Integer Invariants of Skew Lines in PG(3,q)

Joshua Ducey University of Florida

Joint work with Peter Sin

The Problem

- V a 4-dimensional vector space over \mathbb{F}_q
- Form incidence matrix A, a zero-one matrix with rows and columns indexed by the 2-subspaces of V
- The entry of *A* corresponding to a pair of 2-subspaces is 1 if and only if their intersection is trivial
- Goal is to compute the Smith Normal Form of *A* as an integer matrix

Some Motivation (and some notation)

- More generally, let V be an (n+1)-dimensional vector space over \mathbb{F}_q
- \mathcal{L}_i denotes the set of *i*-subspaces of V
- *A_{r,s}* denotes incidence matrix of *r*-subspaces vs. *s*-subspaces where incidence means zero-intersection

Some Motivation

- (1968) Hamada gives formula for *p*-rank of $A_{r,s}$ when r = 1
- (2004) Sin computes *p*-ranks for *r*-subspaces vs.
 s-subspaces
- (1980) Lander gives SNF for points vs. lines in PG(2,q)
- (1990) Black and List compute SNF for points vs. hyperplanes when q = p
- (2000) Sin gives SNF for points vs. *s*-subspaces when q = p
- (2002) Liebler and Sin work out SNF for points vs. hyperplanes for arbitrary q. Conjecture a formula for points vs. s-subspaces
- (2006) Conjecture is proved by Chandler, Sin, Xiang

Back to Our Specific Example

- V is 4-dimensional over \mathbb{F}_q
- $A = A_{2,2}$, incidence matrix of lines vs. lines in PG(3,q)
- Two lines are incident when they are skew

- Can view this situation from the point-of-view of strongly regular graphs
- A has eigenvalues q, $-q^2$, q^4 with respective multiplicities $q^4 + q^2$, $q^3 + q^2 + q$, and 1
- $|\det(A)| = q^{q^4 + 2q^3 + 3q^2 + 2q + 4}$
- In particular, all the invariant factors of A are powers of p
- Let e_i denote the multiplicity of p^i as an invariant factor of A

The Prime Case: q = p

Some computations:

	q = 2	q = 3	q = 5	q = 7
e_0	6	19	85	231
e_1	14	71	565	2219
e_2	9	20	70	168
e_3	6	19	85	231
e_4	1	1	1	1

Theorem: The invariant factors of the incidence matrix A are all p-powers, and are as given in the table below.

Invariant Factor	Multiplicity
1	$p(2p^2+1)/3$
p	$p(3p^3 - 2p^2 + 3p - 1)/3$
p^2	p(p+1)(p+2)/3
p^3	$p(2p^2+1)/3$
p^4	1

What about arbitrary *q*?

The General Case: $q = p^t$

	q = 2	q = 3	q = 5	q = 7	$q = 2^2$	$q = 3^2$	$q = 2^3$
e_0	6	19	85	231	36	361	216
e_1	14	71	565	2219	16	256	144
e_2	8	20	70	168	220	6025	96
e_3	6	19	85	231	0	0	3704
e_4	1	1	1	1	32	202	0
e_5					16	256	0
e_6					36	361	128
e_7					0	0	96
e_8					1	1	144
e_9							216
e_{10}							0
e_{11}							0
<i>e</i> 19							1

A. E. Brouwer (private communication) deduced that

$$e_0 + \dots + e_t = q^4 + q^2,$$

$$e_{2t} + \dots + e_{3t} = q^3 + q^2 + q,$$

and

$$e_{4t} = 1.$$

All other multiplicities are then forced to be zero. Furthermore, $e_i = e_{3i-1}$ for $0 \le i < t$. Brouwer did not make use of the geometry, so these facts hold for any strongly regular graph with the same parameters.

- Thus the problem has been reduced to calculating the numbers $e_0, e_1, \cdots, e_{t-1}$.
- I would now like to try and explain where these numbers come from.
- To do so, we recast the problem in terms of permutation-modules for G = GL(4,q)

The Modules M_i

• Can view the incidence matrix *A* as defining a homomorphism of free abelian groups

$$\eta:\mathbb{Z}^{\mathcal{L}_2}\to\mathbb{Z}^{\mathcal{L}_2}$$

that sends an 2-subspace to the (formal) sum of all 2-subspaces incident with it.

- *G* acts transitively on the sets \mathcal{L}_i , and η a homomorphism of $\mathbb{Z}G$ -permutation modules
- Define a sequence of $\mathbb{Z}G$ -submodules $\{M_i\}_{i\geq 0}$ of $\mathbb{Z}^{\mathcal{L}_2}$ as follows. Put $M_0 = \mathbb{Z}^{\mathcal{L}_2}$, and for $i \geq 1$ put

$$M_i = \{ m \in \mathbb{Z}^{\mathcal{L}_2} \mid \eta(m) \in p^i \mathbb{Z}^{\mathcal{L}_2} \}.$$

•
$$\mathbb{Z}^{\mathcal{L}_2} = M_0 \supseteq M_1 \supseteq M_2 \supseteq \cdots$$

• We have an induced *p*-filtration

$$\mathbb{F}_p^{\mathcal{L}_2} = \overline{M_0} \supseteq \overline{M_1} \supseteq \overline{M_2} \supseteq \cdots$$

of \mathbb{F}_pG -submodules.

With a little thought, one sees that for each i ≥ 0 the multiplicity of pⁱ as an elementary divisor of A is precisely dim_{F_p}(M_i/M_{i+1}).

Furthermore, if we define for r = 1, 2, 3

$$Y_r = \left\{ \sum_{x \in \mathcal{L}_r} a_x x \in \mathbb{F}_p^{\mathcal{L}_r} \mid \sum_{x \in \mathcal{L}_r} a_x = 0 \right\}.$$

then we have the decompositions

$$\mathbb{F}_p^{\mathcal{L}_1} = \mathbb{F}_p \mathbf{1} \oplus Y_1.$$

 $\mathbb{F}_p^{\mathcal{L}_2} = \mathbb{F}_p \mathbf{1} \oplus Y_2.$
 $\mathbb{F}_p^{\mathcal{L}_3} = \mathbb{F}_p \mathbf{1} \oplus Y_3.$

The set \mathcal{H}

The module Y_1 is well understood from work of Bardoe and Sin (2000). Let \mathcal{H} denote the set of *t*-tuples $(s_0, s_1, \dots, s_{t-1})$ of integers satisfying (for $0 \le j \le t-1$):

- 1. $1 \le s_j \le 3$,
- **2.** $0 \le ps_{j+1} s_j \le 4(p-1)$,

with subscripts read modulo t.

Thanks for your attention!