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In this talk | will be describing joint work with Colby Sherwood.
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Integer invariants of graphs
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Integer invariants of graphs

01011000 1 2
10100100 N o
010100710

,_|to1o00001
1000010 1 I I
0100710710
001007101 o s
0001101 0

o [, a finite simple graph with adjacency matrix A.
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Integer invariants of graphs

01011000 1 2
10100100 N o
010100710
,_|to1o00001

1000010 1 I I
0100710710

001007101 o s
0001101 0

o [, a finite simple graph with adjacency matrix A.

@ Various other matrices can be used, for example, the Laplacian
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Integer invariants of graphs

1 2
3 -1 0 -1 -1 0 0 0 AN /
-1 3 -1 o0 0 -1 0 0 5 6
0 -1 3 -1 0 0 -1 0
|-t 0 -1 3 0 0o o0 -1
-1 0 0 0 3 -1 0 -1 . .
0 -1 0 0 -1 3 -1 0
0O 0 -1 0 0 -1 3 -1 / AN
o o 0 -1 -1 0 -1 3 4 3
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Integer invariants of graphs

Generally interested in algebraic invariants of matrices M that
describe graphs, or other interesting incidence relations.
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Integer invariants of graphs

Generally interested in algebraic invariants of matrices M that
describe graphs, or other interesting incidence relations.
Spectrum (eigenvalues), rank, or integer invariants.
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Integer invariants of graphs

Generally interested in algebraic invariants of matrices M that
describe graphs, or other interesting incidence relations.
Spectrum (eigenvalues), rank, or integer invariants.

M:7"—=7"
The cokernel of this map Z"/Im(M) is a finitely generated abelian

group:
L/S1IZ®L]H7 @ - -
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Integer invariants of graphs

Generally interested in algebraic invariants of matrices M that
describe graphs, or other interesting incidence relations.
Spectrum (eigenvalues), rank, or integer invariants.

M:7"—=7"
The cokernel of this map Z"/Im(M) is a finitely generated abelian

group:
L/S1IZ®L]H7 @ - -

Can also be described:

PMQ = diag(s1, s2," - - ).
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Integer invariants of graphs

Generally interested in algebraic invariants of matrices M that
describe graphs, or other interesting incidence relations.
Spectrum (eigenvalues), rank, or integer invariants.

M:7"—=7"
The cokernel of this map Z"/Im(M) is a finitely generated abelian

group:
L/S1IZ®L]H7 @ - -

Can also be described:

PMQ = diag(s1, s2," - - ).

Q UV\;Woo‘mlar
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Integer invariants of graphs

The cokernel of, say, A can change depending on which ring the
entries of the matrix come from.
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Integer invariants of graphs

The cokernel of, say, A can change depending on which ring the
entries of the matrix come from.
Over R:
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Integer invariants of graphs

The cokernel of, say, A can change depending on which ring the
entries of the matrix come from.
Over Z:

12
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Integer invariants of graphs

The cokernel of, say, A can change depending on which ring the
entries of the matrix come from.
Over Zyy:
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Integer invariants of graphs

Examples: integer invariants

e n-cycle graph Cp,, L: Z/nZ & Z
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Integer invariants of graphs

Examples: integer invariants

e n-cycle graph Cp,, L: Z/nZ & Z
o Complete graph Ky, L: (Z/nZ)" ? & Z
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Integer invariants of graphs

Examples: integer invariants

e n-cycle graph Cp,, L: Z/nZ & Z
o Complete graph Ky, L: (Z/nZ)" ? & Z

@ r-subsets vs. s-subsets of an n element set (Wilson):
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Integer invariants of graphs

Examples: integer invariants

e n-cycle graph Cp,, L: Z/nZ & Z
o Complete graph Ky, L: (Z/nZ)" ? & Z

@ r-subsets vs. s-subsets of an n element set (Wilson):

& ()"

J
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Integer invariants of graphs

Examples: integer invariants

e n-cycle graph Cp,, L: Z/nZ & Z
o Complete graph Ky, L: (Z/nZ)" ? & Z

@ r-subsets vs. s-subsets of an n element set (Wilson):

& ()"

J

Most of the invariants of other subset incidence relations
remain unknown.
For a connected graph, the cokernel of L is x(I') ® Z.
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Integer invariants of graphs

Examples: integer invariants

e n-cycle graph Cp,, L: Z/nZ & Z
o Complete graph Ky, L: (Z/nZ)" ? & Z

@ r-subsets vs. s-subsets of an n element set (Wilson):
— A\ (DG
S
J =

Most of the invariants of other subset incidence relations
remain unknown.
For a connected graph, the cokernel of L is x(I') ® Z.

Sov\i()ile 3”:?\
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Integer invariants of graphs

How to find the cokernel?

We can find each p-primary component (Sylow subgroup) of the
cokernel separately. Let f; denote the number of copies of Z/p'Z
in the p-primary component.

o L Z{,) — Zg,

Josh Ducey Graph matrices



Integer invariants of graphs

How to find the cokernel?

We can find each p-primary component (Sylow subgroup) of the
cokernel separately. Let f; denote the number of copies of Z/p'Z

in the p-primary component.
° LiZiy) = 2,
o M= {x € Z{, | Lx is divisible by p'}
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Integer invariants of graphs

How to find the cokernel?

We can find each p-primary component (Sylow subgroup) of the
cokernel separately. Let f; denote the number of copies of Z/p'Z
in the p-primary component.

o L Zi,) — Zyy,
o M; = {x € Z{, | Lx is divisible by p'}

o N;={p~'Lx|x € M;}
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Integer invariants of graphs

How to find the cokernel?

We can find each p-primary component (Sylow subgroup) of the
cokernel separately. Let f; denote the number of copies of Z/p'Z
in the p-primary component.

° L:Zfy) = Ly
o M= {x € Z{, | Lx is divisible by p'}
o N ={p~'Lx|x € M;}
o £ = dim, M/ Mot = dim, N;/N—
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Representations of &,

Outline

e Representations of &,
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Representations of &,

If the vertices of your graph are subsets, and the action of the
symmetric group &, preserves adjacency, then both the domain
and codomain of L are permutation modules.
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Representations of &,

If the vertices of your graph are subsets, and the action of the
symmetric group &, preserves adjacency, then both the domain
and codomain of L are permutation modules.

A great deal of information about their submodule structure comes

from theory of G. James.
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Representations of &,

e=|1]2[3]4]
5
2 3 4 3 4 4 3
{t} = = =
5
ef = {t}
1 2 3 4 3 4
e = —
6
@_ 1234 5234 34,563 4
6
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Representations of &,

(n-<, <)

(n-4,0(n-¢,0)

(n-i, ) (n-00
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Representations of &,

(V\-«.lc) o
M S
U -
S (vm,l)(n—.‘,:l S_ I
U —
(n-i, ) (n-00 /\/ N
) st
V)
(n-¢, ) e, ) —
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Representations of &,

(n-<. ) o

M 5 .
4 DY
U(vm,l){n—.‘,:l —/| S ~ —
S J D
U —
(n-i, ) (n-00 /\/ 1
S S |
U kK<),
walk ety

O url
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Representations of &,

It follows that for an F®&,-submodule U of the codomain of L, we
get a decending filtration

Pk —uUn S(n—i,k)(n—i,i), k > 0,
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Representations of &,

It follows that for an F®&,-submodule U of the codomain of L, we
get a decending filtration

Pk —uUn S(n—i,k)(n—i,i), Kk > 0,

Each subquotient P¥/P¥*1 is isomorphic to a submodule of S*.
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Hypercube graph

Outline

© Hypercube graph
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Hypercube graph

The n-cube graph Q,

Vertices:
{(317827"' 7an)‘ai =0 or 1}
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Hypercube graph

The n-cube graph Q,

Vertices:
{(317827"' 7an)‘ai =0 or 1}

Edges: two vertices are adjacent if they differ in exactly one
position.
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Hypercube graph

The n-cube graph Q,

Vertices:
{(317827"' 7an)‘ai =0 or 1}

Edges: two vertices are adjacent if they differ in exactly one

position.

Clearly the vertices may be viewed as subsets of an n-element set.
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Hypercube graph

Work of Bai, Jacobson-Niedermeier-Reiner, and others show that
the Laplacian integer invariants (i.e., sandpile group) can be
understood by the p-primary components, for all primes except
p=2.
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Hypercube graph

Sandpile group of Q,: k(Q,)

For p # 2,

Sylp((Qn)) = Sylp (1 (2/22)D)
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Hypercube graph

Sandpile group of Q,: k(Q,)

For p # 2,
Sylp((Qn)) = Sylp (1 (2/22)D)

The 2-part of the adjacency cokernel was found by work of
Chandler-Sin-Xiang. Still not even a conjecture for Syh(x(Qn)).
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Hypercube graph

&]&-ID Available online at www.sciencedirect.com
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On the critical group of the n-cube
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Abstract
Reiner proposed two conjectures about the structure of the eritical group of the n-cube 0y

In this paper we confirm them. Furthermore we describe its p-primary structure for all odd

primes p. The results are generalized to Cartesian product of complete graphs Ky, x --- x

K, by Jacobson, Niedermaier and Reiner.
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Keywords: n-Cube; Critical group; Sandpile group; Laplacian matrix; Smith normal form; Sylow

p-group




Hypercube graph

n SylL,K (Qn)

2 Z4

3 7,7}

4 BT{7xn

5 28737,6 Z¢,

6 2 747373, 739

28 8 76 14 76
7 25 24 16 735 Ty Ty
8
9

26 2321824 28 2, 2
2020 218 2828 7%, 201 T

z 22 2 2T Tass T

n 2 2P 2P 2l 21 202
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Hypercube graph

Example: n=3
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Hypercube graph

Example: n=3

ldea:

e Can show that for an (n — i, i)-tableau t, L(e) represents, in
the j-th row of the picture,

(0707 7(I_J)e£/a_2lejl 07 ,0)

t
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Hypercube graph

Example: n=3

ldea:

e Can show that for an (n — i, i)-tableau t, L(e) represents, in
the j-th row of the picture,

(0707 7(I_J)e£/a_2lejl 07 ,0)

t

@ Modulo 2, this is zero unless i — j is odd. So we get at least
every other copy of S/ in the j-th row in the image of L.
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Hypercube graph

Example: n=3

Idea:
e Can show that for an (n — i, i)-tableau t, L(e) represents, in
the j-th row of the picture,

(0707 7(1_./)6;’_2’6#707 ,0)

@ Modulo 2, this is zero unless i — j is odd. So we get at least
every other copy of S/ in the j-th row in the image of L.

@ The image of the sum of all the 2-subsets under L shows that
the sum of all the 1-subsets lies in Ni. This generates an
additional copy of S in Ni.
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Hypercube graph

Example: n=3

ldea:

e Can show that for an (n — i, i)-tableau t, L(e) represents, in
the j-th row of the picture,

(0707 7(I_J)e£/a_2lejl 07 ,0)

t/
@ Modulo 2, this is zero unless i — j is odd. So we get at least
every other copy of S/ in the j-th row in the image of L.

@ The image of the sum of all the 2-subsets under L shows that
the sum of all the 1-subsets lies in N;. This generates an
additional copy of S% in .

@ For a 2-subset {t} containing a 1-subset {t'},

L(el + 2e}) = —8e}.

Shows the remaining copy of S! lies in N3
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Hypercube graph

Thank you for your attention!

Josh Ducey Graph matrices



