The Smith Normal Form of the Incidence Matrix of Skew Lines in $\mathbb{P}G(3, q)$

Josh Ducey

University of Florida

March 14, 2011
Outline

1. Equivalence of Integral Matrices

2. Incidence Matrices

3. Closing Remarks
Let M and N be matrices with integer entries.

We call M and N “equivalent,” and write $M \sim N$, if

$$PMQ = N$$

where P and Q are invertible integer matrices with determinants ± 1.

If M is an integer matrix, then M is equivalent to a diagonal matrix

$$S(M) = \text{diag}(s_1, s_2, \ldots, s_k)$$

with the property that s_i divides s_{i+1}, for $1 \leq i \leq k - 1$. This matrix $S(M)$ is uniquely determined, up to the sign of the diagonal entries, and is called the Smith normal form of M.
An Example

\[
M = \begin{pmatrix}
1 & 2 & 3 \\
4 & 5 & 6
\end{pmatrix}, \quad P = \begin{pmatrix}
1 & 0 \\
4 & -1
\end{pmatrix}, \quad Q = \begin{pmatrix}
1 & -2 & 1 \\
0 & 1 & -2 \\
0 & 0 & 1
\end{pmatrix}.
\]

\[
S(M) = PMQ = \begin{pmatrix}
1 & 0 & 0 \\
0 & 3 & 0
\end{pmatrix}.
\]
Row/Column Operations

$S(M)$ can be computed from M using row and column operations. These are:

- Swap any two rows (columns) of M.
- Multiply any row (column) by -1.
- Add to any row (column) an integer multiple of another row (column).

That is, P and Q can be formed from products of elementary matrices.
It follows from the Cauchy–Binet formula that $s_1 \cdot s_2 \cdots s_j$ is equal to the greatest common divisor of all determinants of $j \times j$ submatrices of M.
Some Uses

- Determinant, rank.
- Linear Diophantine problems.
- Structure of abelian groups.
Can view the $m \times n$ matrix M as a linear map $\mathbb{R}^n \to \mathbb{R}^m$.

P, Q arise from a change of basis.

Correct way to view matrix is as a homomorphism of free abelian groups.
Outline

1. Equivalence of Integral Matrices
2. Incidence Matrices
3. Closing Remarks
Incidence Matrices

- These arise when one attempts to find invariants of a relation between two finite sets.
- Studied by researchers in design theory, coding theory, algebraic graph theory, representation theory, finite geometry.
- The incidence structure is encoded in a zero-one matrix; various numerical invariants of the matrix now become invariants of the incidence structure.
- The zero-one matrix can be read over any commutative ring. Viewed over a field, we get rank, p-rank. Over the integers, we get SNF.
X a finite set, $|X| = n$.

X_r denotes the collection of subsets of size r.

X_r vs. X_s; there are various possible incidence relations.
A $t - (v, k, \lambda)$ design is a set of v points together with a collection of subsets of size k, called blocks, satisfying the following property: each subset of size t is contained in exactly λ blocks.

Let $|X| = v$. Consider the incidence structure X_t vs. X_k, where incidence means inclusion.

$W_{t,k}$ the $\binom{v}{t} \times \binom{v}{k}$ incidence matrix.

There exists a $t - (v, k, \lambda)$ design on X if and only if there exists a vector \vec{x} with nonnegative integer entries such that

$$W_{t,k} \vec{x} = \lambda \vec{j}.$$
Incidence of Subspaces

- V an n-dimensional vector space over a finite field \mathbb{F}_q of $q = p^t$ elements.
- \mathcal{L}_r denotes the collection of r-dimensional subspaces.
- \mathcal{L}_r vs. \mathcal{L}_s; various possible notions of incidence.
- Consider the incidence relation of zero-intersection, and let $A_{r,s}$ denote the $[\binom{n}{r}]_q \times [\binom{n}{s}]_q$ incidence matrix.
Some History (zero-intersection)

- (1968) Hamada gives formula for p-rank of $A_{r,s}$ when $r = 1$.
- (1980) Lander gives SNF of points vs. lines in $PG(2, q)$.
- (1990) Black and List compute SNF of points vs. hyperplanes when $q = p$.
- (2002) Liebler and Sin work out SNF of points vs. hyperplanes for arbitrary q.

Natural to consider when V is 4-dimensional over \mathbb{F}_q, incidence of L_2 vs. L_2; i.e. skew lines in $PG(3, q)$.
Example: skew lines in $\text{PG}(3, 4)$
Example: skew lines in $\text{PG}(3, 4)$

Table: The elementary divisors of the incidence matrix of lines vs. lines in $\text{PG}(3, 4)$, where two lines are incident when skew.

<table>
<thead>
<tr>
<th>Elem. Div.</th>
<th>1</th>
<th>2</th>
<th>2^2</th>
<th>2^3</th>
<th>2^4</th>
<th>2^5</th>
<th>2^6</th>
<th>2^7</th>
<th>2^8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity</td>
<td>36</td>
<td>16</td>
<td>220</td>
<td>0</td>
<td>32</td>
<td>16</td>
<td>36</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Table: LINBOX computations for some small values of q Here $q = p^t$ and e_i denotes the multiplicity of p^i as an elementary divisor of $A_{2,2}$.

<table>
<thead>
<tr>
<th>q</th>
<th>e_0</th>
<th>e_1</th>
<th>e_2</th>
<th>e_3</th>
<th>e_4</th>
<th>e_5</th>
<th>e_6</th>
<th>e_7</th>
<th>e_8</th>
<th>e_9</th>
<th>e_{10}</th>
<th>e_{11}</th>
<th>e_{12}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$q = 2$</td>
<td>6</td>
<td>14</td>
<td>8</td>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$q = 3$</td>
<td>19</td>
<td>71</td>
<td>20</td>
<td>19</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$q = 5$</td>
<td>85</td>
<td>565</td>
<td>70</td>
<td>85</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$q = 7$</td>
<td>231</td>
<td>2219</td>
<td>168</td>
<td>231</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$q = 2^2$</td>
<td>36</td>
<td>16</td>
<td>220</td>
<td>0</td>
<td>32</td>
<td>16</td>
<td>36</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$q = 3^2$</td>
<td>361</td>
<td>256</td>
<td>6025</td>
<td>0</td>
<td>202</td>
<td>256</td>
<td>361</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$q = 2^3$</td>
<td>216</td>
<td>144</td>
<td>96</td>
<td>3704</td>
<td>0</td>
<td>0</td>
<td>128</td>
<td>96</td>
<td>144</td>
<td>216</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Theorem (Brouwer, Ducey, Sin, 2011)

Let \(e_i \) denote the number of times \(p^i \) occurs in the Smith normal form of \(A_{2,2} \). Then, for \(0 \leq i \leq t \),

\[
e_{2t+i} = \sum_{\vec{s} \in \mathcal{H}(i)} d(\vec{s}).
\]

Notation key:

1. \(\mathcal{H}(i) = \{(s_0, \ldots, s_{t-1}) \in [3]^t \mid \# \{j \mid s_j = 2 \} = i \} \).
2. For \(\vec{s} = (s_0, \ldots, s_{t-1}) \in [3]^t \) define the integer tuple \(\vec{\lambda} = (\lambda_0, \ldots, \lambda_{t-1}) \) by \(\lambda_i = ps_{i+1} - s_i \), with the subscripts read mod \(t \).
3. \(d_k \) is the coefficient of \(x^k \) in the expansion of \((1 + x + \cdots + x^{p-1})^4 \).
4. \(d(\vec{s}) = \prod_{i=0}^{t-1} d_{\lambda_i} \).
- R a local principal ideal domain, maximal ideal generated by p.
- $\eta: R^m \rightarrow R^n$
- $M_i = \{x \in R^m \mid \eta(x) \in p^i R^n\}$
- $N_i = \{p^{-i}\eta(x) \mid x \in M_i\}$
- Set $F = R/pR$. $\overline{L} = (L + pR^\ell)/pR^\ell$ is an F-vector space.
- $e_i = \dim_F (M_i/M_{i+1}) = \dim_F (N_i/N_{i-1})$
Outline

1. Equivalence of Integral Matrices
2. Incidence Matrices
3. Closing Remarks
Work to be done:

- zero-intersection of subspaces, subspace-inclusion, distinguished subspaces
- further applications of SNF
- further applications of representation theory
To undergraduates interested in research:

- learn linear algebra
- get SAGE
x = walltime()
p = 2
t = 1
q = p^t
F.<t> = GF(q)
V = VectorSpace(F, 6)
S = tuple(V.subspaces(3))
l = len(S)

print "now forming incidence matrix A"
A = matrix(ZZ, l)
for i in range(l-1):
 for j in range(i+1, l):
 if dim(S[i].intersection(S[j])) == 0:
 A[i,j] = 1
A = A + A.transpose()

y = walltime(x)
print "took", y, "seconds"
save(A, './programs/Results-6dim/incmat2')
Thank you for your attention!