Abelian groups associated to strongly regular graphs.

Josh Ducey
James Madison University
SECANT 3
Cedar Crest College
January 15, 2021

Outline

(1) Matrices of graphs

(2) Strongly regular graphs

(3) Some results

$$
A=\left[\begin{array}{llllllll}
0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 & 0
\end{array}\right]
$$

- Γ, a finite simple graph with adjacency matrix A.

- Г, a finite simple graph with adjacency matrix A.
- This is the starting point of algebraic graph theory.

- Г, a finite simple graph with adjacency matrix A.
- This is the starting point of algebraic graph theory.
- Also popular, the Laplacian matrix $L=D-A$, where D is diagonal matrix of vertex degrees.
$L=\left[\begin{array}{cccccccc}3 & -1 & 0 & -1 & -1 & 0 & 0 & 0 \\ -1 & 3 & -1 & 0 & 0 & -1 & 0 & 0 \\ 0 & -1 & 3 & -1 & 0 & 0 & -1 & 0 \\ -1 & 0 & -1 & 3 & 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 & 3 & -1 & 0 & -1 \\ 0 & -1 & 0 & 0 & -1 & 3 & -1 & 0 \\ 0 & 0 & -1 & 0 & 0 & -1 & 3 & -1 \\ 0 & 0 & 0 & -1 & -1 & 0 & -1 & 3\end{array}\right]$

- Г, a finite simple graph with adjacency matrix A.
- This is the starting point of algebraic graph theory.
- Also popular, the Laplacian matrix $L=D-A$, where D is diagonal matrix of vertex degrees.
- An integer matrix defines a homomorphism of free abelian groups of finite rank $\phi: \mathbb{Z}^{V} \rightarrow \mathbb{Z}^{V}$
- An integer matrix defines a homomorphism of free abelian groups of finite rank $\phi: \mathbb{Z}^{V} \rightarrow \mathbb{Z}^{V}$
- For matrices attached to a graph, the cokernel $\mathbb{Z}^{V} / \operatorname{Im}(\phi)$ becomes graph invariant
- An integer matrix defines a homomorphism of free abelian groups of finite rank $\phi: \mathbb{Z}^{V} \rightarrow \mathbb{Z}^{V}$
- For matrices attached to a graph, the cokernel $\mathbb{Z}^{V} / \operatorname{Im}(\phi)$ becomes graph invariant
- $\operatorname{Coker}(A)=S(\Gamma) \quad$ (Smith group, finite when A is nonsingular)
- An integer matrix defines a homomorphism of free abelian groups of finite rank $\phi: \mathbb{Z}^{V} \rightarrow \mathbb{Z}^{V}$
- For matrices attached to a graph, the cokernel $\mathbb{Z}^{V} / \operatorname{Im}(\phi)$ becomes graph invariant
- $\operatorname{Coker}(A)=S(\Gamma) \quad$ (Smith group, finite when A is nonsingular)
- $\operatorname{Coker}(L)=K(\Gamma) \oplus \mathbb{Z}^{c} \quad$ (critical group, sandpile, Jacobian)
- An integer matrix defines a homomorphism of free abelian groups of finite rank $\phi: \mathbb{Z}^{V} \rightarrow \mathbb{Z}^{V}$
- For matrices attached to a graph, the cokernel $\mathbb{Z}^{V} / \operatorname{Im}(\phi)$ becomes graph invariant
- $\operatorname{Coker}(A)=S(\Gamma) \quad$ (Smith group, finite when A is nonsingular)
- $\operatorname{Coker}(L)=K(\Gamma) \oplus \mathbb{Z}^{c} \quad$ (critical group, sandpile, Jacobian)
- $|K(\Gamma)|$ counts number of spanning trees of a connected graph
- An integer matrix defines a homomorphism of free abelian groups of finite rank $\phi: \mathbb{Z}^{V} \rightarrow \mathbb{Z}^{V}$
- For matrices attached to a graph, the cokernel $\mathbb{Z}^{V} / \operatorname{Im}(\phi)$ becomes graph invariant
- $\operatorname{Coker}(A)=S(\Gamma) \quad$ (Smith group, finite when A is nonsingular)
- $\operatorname{Coker}(L)=K(\Gamma) \oplus \mathbb{Z}^{c} \quad$ (critical group, sandpile, Jacobian)
- $|K(\Gamma)|$ counts number of spanning trees of a connected graph
- Could also consider $\operatorname{Coker}(A+b l+c J)$

Examples of known sandpile groups

- n-cycle
- complete graphs
- n-cube (2-part still unsolved)
- many families of strongly regular graphs
- good source of problems to work on with motivated undergraduates

There are many ways to think about and compute these groups.

- Smith normal form of the matrix
- chip-firing games on the graphs
- matroids, representation theory, ...

Outline

(1) Matrices of graphs
(2) Strongly regular graphs
(3) Some results

Definition

A strongly regular graph (srg) with parameters v, k, λ, μ :

- has v vertices

Definition

A strongly regular graph (srg) with parameters v, k, λ, μ :

- has v vertices
- is k-regular

Definition

A strongly regular graph (srg) with parameters v, k, λ, μ :

- has v vertices
- is k-regular
- any two adjacent vertices have exactly λ common neighbors

Definition

A strongly regular graph (srg) with parameters v, k, λ, μ :

- has v vertices
- is k-regular
- any two adjacent vertices have exactly λ common neighbors
- any two distinct, non-adjacent vertices have exactly μ common neighbors.
- It follows: $A^{2}=k I+\lambda A+\mu(J-A-I)$, and A has exactly two distinct eigenvalues besides the degree k.
- Paley, Kneser on 2-subsets and projective lines, rook, polar, latin square
- These are cool graphs, and so the existence question for particular parameter sets is quite interesting.

Andries Brouwer's website

Prev Up Next

	v	k	λ	μ	$\mathrm{r}^{\text {f }}$	$\mathbf{s}^{\mathbf{g}}$	comments
!	153	32	16	4	14^{17}	-2^{135}	Triangular graph T (18)
		120	91	105	1^{135}	-15^{17}	pg(8,14,7)
?	153	56	19	21	5^{84}	-7^{68}	pg(8,6,3)?
		96	60	60	6^{68}	-6 ${ }^{84}$	
?	153	76	37	38	5.685^{76}	-6.685^{76}	2-graph ${ }^{*}$?
?	154	48	12	16	4^{98}	-8^{55}	pg(6,7,2)?
		105	72	70	7^{55}	-5^{98}	
-	154	51	8	21	2^{132}	-15^{21}	Krein2
		102	71	60	14^{21}	-3^{132}	Krein1
?	154	72	26	40	2^{132}	-16^{21}	
		81	48	36	15^{21}	-3^{132}	
+	155	42	17	9	11^{30}	-3^{124}	$\mathrm{S}(2,3,31)$; lines in $\mathrm{PG}(4,2)$
		112	78	88	2^{124}	-12^{30}	
$+$	156	30	4	6	4^{90}	-6 ${ }^{65}$	$\mathrm{O}(5,5) \mathrm{Sp}(4,5) ; \mathrm{GQ}(5,5)$
		125	100	100	5^{65}	-5^{90}	
+	157	78	38	39	5.765^{78}	-6.765^{78}	Paley(157); 2-graph ${ }^{*}$
?	160	54	18	18	6^{75}	-6^{84}	$\mathrm{pg}(9,5,3)$ does not exist (no 2-graph** for line graph)
		105	68	70	5^{84}	-7^{75}	
-	161	80	39	40	5.844^{80}	-6.844^{80}	Conf
?	162	21	0	3	3^{105}	-6^{56}	

Outline

(1) Matrices of graphs

(2) Strongly regular graphs
(3) Some results

2019 REU at James Madison University

Work with D. Duncan, W. Engelbrecht, J. Madan, E. Piato, C. Shatford, A. Vichitbandha. Suppose Γ is an $\operatorname{srg}(v, k, \lambda, \mu)$ with nonzero Laplacian eigenvalues r^{f}, s^{g}.

- $p \nmid r, p^{a}\left\|s, p^{\gamma}\right\| v \Longrightarrow K_{p}(\Gamma) \cong \mathbb{Z} / p^{a-\gamma} \mathbb{Z} \oplus\left(\mathbb{Z} / p^{a} \mathbb{Z}\right)^{g-1}$.
- $p\|r, p\| s, p^{\gamma} \| v \Longrightarrow K_{p}(\Gamma) \cong(\mathbb{Z} / p \mathbb{Z})^{f+g+\gamma-2 e_{0}} \oplus\left(\mathbb{Z} / p^{2} \mathbb{Z}\right)^{e_{0}-\gamma}$.
- $p\left\|r, p^{2}\right\| s, p^{\gamma} \| v \Longrightarrow$

$$
K_{p}(\Gamma) \cong(\mathbb{Z} / p \mathbb{Z})^{f-e_{0}} \oplus\left(\mathbb{Z} / p^{2} \mathbb{Z}\right)^{g+\gamma-e_{0}} \oplus\left(\mathbb{Z} / p^{3} \mathbb{Z}\right)^{e_{0}-\gamma}
$$

or

$$
K_{p}(\Gamma) \cong(\mathbb{Z} / p \mathbb{Z})^{f+1-e_{0}} \oplus\left(\mathbb{Z} / p^{2} \mathbb{Z}\right)^{g+\gamma-2-e_{0}} \oplus\left(\mathbb{Z} / p^{3} \mathbb{Z}\right)^{e_{0}-\gamma+1}
$$

Some consequences

- If Γ is an $\operatorname{srg}(99,14,1,2)$, then

$$
K(\Gamma) \cong(\mathbb{Z} / 11 \mathbb{Z})^{53} \oplus(\mathbb{Z} / 2 \mathbb{Z})^{44} \oplus(\mathbb{Z} / 9 \mathbb{Z})^{43}
$$

Some consequences

- If Γ is an $\operatorname{srg}(99,14,1,2)$, then

$$
K(\Gamma) \cong(\mathbb{Z} / 11 \mathbb{Z})^{53} \oplus(\mathbb{Z} / 2 \mathbb{Z})^{44} \oplus(\mathbb{Z} / 9 \mathbb{Z})^{43}
$$

- If Γ is an $\operatorname{srg}(3250,57,0,1)$, then

$$
K_{5}(\Gamma) \cong(\mathbb{Z} / 5 \mathbb{Z})^{1520-e_{0}} \oplus(\mathbb{Z} / 25 \mathbb{Z})^{1732-e_{0}} \oplus(\mathbb{Z} / 125 \mathbb{Z})^{e_{0}-3}
$$

or

$$
K_{5}(\Gamma) \cong(\mathbb{Z} / 5 \mathbb{Z})^{1521-e_{0}} \oplus(\mathbb{Z} / 25 \mathbb{Z})^{1730-e_{0}} \oplus(\mathbb{Z} / 125 \mathbb{Z})^{e_{0}-2}
$$

Some consequences

- If Γ is an $\operatorname{srg}(28,9,0,4)$, then the 7 -rank of L must be 22 , and so the kernel of L modulo 7 must have dimension 6 . But it is not difficult to cook up more than 6 independent vectors in this kernel.

Some consequences

- If Γ is an $\operatorname{srg}(28,9,0,4)$, then the 7 -rank of L must be 22 , and so the kernel of L modulo 7 must have dimension 6 . But it is not difficult to cook up more than 6 independent vectors in this kernel.
- By the way, the smallest open parameter set is $(69,20,7,5)$.
- It turns out that these results for the Laplacian can be extended without much difficulty to the adjacency as well, with care, and also to matrices of the form $A+b l+c J$.
- Generally we need these matrices to be nonsingular (but not always), and in general exactly one invariant factor will be uncertain.

But, for instance, can deduce

- If Γ is an $\operatorname{srg}(99,14,1,2)$, then

$$
S(\Gamma) \cong \mathbb{Z} / 2 \mathbb{Z} \oplus(\mathbb{Z} / 4 \mathbb{Z})^{44} \oplus(\mathbb{Z} / 3 \mathbb{Z})^{54} \oplus \mathbb{Z} / 7 \mathbb{Z}
$$

- If Γ is an $\operatorname{srg}(3250,57,0,1)$, then

$$
S(\Gamma) \cong \mathbb{Z} / 4 \mathbb{Z} \oplus(\mathbb{Z} / 3 \mathbb{Z})^{45} \oplus(\mathbb{Z} / 5 \mathbb{Z})^{24}
$$

Interlacing

- Interlacing of adjacency eigenvalues of a graph with those of an induced subgraph is a standard technique from spectral graph theory.
- New to me is a result of R. C. Thompson from 1978 that describes an interlacing result of invariant factors of an integer matrix with those of any submatrix.
- From this result we can deduce:

Theorem

Let $N=A+b l+c J$ describe a graph Γ. Suppose that a cyclic decomposition of the Sylow p-subgroup of $\operatorname{Coker}(N)$ contains exactly e_{i} summands $\mathbb{Z} / p^{i} \mathbb{Z}$. Remove k vertices of Γ to get an induced subgraph H, and delete those corresponding k rows and columns of N to get a matrix N_{H}. Then the corresponding Sylow p-subgroup of Coker $\left(N_{H}\right)$ must have at least $e_{i}-2 k$ summands $\mathbb{Z} / p^{i} \mathbb{Z}$.

Interlacing example

- Let Γ be an $\operatorname{srg}(640,243,66,108)$. Then

$$
S_{3}(\Gamma) \cong(\mathbb{Z} / 3 \mathbb{Z})^{594-e_{0}} \oplus(\mathbb{Z} / 9 \mathbb{Z})^{45-e_{0}} \oplus(\mathbb{Z} / 27 \mathbb{Z})^{e_{0}} \oplus \mathbb{Z} / 243 \mathbb{Z}
$$

Interlacing example

- Let Γ be an $\operatorname{srg}(640,243,66,108)$. Then

$$
S_{3}(\Gamma) \cong(\mathbb{Z} / 3 \mathbb{Z})^{594-e_{0}} \oplus(\mathbb{Z} / 9 \mathbb{Z})^{45-e_{0}} \oplus(\mathbb{Z} / 27 \mathbb{Z})^{e_{0}} \oplus \mathbb{Z} / 243 \mathbb{Z}
$$

- Let Γ_{2} be a second subconstituent of Γ; that is, the subgraph induced by all vertices not adjacent to some fixed vertex.

Interlacing example

- Let Γ be an $\operatorname{srg}(640,243,66,108)$. Then

$$
S_{3}(\Gamma) \cong(\mathbb{Z} / 3 \mathbb{Z})^{594-e_{0}} \oplus(\mathbb{Z} / 9 \mathbb{Z})^{45-e_{0}} \oplus(\mathbb{Z} / 27 \mathbb{Z})^{e_{0}} \oplus \mathbb{Z} / 243 \mathbb{Z}
$$

- Let Γ_{2} be a second subconstituent of Γ; that is, the subgraph induced by all vertices not adjacent to some fixed vertex.
- This is obtained by removing 244 vertices, and so the number of occurrences of $\mathbb{Z} / 3 \mathbb{Z}$ as a summand of $S_{3}\left(\Gamma_{2}\right)$ is at least

$$
\left(594-e_{0}\right)-2(244)=106-e_{0} \geq 61
$$

since $e_{0} \leq 45$.

Interlacing example

- Let Γ be an $\operatorname{srg}(640,243,66,108)$. Then

$$
S_{3}(\Gamma) \cong(\mathbb{Z} / 3 \mathbb{Z})^{594-e_{0}} \oplus(\mathbb{Z} / 9 \mathbb{Z})^{45-e_{0}} \oplus(\mathbb{Z} / 27 \mathbb{Z})^{e_{0}} \oplus \mathbb{Z} / 243 \mathbb{Z}
$$

- Let Γ_{2} be a second subconstituent of Γ; that is, the subgraph induced by all vertices not adjacent to some fixed vertex.
- This is obtained by removing 244 vertices, and so the number of occurrences of $\mathbb{Z} / 3 \mathbb{Z}$ as a summand of $S_{3}\left(\Gamma_{2}\right)$ is at least

$$
\left(594-e_{0}\right)-2(244)=106-e_{0} \geq 61
$$

since $e_{0} \leq 45$.

- Further analysis could be done to Γ_{2}, which also happens to be strongly regular.

Thank you for your attention!

