A representation-theoretic approach to understanding some graph matrices.

Josh Ducey
James Madison University
AMS Spring Central Sectional Meeting Recent Trends in Graph Theory

April 16, 2023

In this talk I will be describing joint work with Colby Sherwood.

Outline

(1) Integer invariants of graphs
(2) Representations of \mathfrak{G}_{n}
(3) Hypercube graph

$$
A=\left[\begin{array}{llllllll}
0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 & 0
\end{array}\right]
$$

- Г, a finite simple graph with adjacency matrix A.
$A=\left[\begin{array}{llllllll}0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0\end{array}\right]$

- Г, a finite simple graph with adjacency matrix A.
- Various other matrices can be used, for example, the Laplacian

$$
L=\left[\begin{array}{cccccccc}
3 & -1 & 0 & -1 & -1 & 0 & 0 & 0 \\
-1 & 3 & -1 & 0 & 0 & -1 & 0 & 0 \\
0 & -1 & 3 & -1 & 0 & 0 & -1 & 0 \\
-1 & 0 & -1 & 3 & 0 & 0 & 0 & -1 \\
-1 & 0 & 0 & 0 & 3 & -1 & 0 & -1 \\
0 & -1 & 0 & 0 & -1 & 3 & -1 & 0 \\
0 & 0 & -1 & 0 & 0 & -1 & 3 & -1 \\
0 & 0 & 0 & -1 & -1 & 0 & -1 & 3
\end{array}\right]
$$

Generally interested in algebraic invariants of matrices M that describe graphs, or other interesting incidence relations.

Generally interested in algebraic invariants of matrices M that describe graphs, or other interesting incidence relations. Spectrum (eigenvalues), rank, or integer invariants.

Generally interested in algebraic invariants of matrices M that describe graphs, or other interesting incidence relations. Spectrum (eigenvalues), rank, or integer invariants.

$$
M: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n}
$$

The cokernel of this map $\mathbb{Z}^{n} / \operatorname{Im}(M)$ is a finitely generated abelian group:

$$
\mathbb{Z} / s_{1} \mathbb{Z} \oplus \mathbb{Z} / s_{2} \mathbb{Z} \oplus \cdots
$$

Generally interested in algebraic invariants of matrices M that describe graphs, or other interesting incidence relations. Spectrum (eigenvalues), rank, or integer invariants.

$$
M: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n}
$$

The cokernel of this map $\mathbb{Z}^{n} / \operatorname{Im}(M)$ is a finitely generated abelian group:

$$
\mathbb{Z} / s_{1} \mathbb{Z} \oplus \mathbb{Z} / s_{2} \mathbb{Z} \oplus \cdots
$$

Can also be described:

$$
P M Q=\operatorname{diag}\left(s_{1}, s_{2}, \cdots\right)
$$

Generally interested in algebraic invariants of matrices M that describe graphs, or other interesting incidence relations. Spectrum (eigenvalues), rank, or integer invariants.

$$
M: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n}
$$

The cokernel of this map $\mathbb{Z}^{n} / \operatorname{Im}(M)$ is a finitely generated abelian group:

$$
\mathbb{Z} / s_{1} \mathbb{Z} \oplus \mathbb{Z} / s_{2} \mathbb{Z} \oplus \cdots
$$

Can also be described:

$$
\begin{gathered}
P M Q=\operatorname{diag}\left(s_{1}, s_{2}, \cdots\right) . \\
\overbrace{\text { unimodnlar }}
\end{gathered}
$$

The cokernel of, say, A can change depending on which ring the entries of the matrix come from.

The cokernel of, say, A can change depending on which ring the entries of the matrix come from. Over \mathbb{R} :

$$
\left(\begin{array}{lllllll}
1 & & & & & & \\
& 1 & & & & & \\
& & 1 & & & & \\
& & & 1 & & & \\
& & & & 1 & & \\
& & & & & 0 & \\
& & & & & & 0
\end{array}\right)
$$

The cokernel of, say, A can change depending on which ring the entries of the matrix come from.
Over \mathbb{Z} :

$$
\left(\begin{array}{llllll}
1 & & & & & \\
& 1 & & & & \\
& & 2 & & & \\
& & & 6 & & \\
& & & & 12 & \\
& & & & & 0 \\
& & & & & \\
& & & & 0
\end{array}\right)
$$

The cokernel of, say, A can change depending on which ring the entries of the matrix come from.
Over $\mathbb{Z}_{(2)}$:

$$
\left(\begin{array}{llllll}
1 & & & & & \\
& 1 & & & & \\
& & 2 & & & \\
& & & 2 & & \\
\\
& & & & 4 & \\
\\
& & & & & 0 \\
& & & & & \\
&
\end{array}\right)
$$

Examples: integer invariants

- n-cycle graph $C_{n}, L: \mathbb{Z} / n \mathbb{Z} \oplus \mathbb{Z}$

Examples: integer invariants

- n-cycle graph $C_{n}, L: \mathbb{Z} / n \mathbb{Z} \oplus \mathbb{Z}$
- Complete graph $K_{n}, L:(\mathbb{Z} / n \mathbb{Z})^{n-2} \oplus \mathbb{Z}$

Examples: integer invariants

- n-cycle graph $C_{n}, L: \mathbb{Z} / n \mathbb{Z} \oplus \mathbb{Z}$
- Complete graph $K_{n}, L:(\mathbb{Z} / n \mathbb{Z})^{n-2} \oplus \mathbb{Z}$
- r-subsets vs. s-subsets of an n element set (Wilson):

Examples: integer invariants

- n-cycle graph $C_{n}, L: \mathbb{Z} / n \mathbb{Z} \oplus \mathbb{Z}$
- Complete graph $K_{n}, L:(\mathbb{Z} / n \mathbb{Z})^{n-2} \oplus \mathbb{Z}$
- r-subsets vs. s-subsets of an n element set (Wilson):

$$
\bigoplus_{j}\left(\mathbb{Z} /\binom{s-j}{r-j} \mathbb{Z}\right)^{\binom{n}{j}-\binom{n}{j-1}}
$$

Examples: integer invariants

- n-cycle graph $C_{n}, L: \mathbb{Z} / n \mathbb{Z} \oplus \mathbb{Z}$
- Complete graph $K_{n}, L:(\mathbb{Z} / n \mathbb{Z})^{n-2} \oplus \mathbb{Z}$
- r-subsets vs. s-subsets of an n element set (Wilson):

$$
\bigoplus_{j}\left(\mathbb{Z} /\binom{s-j}{r-j} \mathbb{Z}\right)^{\binom{n}{j}-\binom{n}{j-1}}
$$

Most of the invariants of other subset incidence relations remain unknown.
For a connected graph, the cokernel of L is $\kappa(\Gamma) \oplus \mathbb{Z}$.

Examples: integer invariants

- n-cycle graph $C_{n}, L: \mathbb{Z} / n \mathbb{Z} \oplus \mathbb{Z}$
- Complete graph $K_{n}, L:(\mathbb{Z} / n \mathbb{Z})^{n-2} \oplus \mathbb{Z}$
- r-subsets vs. s-subsets of an n element set (Wilson):

$$
\bigoplus_{j}\left(\mathbb{Z} /\binom{s-j}{r-j} \mathbb{Z}\right)^{\binom{n}{j}-\binom{n}{j-1}}
$$

Most of the invariants of other subset incidence relations remain unknown.
For a connected graph, the cokernel of L is $\kappa(\Gamma) \oplus \mathbb{Z}$.
sandpile group)

How to find the cokernel?

We can find each p-primary component (Sylow subgroup) of the cokernel separately. Let f_{i} denote the number of copies of $\mathbb{Z} / p^{i} \mathbb{Z}$ in the p-primary component.

- $L: \mathbb{Z}_{(p)}^{n} \rightarrow \mathbb{Z}_{(p)}^{n}$

How to find the cokernel?

We can find each p-primary component (Sylow subgroup) of the cokernel separately. Let f_{i} denote the number of copies of $\mathbb{Z} / p^{i} \mathbb{Z}$ in the p-primary component.

- $L: \mathbb{Z}_{(p)}^{n} \rightarrow \mathbb{Z}_{(p)}^{n}$
- $M_{i}=\left\{x \in \mathbb{Z}_{(p)}^{n} \mid L x\right.$ is divisible by $\left.p^{i}\right\}$

How to find the cokernel?

We can find each p-primary component (Sylow subgroup) of the cokernel separately. Let f_{i} denote the number of copies of $\mathbb{Z} / p^{i} \mathbb{Z}$ in the p-primary component.

- $L: \mathbb{Z}_{(p)}^{n} \rightarrow \mathbb{Z}_{(p)}^{n}$
- $M_{i}=\left\{x \in \mathbb{Z}_{(p)}^{n} \mid L x\right.$ is divisible by $\left.p^{i}\right\}$
- $N_{i}=\left\{p^{-i} L x \mid x \in M_{i}\right\}$

How to find the cokernel?

We can find each p-primary component (Sylow subgroup) of the cokernel separately. Let f_{i} denote the number of copies of $\mathbb{Z} / p^{i} \mathbb{Z}$ in the p-primary component.

- $L: \mathbb{Z}_{(p)}^{n} \rightarrow \mathbb{Z}_{(p)}^{n}$
- $M_{i}=\left\{x \in \mathbb{Z}_{(p)}^{n} \mid L x\right.$ is divisible by $\left.p^{i}\right\}$
- $N_{i}=\left\{p^{-i} L x \mid x \in M_{i}\right\}$
- $f_{i}=\operatorname{dim}_{p} \overline{M_{i}} / \overline{M_{i+1}}=\operatorname{dim}_{p} \overline{N_{i}} / \overline{N_{i-1}}$

Outline

(1) Integer invariants of graphs
(2) Representations of \mathfrak{G}_{n}
(3) Hypercube graph

If the vertices of your graph are subsets, and the action of the symmetric group \mathfrak{G}_{n} preserves adjacency, then both the domain and codomain of L are permutation modules.

If the vertices of your graph are subsets, and the action of the symmetric group \mathfrak{G}_{n} preserves adjacency, then both the domain and codomain of L are permutation modules. A great deal of information about their submodule structure comes from theory of G. James.

$$
\begin{aligned}
& t=\begin{array}{|l|l|l|l|}
\hline 1 & 2 & 3 & 4 \\
\hline 5 & 6 & & \\
\hline
\end{array} \\
& \{t\}=\begin{array}{llll}
\overline{1} & 2 & 3 & 4 \\
\hline 5 & 6 & & \\
\hline \begin{array}{lllll}
\hline 2 & 1 & 3 & 4 \\
\hline 6 & 5 & &
\end{array} \\
\hline \begin{array}{llll}
\hline 1 & 2 & 4 & 3 \\
\hline 5 & 6 & &
\end{array} \\
\hline
\end{array} \\
& e_{t}^{0}=\{t\} \\
& e_{t}^{1}=\begin{array}{llll}
\hline 1 & 2 & 3 & 4 \\
\hline 5 & 6 & &
\end{array}-\begin{array}{llll}
\hline 5 & 2 & 3 & 4 \\
\hline 1 & 6 & &
\end{array} \\
& e_{t}^{2}=\begin{array}{llll}
\hline \begin{array}{lllll}
1 & 2 & 3 & 4 \\
\hline 5 & 6
\end{array}
\end{array}-\begin{array}{lllll}
\hline 5 & 2 & 3 & 4 \\
\hline 1 & 6
\end{array}-\begin{array}{llll}
\hline 1 & 6 & 3 & 4 \\
\hline 5 & 2 & & \begin{array}{llll}
\hline 5 & 6 & 3 & 4 \\
\hline 1 & 2 & &
\end{array} \\
\hline
\end{array}
\end{aligned}
$$

Integer invariants of graphs Representations of \mathfrak{G}_{n}

Hypercube graph

Integer invariants of graphs Representations of \mathfrak{G}_{n}

Hypercube graph

It follows that for an $F \mathfrak{G}_{n}$-submodule U of the codomain of L, we get a decending filtration

$$
P^{k}=U \cap S^{(n-i, k)(n-i, i)}, \quad k \geq 0
$$

It follows that for an $F \mathfrak{G}_{n}$-submodule U of the codomain of L, we get a decending filtration

$$
P^{k}=U \cap S^{(n-i, k)(n-i, i)}, \quad k \geq 0
$$

Each subquotient P^{k} / P^{k+1} is isomorphic to a submodule of S^{k}.

Outline

(1) Integer invariants of graphs
(2) Representations of \mathfrak{G}_{n}
(3) Hypercube graph

The n-cube graph Q_{n}

Vertices:

$$
\left\{\left(a_{1}, a_{2}, \cdots, a_{n}\right) \mid a_{i}=0 \text { or } 1\right\}
$$

The n-cube graph Q_{n}

Vertices:

$$
\left\{\left(a_{1}, a_{2}, \cdots, a_{n}\right) \mid a_{i}=0 \text { or } 1\right\}
$$

Edges: two vertices are adjacent if they differ in exactly one position.

The n-cube graph Q_{n}

Vertices:

$$
\left\{\left(a_{1}, a_{2}, \cdots, a_{n}\right) \mid a_{i}=0 \text { or } 1\right\}
$$

Edges: two vertices are adjacent if they differ in exactly one position.

Clearly the vertices may be viewed as subsets of an n-element set.

Work of Bai, Jacobson-Niedermeier-Reiner, and others show that the Laplacian integer invariants (i.e., sandpile group) can be understood by the p-primary components, for all primes except $p=2$.

Sandpile group of $Q_{n}: \kappa\left(Q_{n}\right)$

For $p \neq 2$,

$$
\operatorname{Syl}_{p}\left(\kappa\left(Q_{n}\right)\right) \cong \operatorname{Syl}_{p}\left(\oplus_{j=1}^{n}(\mathbb{Z} / 2 j \mathbb{Z})^{\binom{n}{j}}\right)
$$

Sandpile group of $Q_{n}: \kappa\left(Q_{n}\right)$

For $p \neq 2$,

$$
\operatorname{Syl}_{p}\left(\kappa\left(Q_{n}\right)\right) \cong \operatorname{Syl}_{p}\left(\oplus_{j=1}^{n}(\mathbb{Z} / 2 j \mathbb{Z})^{\binom{n}{j}}\right)
$$

The 2-part of the adjacency cokernel was found by work of Chandler-Sin-Xiang. Still not even a conjecture for $\operatorname{Syl}_{2}\left(\kappa\left(Q_{n}\right)\right)$.

Available online at www.sciencedirect.com

LINEAR ALGEBRA AND ITS APPLICATIONS

Linear Algebra and its Applications 369 (2003) 251-261
www.elsevier.com/locate/laa

On the critical group of the n-cube

Hua Bai

School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA Received 1 May 2002; accepted 10 December 2002
Submitted by R. Guralnick

Abstract

Reiner proposed two conjectures about the structure of the critical group of the n-cube Q_{n}. In this paper we confirm them. Furthermore we describe its p-primary structure for all odd primes p. The results are generalized to Cartesian product of complete graphs $K_{n_{1}} \times \cdots \times$ $K_{n_{k}}$ by Jacobson, Niedermaier and Reiner. © 2003 Published by Elsevier Science Inc.

Keywords: n-Cube; Critical group; Sandpile group; Laplacian matrix; Smith normal form; Sylow p-group

n	$\mathrm{Syl}_{2} K\left(Q_{n}\right)$
2	\mathbb{Z}_{4}
3	$\mathbb{Z}_{2} \mathbb{Z}_{8}^{2}$
4	$\mathbb{Z}_{2}^{2} \mathbb{Z}_{8}^{4} \mathbb{Z}_{32}$
5	$\mathbb{Z}_{2}^{6} \mathbb{Z}_{8}^{4} \mathbb{Z}_{16} \mathbb{Z}_{64}^{4}$
6	$\mathbb{Z}_{2}^{12} \mathbb{Z}_{4}^{4} \mathbb{Z}_{8} \mathbb{Z}_{32}^{4} \mathbb{Z}_{64}^{10}$
7	$\mathbb{Z}_{2}^{28} \mathbb{Z}_{4} \mathbb{Z}_{16}^{8} \mathbb{Z}_{32}^{6} \mathbb{Z}_{64}^{14} \mathbb{Z}_{128}^{6}$
8	$\mathbb{Z}_{2}^{56} \mathbb{Z}_{4}^{2} \mathbb{Z}_{16}^{16} \mathbb{Z}_{32}^{12} \mathbb{Z}_{64}^{28} \mathbb{Z}_{128}^{12} \mathbb{Z}_{1024}$
9	$\mathbb{Z}_{2}^{120} \mathbb{Z}_{4}^{10} \mathbb{Z}_{16}^{16} \mathbb{Z}_{32}^{26} \mathbb{Z}_{64}^{48} \mathbb{Z}_{128}^{26} \mathbb{Z}_{512} \mathbb{Z}_{2048}^{8}$
10	$\mathbb{Z}_{2}^{240} \mathbb{Z}_{4}^{36} \mathbb{Z}_{8}^{26} \mathbb{Z}_{32}^{16} \mathbb{Z}_{64}^{148} \mathbb{Z}_{256} \mathbb{Z}_{1024}^{26} \mathbb{Z}_{2048}^{18}$
11	$\mathbb{Z}_{2}^{496} \mathbb{Z}_{4}^{66} \mathbb{Z}_{8}^{32} \mathbb{Z}_{16}^{100} \mathbb{Z}_{64}^{164} \mathbb{Z}_{128} \mathbb{Z}_{512}^{100} \mathbb{Z}_{2048}^{64}$

Graph matrices

Integer invariants of graphs Representations of \mathfrak{G}_{n} Hypercube graph
Example: $n=3$

$$
n=3
$$

Example: $n=3$

Idea:

- Can show that for an $(n-i, i)$-tableau $t, L\left(e_{t}^{j}\right)$ represents, in the j-th row of the picture,

$$
\left(0,0, \cdots,(i-j) e_{s^{\prime}}^{j},-2 i e_{t^{\prime}}^{j}, 0, \cdots, 0\right)
$$

Example: $n=3$

Idea:

- Can show that for an $(n-i, i)$-tableau $t, L\left(e_{t}^{j}\right)$ represents, in the j-th row of the picture,

$$
\left(0,0, \cdots,(i-j) e_{s^{\prime}}^{j},-2 i e_{t^{\prime}}^{j}, 0, \cdots, 0\right)
$$

- Modulo 2, this is zero unless $i-j$ is odd. So we get at least every other copy of S^{j} in the j-th row in the image of L.

Example: $n=3$

Idea:

- Can show that for an $(n-i, i)$-tableau $t, L\left(e_{t}^{j}\right)$ represents, in the j-th row of the picture,

$$
\left(0,0, \cdots,(i-j) e_{s^{\prime}}^{j},-2 i e_{t^{\prime}}^{j}, 0, \cdots, 0\right)
$$

- Modulo 2, this is zero unless $i-j$ is odd. So we get at least every other copy of S^{j} in the j-th row in the image of L.
- The image of the sum of all the 2 -subsets under L shows that the sum of all the 1 -subsets lies in N_{1}. This generates an additional copy of S^{0} in $\overline{N_{1}}$.

Example: $n=3$

Idea:

- Can show that for an $(n-i, i)$-tableau $t, L\left(e_{t}^{j}\right)$ represents, in the j-th row of the picture,

$$
\left(0,0, \cdots,(i-j) e_{s^{\prime}}^{j},-2 i e_{t^{\prime}}^{j}, 0, \cdots, 0\right)
$$

- Modulo 2 , this is zero unless $i-j$ is odd. So we get at least every other copy of S^{j} in the j-th row in the image of L.
- The image of the sum of all the 2 -subsets under L shows that the sum of all the 1 -subsets lies in N_{1}. This generates an additional copy of S^{0} in $\overline{N_{1}}$.
- For a 2 -subset $\{t\}$ containing a 1 -subset $\left\{t^{\prime}\right\}$,

$$
L\left(e_{t^{\prime}}^{1}+2 e_{t}^{1}\right)=-8 e_{t}^{1}
$$

Shows the remaining copy of S^{1} lies in $\overline{N_{3}}$

Thank you for your attention!

