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In this talk I will be describing joint work with Colby Sherwood.
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A =

2

66666666664

0 1 0 1 1 0 0 0
1 0 1 0 0 1 0 0
0 1 0 1 0 0 1 0
1 0 1 0 0 0 0 1
1 0 0 0 0 1 0 1
0 1 0 0 1 0 1 0
0 0 1 0 0 1 0 1
0 0 0 1 1 0 1 0

3

77777777775

1 2

34

5 6

78

�, a finite simple graph with adjacency matrix A.

Various other matrices can be used, for example, the Laplacian
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L =

2

6666666664

3 �1 0 �1 �1 0 0 0

�1 3 �1 0 0 �1 0 0

0 �1 3 �1 0 0 �1 0

�1 0 �1 3 0 0 0 �1

�1 0 0 0 3 �1 0 �1

0 �1 0 0 �1 3 �1 0

0 0 �1 0 0 �1 3 �1

0 0 0 �1 �1 0 �1 3

3

7777777775

1 2

34

5 6

78
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Generally interested in algebraic invariants of matrices M that
describe graphs, or other interesting incidence relations.

Spectrum (eigenvalues), rank, or integer invariants.

M : Zn ! Zn

The cokernel of this map Zn/ Im(M) is a finitely generated abelian
group:

Z/s1Z� Z/s2Z� · · ·

Can also be described:

PMQ = diag(s1, s2, · · · ).
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The cokernel of, say, A can change depending on which ring the
entries of the matrix come from.

Over R: 0

BBBBBBBB@

1
1

1
1

1
0

0

1

CCCCCCCCA
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The cokernel of, say, A can change depending on which ring the
entries of the matrix come from.
Over Z: 0

BBBBBBBB@

1
1

2
6

12
0

0

1

CCCCCCCCA
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The cokernel of, say, A can change depending on which ring the
entries of the matrix come from.
Over Z(2): 0

BBBBBBBB@

1
1

2
2

4
0

0

1

CCCCCCCCA
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Examples: integer invariants

n-cycle graph Cn, L: Z/nZ� Z

Complete graph Kn, L: (Z/nZ)n�2 � Z
r -subsets vs. s-subsets of an n element set (Wilson):

M

j

✓
Z/

✓
s � j

r � j

◆
Z
◆(nj)�( n

j�1
)

Most of the invariants of other subset incidence relations
remain unknown.
For a connected graph, the cokernel of L is (�)� Z.
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How to find the cokernel?

We can find each p-primary component (Sylow subgroup) of the
cokernel separately. Let fi denote the number of copies of Z/piZ
in the p-primary component.

L : Zn
(p) ! Zn

(p)

Mi = {x 2 Zn
(p) | Lx is divisible by pi}

Ni = {p�iLx | x 2 Mi}
fi = dimp Mi/Mi+1 = dimp Ni/Ni�1
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If the vertices of your graph are subsets, and the action of the
symmetric group Gn preserves adjacency, then both the domain
and codomain of L are permutation modules.

A great deal of information about their submodule structure comes
from theory of G. James.
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t = 1 2 3 4

5 6

{t} = 1 2 3 4

5 6
= 2 1 3 4

6 5
= 1 2 4 3

5 6

e0t = {t}

e1t = 1 2 3 4

5 6
� 5 2 3 4

1 6

e2t = 1 2 3 4

5 6
� 5 2 3 4

1 6
� 1 6 3 4

5 2
+ 5 6 3 4

1 2
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It follows that for an FGn-submodule U of the codomain of L, we
get a decending filtration

Pk = U \ S (n�i ,k)(n�i ,i), k � 0,

Each subquotient Pk/Pk+1 is isomorphic to a submodule of Sk .
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The n-cube graph Qn

Vertices:
{(a1, a2, · · · , an) | ai = 0 or 1}

Edges: two vertices are adjacent if they di↵er in exactly one
position.

Clearly the vertices may be viewed as subsets of an n-element set.
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Work of Bai, Jacobson-Niedermeier-Reiner, and others show that
the Laplacian integer invariants (i.e., sandpile group) can be
understood by the p-primary components, for all primes except
p = 2.
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Sandpile group of Qn: (Qn)

For p 6= 2,

Sylp((Qn)) ⇠= Sylp
⇣
�n

j=1 (Z/2jZ)(
n
j)
⌘

The 2-part of the adjacency cokernel was found by work of
Chandler-Sin-Xiang. Still not even a conjecture for Syl2((Qn)).
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Example: n = 3

Idea:

Can show that for an (n � i , i)-tableau t, L(e jt) represents, in
the j-th row of the picture,

(0, 0, · · · , (i � j)e js0 ,�2ie jt0 , 0, · · · , 0).

Modulo 2, this is zero unless i � j is odd. So we get at least
every other copy of S j in the j-th row in the image of L.

The image of the sum of all the 2-subsets under L shows that
the sum of all the 1-subsets lies in N1. This generates an
additional copy of S0 in N1.

For a 2-subset {t} containing a 1-subset {t 0},

L(e1t0 + 2e1t ) = �8e1t .

Shows the remaining copy of S1 lies in N3
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Thank you for your attention!
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