Abelian groups associated to strongly regular graphs.

Josh Ducey James Madison University

SECANT 3 Cedar Crest College

January 15, 2021

→ < ∃ →</p>

2 Strongly regular graphs

э

・ 同 ト ・ ヨ ト ・ ヨ ト

э

• Γ , a finite simple graph with adjacency matrix A.

- Γ , a finite simple graph with adjacency matrix A.
- This is the starting point of algebraic graph theory.

2

- Γ , a finite simple graph with adjacency matrix A.
- This is the starting point of algebraic graph theory.
- Also popular, the Laplacian matrix L = D A, where D is diagonal matrix of vertex degrees.

2

- Γ , a finite simple graph with adjacency matrix A.
- This is the starting point of algebraic graph theory.
- Also popular, the Laplacian matrix L = D A, where D is diagonal matrix of vertex degrees.

→ < ∃ →</p>

• An integer matrix defines a homomorphism of free abelian groups of finite rank $\phi \colon \mathbb{Z}^V \to \mathbb{Z}^V$

(日)

- An integer matrix defines a homomorphism of free abelian groups of finite rank φ: Z^V → Z^V
- For matrices attached to a graph, the cokernel $\mathbb{Z}^V/\operatorname{Im}(\phi)$ becomes graph invariant

▲ 伊 ▶ ▲ 王 ▶

- An integer matrix defines a homomorphism of free abelian groups of finite rank φ: Z^V → Z^V
- For matrices attached to a graph, the cokernel $\mathbb{Z}^V/\operatorname{Im}(\phi)$ becomes graph invariant
- Coker(A) = S(Γ) (Smith group, finite when A is nonsingular)

- 4 同 ト 4 ヨ ト 4 ヨ ト

- An integer matrix defines a homomorphism of free abelian groups of finite rank φ: Z^V → Z^V
- For matrices attached to a graph, the cokernel $\mathbb{Z}^V/\operatorname{Im}(\phi)$ becomes graph invariant
- Coker(A) = S(Γ) (Smith group, finite when A is nonsingular)
- $\operatorname{Coker}(L) = K(\Gamma) \oplus \mathbb{Z}^{c}$ (critical group, sandpile, Jacobian)

・ 同 ト ・ ヨ ト ・ ヨ ト

- An integer matrix defines a homomorphism of free abelian groups of finite rank φ: Z^V → Z^V
- For matrices attached to a graph, the cokernel $\mathbb{Z}^V/\operatorname{Im}(\phi)$ becomes graph invariant
- Coker(A) = S(Γ) (Smith group, finite when A is nonsingular)
- $\operatorname{Coker}(L) = K(\Gamma) \oplus \mathbb{Z}^{c}$ (critical group, sandpile, Jacobian)
- $|K(\Gamma)|$ counts number of spanning trees of a connected graph

- An integer matrix defines a homomorphism of free abelian groups of finite rank φ: Z^V → Z^V
- For matrices attached to a graph, the cokernel $\mathbb{Z}^V/\operatorname{Im}(\phi)$ becomes graph invariant
- Coker(A) = S(Γ) (Smith group, finite when A is nonsingular)
- $\operatorname{Coker}(L) = K(\Gamma) \oplus \mathbb{Z}^{c}$ (critical group, sandpile, Jacobian)
- $|K(\Gamma)|$ counts number of spanning trees of a connected graph
- Could also consider $\operatorname{Coker}(A + bI + cJ)$

・ 同 ト ・ ヨ ト ・ ヨ ト

Examples of known sandpile groups

- *n*-cycle
- complete graphs
- *n*-cube (2-part still unsolved)
- many families of strongly regular graphs
- good source of problems to work on with motivated undergraduates

▲ 伊 ▶ ▲ 王 ▶

There are many ways to think about and compute these groups.

- Smith normal form of the matrix
- chip-firing games on the graphs
- matroids, representation theory, ...

→ < ∃ →</p>

Outline

3 Some results

Josh Ducey Abelian groups associated to SRGs

э

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition

A strongly regular graph (srg) with parameters v, k, λ, μ :

• has v vertices

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Definition

A strongly regular graph (srg) with parameters v, k, λ, μ :

- has v vertices
- is *k*-regular

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition

A strongly regular graph (srg) with parameters v, k, λ, μ :

- has v vertices
- is *k*-regular
- ullet any two adjacent vertices have exactly λ common neighbors

▲ 伊 ▶ ▲ 王 ▶

Definition

A strongly regular graph (srg) with parameters v, k, λ, μ :

- has v vertices
- is *k*-regular
- ullet any two adjacent vertices have exactly λ common neighbors
- any two distinct, non-adjacent vertices have exactly μ common neighbors.

▲ 伊 ▶ ▲ 王 ▶

- It follows: $A^2 = kI + \lambda A + \mu (J A I)$, and A has exactly two distinct eigenvalues besides the degree k.
- Paley, Kneser on 2-subsets and projective lines, rook, polar, latin square
- These are cool graphs, and so the existence question for particular parameter sets is quite interesting.

Andries Brouwer's website

Prev Up Next

Π	v	k	λ	μ	r ^f	s ^g	comments
!	153	32	16	4	14 ¹⁷	-2 ¹³⁵	Triangular graph T(18)
		120	91	105	1135	-15 ¹⁷	pg(8,14,7)
?	153	56	19	21	5 ⁸⁴	-7 ⁶⁸	pg(8,6,3)?
		96	60		6 ⁶⁸	-6 ⁸⁴	
?	153	76	37	38	5.685 ⁷⁶	-6.685 ⁷⁶	2-graph*?
?	154	48	12	16	4 ⁹⁸	-8 ⁵⁵	pg(6,7,2)?
		105	72	70	7 ⁵⁵	-5 ⁹⁸	
-	154	51	8	21			Krein2
		102	71	60	14 ²¹	-3132	Krein1
?	154	72	26	40	2 ¹³²	-16 ²¹	
		81	48	36	15 ²¹	-3 ¹³²	
+	155	42	17	9	11 ³⁰	-3 ¹²⁴	S(2,3,31); lines in PG(4,2)
		112	78	88	2 ¹²⁴	-12^{30}	
+	156	30	4	6	4 ⁹⁰	-6 ⁶⁵	O(5,5) Sp(4,5); GQ(5,5)
		125	100	100		-5 ⁹⁰	
+	157	78	38				Paley(157); 2-graph*
?	160	54	18		675		pg(9,5,3) does not exist (no 2-graph* for line graph)
		105	68	70	5 ⁸⁴	-7 ⁷⁵	
-	161	80	39	40	5.844 ⁸⁰	-6.844^{80}	Conf
?	162	21	0	3	3 ¹⁰⁵	-6 ⁵⁶	

æ

Outline

2 Strongly regular graphs

Josh Ducey Abelian groups associated to SRGs

э

イロト イ団ト イヨト イヨト

2019 REU at James Madison University

Work with D. Duncan, W. Engelbrecht, J. Madan, E. Piato, C. Shatford, A. Vichitbandha. Suppose Γ is an srg (v, k, λ, μ) with nonzero Laplacian eigenvalues r^{f}, s^{g} .

•
$$p \nmid r, p^a \parallel s, p^\gamma \parallel v \implies K_p(\Gamma) \cong \mathbb{Z}/p^{a-\gamma}\mathbb{Z} \oplus (\mathbb{Z}/p^a\mathbb{Z})^{g-1}$$
.

•
$$p \parallel r, p \parallel s, p^{\gamma} \parallel v \implies K_p(\Gamma) \cong (\mathbb{Z}/p\mathbb{Z})^{f+g+\gamma-2e_0} \oplus (\mathbb{Z}/p^2\mathbb{Z})^{e_0-\gamma}$$

•
$$p \parallel r, p^2 \parallel s, p^\gamma \parallel v \implies$$

$$\mathcal{K}_{p}(\Gamma) \cong \left(\mathbb{Z}/p\mathbb{Z}
ight)^{f-e_{0}} \oplus \left(\mathbb{Z}/p^{2}\mathbb{Z}
ight)^{g+\gamma-e_{0}} \oplus \left(\mathbb{Z}/p^{3}\mathbb{Z}
ight)^{e_{0}-\gamma}$$

or

$$\mathcal{K}_{p}(\Gamma) \cong \left(\mathbb{Z}/p\mathbb{Z}\right)^{f+1-e_{0}} \oplus \left(\mathbb{Z}/p^{2}\mathbb{Z}\right)^{g+\gamma-2-e_{0}} \oplus \left(\mathbb{Z}/p^{3}\mathbb{Z}\right)^{e_{0}-\gamma+1}$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Some consequences

• If Γ is an srg(99, 14, 1, 2), then

 $\mathcal{K}(\Gamma) \cong (\mathbb{Z}/11\mathbb{Z})^{53} \oplus (\mathbb{Z}/2\mathbb{Z})^{44} \oplus (\mathbb{Z}/9\mathbb{Z})^{43} \, .$

< 同 ト < 三 ト < 三 ト

э

Some consequences

• If Γ is an srg(99, 14, 1, 2), then

$$\mathcal{K}(\Gamma) \cong (\mathbb{Z}/11\mathbb{Z})^{53} \oplus (\mathbb{Z}/2\mathbb{Z})^{44} \oplus (\mathbb{Z}/9\mathbb{Z})^{43}$$
.

• If Γ is an srg(3250,57,0,1), then

$$\mathcal{K}_5(\Gamma) \cong (\mathbb{Z}/5\mathbb{Z})^{1520-e_0} \oplus (\mathbb{Z}/25\mathbb{Z})^{1732-e_0} \oplus (\mathbb{Z}/125\mathbb{Z})^{e_0-3}$$

or

$$\mathcal{K}_5(\Gamma)\cong \left(\mathbb{Z}/5\mathbb{Z}\right)^{1521-e_0}\oplus \left(\mathbb{Z}/25\mathbb{Z}\right)^{1730-e_0}\oplus \left(\mathbb{Z}/125\mathbb{Z}\right)^{e_0-2}.$$

▲ 伊 ▶ ▲ 王 ▶

Some consequences

 If Γ is an srg(28,9,0,4), then the 7-rank of L must be 22, and so the kernel of L modulo 7 must have dimension 6. But it is not difficult to cook up more than 6 independent vectors in this kernel.

→ < ∃ →</p>

Some consequences

- If Γ is an srg(28,9,0,4), then the 7-rank of L must be 22, and so the kernel of L modulo 7 must have dimension 6. But it is not difficult to cook up more than 6 independent vectors in this kernel.
- By the way, the smallest open parameter set is (69, 20, 7, 5).

- It turns out that these results for the Laplacian can be extended without much difficulty to the adjacency as well, with care, and also to matrices of the form A + bI + cJ.
- Generally we need these matrices to be nonsingular (but not always), and in general exactly one invariant factor will be uncertain.

A ≥ ▶

But, for instance, can deduce

• If Γ is an srg(99, 14, 1, 2), then

 $S(\Gamma) \cong \mathbb{Z}/2\mathbb{Z} \oplus (\mathbb{Z}/4\mathbb{Z})^{44} \oplus (\mathbb{Z}/3\mathbb{Z})^{54} \oplus \mathbb{Z}/7\mathbb{Z}.$

• If Γ is an srg(3250, 57, 0, 1), then

$$S(\Gamma) \cong \mathbb{Z}/4\mathbb{Z} \oplus (\mathbb{Z}/3\mathbb{Z})^{45} \oplus (\mathbb{Z}/5\mathbb{Z})^{24}$$
.

< /₽ > < E >

Interlacing

- Interlacing of adjacency eigenvalues of a graph with those of an induced subgraph is a standard technique from spectral graph theory.
- New to me is a result of R. C. Thompson from 1978 that describes an interlacing result of invariant factors of an integer matrix with those of any submatrix.
- From this result we can deduce:

Theorem

Let N = A + bI + cJ describe a graph Γ . Suppose that a cyclic decomposition of the Sylow p-subgroup of $\operatorname{Coker}(N)$ contains exactly e_i summands $\mathbb{Z}/p^i\mathbb{Z}$. Remove k vertices of Γ to get an induced subgraph H, and delete those corresponding k rows and columns of N to get a matrix N_H . Then the corresponding Sylow p-subgroup of $\operatorname{Coker}(N_H)$ must have at least $e_i - 2k$ summands $\mathbb{Z}/p^i\mathbb{Z}$.

Interlacing example

• Let Γ be an srg(640, 243, 66, 108). Then

 $S_{3}(\Gamma) \cong (\mathbb{Z}/3\mathbb{Z})^{594-e_{0}} \oplus (\mathbb{Z}/9\mathbb{Z})^{45-e_{0}} \oplus (\mathbb{Z}/27\mathbb{Z})^{e_{0}} \oplus \mathbb{Z}/243\mathbb{Z}.$

イロト イポト イヨト イヨト

э

Interlacing example

• Let Γ be an srg(640, 243, 66, 108). Then

 $S_{3}(\Gamma) \cong \left(\mathbb{Z}/3\mathbb{Z}\right)^{594-e_{0}} \oplus \left(\mathbb{Z}/9\mathbb{Z}\right)^{45-e_{0}} \oplus \left(\mathbb{Z}/27\mathbb{Z}\right)^{e_{0}} \oplus \mathbb{Z}/243\mathbb{Z}.$

 Let Γ₂ be a second subconstituent of Γ; that is, the subgraph induced by all vertices not adjacent to some fixed vertex.

イロト イポト イヨト イヨト

Interlacing example

• Let Γ be an srg(640, 243, 66, 108). Then

 $S_{3}(\Gamma) \cong (\mathbb{Z}/3\mathbb{Z})^{594-e_{0}} \oplus (\mathbb{Z}/9\mathbb{Z})^{45-e_{0}} \oplus (\mathbb{Z}/27\mathbb{Z})^{e_{0}} \oplus \mathbb{Z}/243\mathbb{Z}.$

- Let Γ₂ be a second subconstituent of Γ; that is, the subgraph induced by all vertices not adjacent to some fixed vertex.
- This is obtained by removing 244 vertices, and so the number of occurrences of Z/3Z as a summand of S₃(Γ₂) is *at least*

$$(594 - e_0) - 2(244) = 106 - e_0 \ge 61,$$

since $e_0 \leq 45$.

- 4 同 ト 4 ヨ ト

Interlacing example

• Let Γ be an srg(640, 243, 66, 108). Then

 $S_{3}(\Gamma) \cong (\mathbb{Z}/3\mathbb{Z})^{594-e_{0}} \oplus (\mathbb{Z}/9\mathbb{Z})^{45-e_{0}} \oplus (\mathbb{Z}/27\mathbb{Z})^{e_{0}} \oplus \mathbb{Z}/243\mathbb{Z}.$

- Let Γ₂ be a second subconstituent of Γ; that is, the subgraph induced by all vertices not adjacent to some fixed vertex.
- This is obtained by removing 244 vertices, and so the number of occurrences of Z/3Z as a summand of S₃(Γ₂) is *at least*

$$(594 - e_0) - 2(244) = 106 - e_0 \ge 61,$$

since $e_0 \leq 45$.

 Further analysis could be done to Γ₂, which also happens to be strongly regular.

イロト イボト イヨト イヨト

Thank you for your attention!

< ロ > < 回 > < 回 > < 回 > < 回 >

æ