A representation-theoretic approach to understanding some graph matrices.

Josh Ducey James Madison University

AMS Spring Central Sectional Meeting Recent Trends in Graph Theory

April 16, 2023

In this talk I will be describing joint work with Colby Sherwood.

Josh Ducey

Graph matrices

Outline

2 Representations of On

3 Hypercube graph

▶ ∢ ≣

• Γ , a finite simple graph with adjacency matrix A.

- Γ , a finite simple graph with adjacency matrix A.
- Various other matrices can be used, for example, the Laplacian

Integer invariants of graphs Representations of ල් Hypercube graph

æ

《口》《聞》《臣》《臣》

Generally interested in algebraic invariants of matrices M that describe graphs, or other interesting incidence relations.

Generally interested in algebraic invariants of matrices M that describe graphs, or other interesting incidence relations. Spectrum (eigenvalues), rank, or integer invariants.

Generally interested in algebraic invariants of matrices M that describe graphs, or other interesting incidence relations. Spectrum (eigenvalues), rank, or integer invariants.

$$M: \mathbb{Z}^n \to \mathbb{Z}^n$$

The cokernel of this map $\mathbb{Z}^n / \operatorname{Im}(M)$ is a finitely generated abelian group:

 $\mathbb{Z}/s_1\mathbb{Z}\oplus\mathbb{Z}/s_2\mathbb{Z}\oplus\cdots$

Generally interested in algebraic invariants of matrices M that describe graphs, or other interesting incidence relations. Spectrum (eigenvalues), rank, or integer invariants.

$$M: \mathbb{Z}^n \to \mathbb{Z}^n$$

The cokernel of this map $\mathbb{Z}^n / \operatorname{Im}(M)$ is a finitely generated abelian group:

$$\mathbb{Z}/s_1\mathbb{Z}\oplus\mathbb{Z}/s_2\mathbb{Z}\oplus\cdots$$

Can also be described:

$$PMQ = diag(s_1, s_2, \cdots).$$

Generally interested in algebraic invariants of matrices M that describe graphs, or other interesting incidence relations. Spectrum (eigenvalues), rank, or integer invariants.

$$M: \mathbb{Z}^n \to \mathbb{Z}^n$$

The cokernel of this map $\mathbb{Z}^n / \operatorname{Im}(M)$ is a finitely generated abelian group:

$$\mathbb{Z}/s_1\mathbb{Z}\oplus\mathbb{Z}/s_2\mathbb{Z}\oplus\cdots$$

Can also be described:

$$PMQ = diag(s_1, s_2, \cdots).$$

The cokernel of, say, A can change depending on which ring the entries of the matrix come from.

< A > <

The cokernel of, say, A can change depending on which ring the entries of the matrix come from.

Over \mathbb{R} :

The cokernel of, say, A can change depending on which ring the entries of the matrix come from.

Over \mathbb{Z} :

The cokernel of, say, A can change depending on which ring the entries of the matrix come from.

Over $\mathbb{Z}_{(2)}$:

Integer invariants of graphs Representations of ල_n Hypercube graph

Examples: integer invariants

• *n*-cycle graph C_n , L: $\mathbb{Z}/n\mathbb{Z} \oplus \mathbb{Z}$

э

Integer invariants of graphs Representations of ලී n Hypercube graph

Examples: integer invariants

- *n*-cycle graph C_n , L: $\mathbb{Z}/n\mathbb{Z} \oplus \mathbb{Z}$
- Complete graph K_n , L: $(\mathbb{Z}/n\mathbb{Z})^{n-2}\oplus\mathbb{Z}$

Examples: integer invariants

- *n*-cycle graph C_n , L: $\mathbb{Z}/n\mathbb{Z} \oplus \mathbb{Z}$
- Complete graph K_n , L: $(\mathbb{Z}/n\mathbb{Z})^{n-2}\oplus\mathbb{Z}$
- *r*-subsets vs. *s*-subsets of an *n* element set (Wilson):

Examples: integer invariants

- *n*-cycle graph C_n , L: $\mathbb{Z}/n\mathbb{Z} \oplus \mathbb{Z}$
- Complete graph K_n , L: $(\mathbb{Z}/n\mathbb{Z})^{n-2}\oplus\mathbb{Z}$
- *r*-subsets vs. *s*-subsets of an *n* element set (Wilson):

$$\bigoplus_{j} \left(\mathbb{Z} / \binom{s-j}{r-j} \mathbb{Z} \right)^{\binom{n}{j} - \binom{n}{j-1}}$$

Examples: integer invariants

- *n*-cycle graph C_n , L: $\mathbb{Z}/n\mathbb{Z} \oplus \mathbb{Z}$
- Complete graph K_n , L: $(\mathbb{Z}/n\mathbb{Z})^{n-2}\oplus\mathbb{Z}$
- *r*-subsets vs. *s*-subsets of an *n* element set (Wilson):

$$\bigoplus_{j} \left(\mathbb{Z} / \binom{s-j}{r-j} \mathbb{Z} \right)^{\binom{n}{j} - \binom{n}{j-1}}$$

Most of the invariants of other subset incidence relations remain unknown.

For a connected graph, the cokernel of *L* is $\kappa(\Gamma) \oplus \mathbb{Z}$.

Examples: integer invariants

- *n*-cycle graph C_n , L: $\mathbb{Z}/n\mathbb{Z} \oplus \mathbb{Z}$
- Complete graph K_n , L: $(\mathbb{Z}/n\mathbb{Z})^{n-2}\oplus\mathbb{Z}$
- *r*-subsets vs. *s*-subsets of an *n* element set (Wilson):

$$\bigoplus_{j} \left(\mathbb{Z} / \binom{s-j}{r-j} \mathbb{Z} \right)^{\binom{n}{j} - \binom{n}{j-1}}$$

Most of the invariants of other subset incidence relations remain unknown.

For a connected graph, the cokernel of L is $\kappa(\Gamma) \oplus \mathbb{Z}$.

How to find the cokernel?

We can find each *p*-primary component (Sylow subgroup) of the cokernel separately. Let f_i denote the number of copies of $\mathbb{Z}/p^i\mathbb{Z}$ in the *p*-primary component.

•
$$L: \mathbb{Z}^n_{(p)} \to \mathbb{Z}^n_{(p)}$$

How to find the cokernel?

We can find each *p*-primary component (Sylow subgroup) of the cokernel separately. Let f_i denote the number of copies of $\mathbb{Z}/p^i\mathbb{Z}$ in the *p*-primary component.

•
$$L: \mathbb{Z}_{(p)}^n \to \mathbb{Z}_{(p)}^n$$

• $M_i = \{x \in \mathbb{Z}_{(p)}^n \mid Lx \text{ is divisible by } p^i\}$

How to find the cokernel?

We can find each *p*-primary component (Sylow subgroup) of the cokernel separately. Let f_i denote the number of copies of $\mathbb{Z}/p^i\mathbb{Z}$ in the *p*-primary component.

L: Zⁿ_(p) → Zⁿ_(p)
M_i = {x ∈ Zⁿ_(p) | Lx is divisible by pⁱ}
N_i = {p⁻ⁱLx | x ∈ M_i}

How to find the cokernel?

We can find each *p*-primary component (Sylow subgroup) of the cokernel separately. Let f_i denote the number of copies of $\mathbb{Z}/p^i\mathbb{Z}$ in the *p*-primary component.

•
$$L: \mathbb{Z}_{(p)}^{n} \to \mathbb{Z}_{(p)}^{n}$$

• $M_{i} = \{x \in \mathbb{Z}_{(p)}^{n} \mid Lx \text{ is divisible by } p^{i}\}$
• $N_{i} = \{p^{-i}Lx \mid x \in M_{i}\}$
• $f_{i} = \dim_{p} \overline{M_{i}} / \overline{M_{i+1}} = \dim_{p} \overline{N_{i}} / \overline{N_{i-1}}$

Outline

If the vertices of your graph are subsets, and the action of the symmetric group \mathfrak{G}_n preserves adjacency, then both the domain and codomain of L are permutation modules.

If the vertices of your graph are subsets, and the action of the symmetric group \mathfrak{G}_n preserves adjacency, then both the domain and codomain of L are permutation modules.

A great deal of information about their submodule structure comes from theory of G. James.

$$t = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 \end{bmatrix}$$

$$\{t\} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 3 & 4 \\ \hline 5 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 4 & 3 \\ \hline 5 & 6 \end{bmatrix}$$

$$e_t^0 = \{t\}$$

$$e_t^1 = \begin{bmatrix} 1 & 2 & 3 & 4 \\ \hline 5 & 6 \end{bmatrix} = \begin{bmatrix} 5 & 2 & 3 & 4 \\ \hline 1 & 6 \end{bmatrix}$$

$$e_t^2 = \begin{bmatrix} 1 & 2 & 3 & 4 \\ \hline 5 & 6 \end{bmatrix} = \begin{bmatrix} 5 & 2 & 3 & 4 \\ \hline 1 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 6 & 3 & 4 \\ \hline 5 & 2 \end{bmatrix} + \begin{bmatrix} 5 & 6 & 3 & 4 \\ \hline 1 & 2 \end{bmatrix}$$

< ロ > < 部 > < き > < き > ...

æ

$$(n-i,i)$$

$$(n-i,i)(n-i,i)$$

$$(n-i,i)(n-i,i)$$

$$(n-i,i)(n-i,i)$$

$$(n-i,i)(n-i,i)$$

$$(n-i,i)(n-i,i) = 5^{i}$$

æ

) ୬ ୧୯

It follows that for an $F\mathfrak{G}_n$ -submodule U of the codomain of L, we get a decending filtration

$$P^k = U \cap S^{(n-i,k)(n-i,i)}, \quad k \ge 0,$$

It follows that for an $F\mathfrak{G}_n$ -submodule U of the codomain of L, we get a decending filtration

$$P^k = U \cap S^{(n-i,k)(n-i,i)}, \quad k \ge 0,$$

Each subquotient P^k/P^{k+1} is isomorphic to a submodule of S^k .

Outline

The *n*-cube graph $\overline{Q_n}$

Vertices:

$$\{(a_1, a_2, \cdots, a_n) | a_i = 0 \text{ or } 1\}$$

æ

-≣->

・ロト ・回ト ・ 回ト ・

The *n*-cube graph Q_n

Vertices:

$$\{(a_1, a_2, \cdots, a_n) | a_i = 0 \text{ or } 1\}$$

Edges: two vertices are adjacent if they differ in exactly one position.

The *n*-cube graph Q_n

Vertices:

$$\{(a_1, a_2, \cdots, a_n) | a_i = 0 \text{ or } 1\}$$

Edges: two vertices are adjacent if they differ in exactly one position.

Clearly the vertices may be viewed as subsets of an *n*-element set.

Work of Bai, Jacobson-Niedermeier-Reiner, and others show that the Laplacian integer invariants (i.e., sandpile group) can be understood by the *p*-primary components, for all primes except p = 2.

Sandpile group of Q_n : $\kappa(Q_n)$

For $p \neq 2$,

$$Syl_p(\kappa(Q_n)) \cong Syl_p\left(\oplus_{j=1}^n \left(\mathbb{Z}/2j\mathbb{Z}\right)^{\binom{n}{j}}\right)$$

Josh Ducey Graph matrices

æ

-≣->

・ロト ・回ト ・ 回ト ・

Sandpile group of Q_n : $\kappa(Q_n)$

For $p \neq 2$,

$$Syl_p(\kappa(Q_n)) \cong Syl_p\left(\oplus_{j=1}^n \left(\mathbb{Z}/2j\mathbb{Z}\right)^{\binom{n}{j}}\right)$$

The 2-part of the adjacency cokernel was found by work of Chandler-Sin-Xiang. Still not even a conjecture for $Syl_2(\kappa(Q_n))$.

On the critical group of the *n*-cube

Hua Bai

School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA Received 1 May 2002; accepted 10 December 2002

Submitted by R. Guralnick

Abstract

Reiner proposed two conjectures about the structure of the critical group of the *n*-cube Q_n . In this paper we confirm them. Furthermore we describe its *p*-primary structure for all odd primes *p*. The results are generalized to Cartesian product of complete graphs $K_{n_1} \times \cdots \times K_{n_k}$ by Jacobson, Niedermaier and Reiner. **0**:2003 Published by Elsevice Science Inc.

Keywords: n-Cube; Critical group; Sandpile group; Laplacian matrix; Smith normal form; Sylow p-group

Josh Ducey Graph matrices

Integer invariants of graphs Representations of Ø_n Hypercube graph

n	$\operatorname{Syl}_2 K(Q_n)$
2	\mathbb{Z}_4
3	$\mathbb{Z}_2 \mathbb{Z}_8^2$
4	$\mathbb{Z}_2^2 \mathbb{Z}_8^4 \mathbb{Z}_{32}$
5	$\mathbb{Z}_2^6 \mathbb{Z}_8^4 \mathbb{Z}_{16} \mathbb{Z}_{64}^4$
6	$\mathbb{Z}_{2}^{12} \mathbb{Z}_{4}^{4} \mathbb{Z}_{8} \mathbb{Z}_{32}^{4} \mathbb{Z}_{64}^{10}$
7	$\mathbb{Z}_{2}^{28} \mathbb{Z}_{4} \mathbb{Z}_{16}^{8} \mathbb{Z}_{32}^{6} \mathbb{Z}_{64}^{14} \mathbb{Z}_{128}^{6}$
8	$\mathbb{Z}_{2}^{56} \mathbb{Z}_{4}^2 \mathbb{Z}_{16}^{16} \mathbb{Z}_{32}^{12} \mathbb{Z}_{64}^{28} \mathbb{Z}_{128}^{12} \mathbb{Z}_{1024}^{10}$
9	$\mathbb{Z}_{2}^{120} \mathbb{Z}_{4}^{10} \mathbb{Z}_{16}^{16} \mathbb{Z}_{32}^{26} \mathbb{Z}_{64}^{48} \mathbb{Z}_{128}^{26} \mathbb{Z}_{512} \mathbb{Z}_{2048}^{88}$
10	$\mathbb{Z}_{2}^{240} \mathbb{Z}_{4}^{36} \mathbb{Z}_{8}^{26} \mathbb{Z}_{32}^{16} \mathbb{Z}_{64}^{148} \mathbb{Z}_{256} \mathbb{Z}_{1024}^{26} \mathbb{Z}_{2048}^{18}$
11	$\mathbb{Z}_{2}^{496} \mathbb{Z}_{4}^{66} \mathbb{Z}_{8}^{32} \mathbb{Z}_{16}^{100} \mathbb{Z}_{64}^{164} \mathbb{Z}_{128} \mathbb{Z}_{512}^{100} \mathbb{Z}_{2048}^{64}$

< ロ > < 部 > < き > < き > ...

æ

Example: n = 3

N=3 $5^{\circ} \oplus 5^{\circ} \oplus 5^{\circ} \oplus 5^{\circ} \oplus 5^{\circ}$ 5' ⊕ 5'

э

Example: n = 3

Idea:

• Can show that for an (n - i, i)-tableau t, $L(e_t^j)$ represents, in the *j*-th row of the picture,

$$(0,0,\cdots,(i-j)e_{s'}^{j},-2ie_{t'}^{j},0,\cdots,0).$$

Example: n = 3

Idea:

• Can show that for an (n - i, i)-tableau t, $L(e_t^j)$ represents, in the *j*-th row of the picture,

$$(0,0,\cdots,(i-j)e_{s'}^{j},-2ie_{t'}^{j},0,\cdots,0).$$

• Modulo 2, this is zero unless i - j is odd. So we get at least every other copy of S^{j} in the *j*-th row in the image of *L*.

Example: n = 3

Idea:

• Can show that for an (n - i, i)-tableau t, $L(e_t^j)$ represents, in the *j*-th row of the picture,

$$(0,0,\cdots,(i-j)e_{s'}^{j},-2ie_{t'}^{j},0,\cdots,0).$$

- Modulo 2, this is zero unless i j is odd. So we get at least every other copy of S^{j} in the *j*-th row in the image of *L*.
- The image of the sum of all the 2-subsets under *L* shows that the sum of all the 1-subsets lies in N_1 . This generates an additional copy of S^0 in $\overline{N_1}$.

Example: n = 3

Idea:

• Can show that for an (n - i, i)-tableau t, $L(e_t^j)$ represents, in the *j*-th row of the picture,

$$(0,0,\cdots,(i-j)e_{s'}^{j},-2ie_{t'}^{j},0,\cdots,0).$$

- Modulo 2, this is zero unless i j is odd. So we get at least every other copy of S^{j} in the *j*-th row in the image of *L*.
- The image of the sum of all the 2-subsets under *L* shows that the sum of all the 1-subsets lies in N_1 . This generates an additional copy of S^0 in $\overline{N_1}$.
- For a 2-subset $\{t\}$ containing a 1-subset $\{t'\}$,

$$L(e_{t'}^1 + 2e_t^1) = -8e_t^1.$$

Shows the remaining copy of S^1 lies in $\overline{N_3}$

Thank you for your attention!

æ

イロト イ団ト イヨト イヨト