Homework Assignment 1

Due Wednesday $9 / 10 / 2014$ at start of class.

Assigned:

Section 2.3: 3, 6, 11, 17, 18, 27
Section 2.4: 4, 5, 6, 7, 22, 24, 32
Section 2.5: 6, 15, 18, 25, 29, 32, 44

Collected:

(1) Solve the linear system. If there is a unique solution, find it. If there is no solution, show why. If there are many solutions, try to describe them all (if this is too difficult, give at least 3 distinct solutions).
(a)

$$
\begin{aligned}
x-y+z & =0 \\
2 x-3 y+4 z & =-2 \\
-2 x-y+z & =7
\end{aligned}
$$

(b)

$$
\begin{aligned}
x_{1}+x_{2}-x_{3}+2 x_{4} & =1 \\
x_{1}+x_{2}+x_{4} & =2 \\
x_{1}+2 x_{2}-4 x_{3} & =1 \\
2 x_{1}+x_{2}+2 x_{3}+5 x_{4} & =1
\end{aligned}
$$

(c)

$$
\begin{aligned}
2 x+3 y-z & =3 \\
-x-y+3 z & =0 \\
x+2 y+2 z & =3 \\
y+5 z & =3
\end{aligned}
$$

Give a quick verbal description of the geometric picture behind each system of equations (i.e., the row picture). Was the solution to parts (b) and (c) expected or unexpected?
(2) Find a quadratic function

$$
y=a x^{2}+b x+c
$$

that passes through the points $(1,4),(-1,-2),(5,64)$.
(3) Which elimination matrices E_{21} and E_{31} produce zeros in the $(2,1)$ and $(3,1)$ positions of $E_{21} A$ and $E_{31} A$?

$$
A=\left[\begin{array}{ccc}
2 & 1 & 0 \\
-2 & 0 & 1 \\
8 & 5 & 3
\end{array}\right]
$$

Find the single matrix E that produces both zeros at once. Multiply $E A$ to check that it works.
(4) Describe all vectors that are perpendicular to $\left[\begin{array}{l}1 \\ 2 \\ 4\end{array}\right]$ and $\left[\begin{array}{l}5 \\ 3 \\ 1\end{array}\right]$.
(5) Consider the matrix

$$
A=\left[\begin{array}{lll}
2 & 1 & 3 \\
2 & 1 & 1 \\
4 & 5 & 1
\end{array}\right]
$$

Show that A^{-1} exists (by finding it!) and then use A^{-1} to quickly solve the systems:
(a) $A \vec{x}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$
(b) $A \vec{x}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$
(c) $A \vec{x}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$

