Turn these problems in with the assigned problems from the text:

(1) A permutation matrix P is a square matrix of zeros and ones with the following property: every row contains a single one and every column contains a single one.

Here are some examples of permutation matrices:

		Γο	0	17		0	1	0	0	
$\begin{bmatrix} 0\\1 \end{bmatrix}$	1]	$\begin{bmatrix} 0\\1\\0 \end{bmatrix}$	0 0 1		,	1	0	0	0	
	0 ,					0	0	1	0	
	-			ΟJ		0	0	0	1	

(These are not the only examples for matrices of these sizes, think of more...)

Show that any permutation matrix will have determinant ± 1 .

(2) The matrix $A = \begin{bmatrix} 2 & -2 \\ 2 & -2 \end{bmatrix}$ is a "vector" in the space $M_{2\times 2}(\mathbb{R})$ of all 2×2 matrices with real entries.

Write down the zero vector in this space, the vector $\frac{1}{2}A$, and the vector -A.

What matrices are in the smallest subspace containing A?

(3) Describe a subspace of $M_{2\times 2}(\mathbb{R})$ that contains $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ but not $B = \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix}$.

If a subspace contains A and B, must it contain I?

Describe a subspace of $M_{2\times 2}(\mathbb{R})$ that contains no nonzero diagonal matrices.

(4) Consider the following subset of \mathbb{R}^n :

$$\left\{ \begin{bmatrix} a_1\\a_2\\\vdots\\a_n \end{bmatrix} \mid a_1 + a_2 + \dots + a_n = 0 \right\}.$$

Is this a subspace of \mathbb{R}^n ? Explain why or why not.

(Optional) Bonus Problems: For each problem that you solve correctly I will increase your homework score by one point. All or nothing for these – no partial credit.

(1) This question is also about permutation matrices. It is not difficult to count permutation matrices. There are two permutation matrices of size 2×2 , there are six permutation matrices of size 3×3 , and in general there are $n! = n(n-1) \cdots 2 \cdot 1$ permutation matrices of size $n \times n$. (Convince yourself of this fact, and feel free to ask me about it.)

In the problem above you were asked to show that any permutation matrix will have determinant either 1 or -1. Your job for this bonus problem is to tell me exactly how many permutation matrices of size $n \times n$ have determinant equal to 1. You must also give a good explanation for your answer.

2