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

•
$$L: \mathbb{Z}_p^{V(\Gamma)} \to \mathbb{Z}_p^{V(\Gamma)}$$

$$\bullet \ M_i = \left\{ x \in \mathbb{Z}_p^n \mid Lx \in p^i \, \mathbb{Z}_p^m \right\}$$

$$N_i = \{ p^{-i} Lx \, | \, x \in M_i \}$$

• Let e_i denote multiplicity of p^i in SNF

•

$$\dim_{\mathbb{F}_p} \overline{M_i} = \dim_{\mathbb{F}_p} \overline{\ker(L)} + e_i + e_{i+1} + \cdots$$

and

$$\dim_{\mathbb{F}_p} \overline{N_i} = e_0 + e_1 + \cdots + e_i.$$

Consider the inclusions of the eigenspaces of *L* in these modules:

$$ullet$$
 $V_{65}\cap {f Z}_5^{V(\Gamma)}\subseteq {f N}_1$, and so $\overline{V_{65}\cap {f Z}_5^{V(\Gamma)}}\subseteq \overline{{f N}_1}$

Consider the inclusions of the eigenspaces of L in these modules:

$$ullet$$
 $V_{65}\cap {f Z}_5^{V(\Gamma)}\subseteq {f N}_1$, and so $\overline{V_{65}\cap {f Z}_5^{V(\Gamma)}}\subseteq \overline{{f N}_1}$

•
$$V_{50} \cap \mathbf{Z}_5^{V(\Gamma)} \subseteq M_2$$

We get the inequalities:

$$1520 \le e_0 + e_1$$
$$1729 \le 1 + e_2 + e_3.$$

Case 1:
$$1520 = e_0 + e_1$$
 and $1729 = e_2 + e_3$.

Case 2:
$$1521 = e_0 + e_1$$
 and $1728 = e_2 + e_3$.

We get the inequalities:

$$1520 \le e_0 + e_1$$
$$1729 \le 1 + e_2 + e_3.$$

Case 1:
$$1520 = e_0 + e_1$$
 and $1729 = e_2 + e_3$.
Case 2: $1521 = e_0 + e_1$ and $1728 = e_2 + e_3$.
We also know $|Syl_5(K(\Gamma))| = 5^{4975}$, so $4975 = e_1 + 2e_2 + 3e_3$.

Theorem

Let Γ be an srg(3250, 57, 0, 1). Let e_0 denote the rank of the Laplacian matrix of Γ over a field of characteristic 5. Then either

$$Syl_5(K(\Gamma)) \cong (\mathbf{Z}/5\mathbf{Z})^{1520-e_0} \oplus (\mathbf{Z}/5^2\mathbf{Z})^{1732-e_0} \oplus (\mathbf{Z}/5^3\mathbf{Z})^{e_0-3}$$

or

$$\textit{Syl}_5(\textit{K}(\Gamma)) \cong \left(\textbf{Z}/5\textbf{Z}\right)^{1521-e_0} \oplus \left(\textbf{Z}/5^2\textbf{Z}\right)^{1730-e_0} \oplus \left(\textbf{Z}/5^3\textbf{Z}\right)^{e_0-2}.$$

The critical group of a graph Strongly regular graphs Some examples

What is the 5-rank of L?

The critical group of a graph Strongly regular graphs Some examples

Thank you for your attention!