Homework Assignment 4

Due Wednesday 10/08/2014 at start of class.

Assigned:

Section 3.2: 1-3, 7, 9, 11, 12, 15, 17, 18, 26, 30, 33, 36, 37
Section 3.3: 1, 2, 4, 6, 8, 10, 28
Section 3.4: 1, 2, 4, 5, 13, 16, 17, 19, 27, 31
Section 3.5 1, 2, 5, 7, 8, 10, 11, 13, 16, 17, 20, 21, 22, 26, 38, 39, 41
Section 3.6 To appear.

Collected:

(1) Write down all possible shapes for a 3×4 matrix in reduced row echelon form.

For example, here is one shape

$$
\left[\begin{array}{llll}
1 & * & 0 & * \\
0 & 0 & 1 & * \\
0 & 0 & 0 & 0
\end{array}\right]
$$

where the symbol $*$ denotes an arbitrary real number.
(2) Find the complete solution to $A \vec{x}=\vec{b}$, for the following:
(a) $A=\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & -1 & 0 & 1 \\ 0 & 2 & 0 & 1\end{array}\right], \vec{b}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$
(b) $A=\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4\end{array}\right], \vec{b}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$
(c) $A=\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4\end{array}\right], \vec{b}=\left[\begin{array}{c}1 \\ -2\end{array}\right]$
(d) $A=\left[\begin{array}{ccc}1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right], \vec{b}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$
(3) For each matrix A in the previous problem, find a basis for the column space of A. Please explain how you are doing this.
(4) Consider the matrix

$$
A=\left[\begin{array}{cc}
1 & 1 \\
-1 & 1 \\
1 & 1 \\
1 & 1 \\
-1 & -1
\end{array}\right]
$$

(a) Give a basis for $C(A)$. What is the dimension of $C(A)$?
(b) Suppose $\left(b_{1}, b_{2}, b_{3}, b_{4}, b_{5}\right)$ is in $C(A)$. Give equations that must be satisfied by the b_{i} 's.
(c) Using these equations, find a matrix B with the property that $C(A)=N(B)$.
(d) Give a basis for $R(A)$ (the row space of A). What is the dimension of $R(A)$?
(5) For the given vector spaces, construct a basis and state the dimension.
(a) The space of all vectors $\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ in \mathbb{R}^{4} with the property that $a_{1}+a_{2}+a_{3}+a_{4}=0$.
(b) The space of all 2×2 matrices with trace zero. (The trace of a matrix is the sum of its diagonal entries.)
(c) The subspace of \mathbb{R}^{4} spanned by the following six vectors:

$$
\left[\begin{array}{c}
1 \\
0 \\
0 \\
-1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
-1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
0 \\
-1 \\
0 \\
-1
\end{array}\right] .
$$

Bonus! For each problem that you successfully complete below, I will add one point to this homework's score. The standard by which I will grade these is higher than usual. Your solution must be completely clear and error-free or you will not receive any credit.
(1) We showed in class that if $\overrightarrow{x_{p}}$ is a particular solution of $A \vec{x}=\vec{b}$ and $\overrightarrow{x_{n}}$ is an an element of $N(A)$, then $\overrightarrow{x_{p}}+\overrightarrow{x_{n}}$ is another solution of $A \vec{x}=\vec{b}$. Explain why this indeed gives all of the solutions of $A \vec{x}=\vec{b}$. That is, show that any solution of $A \vec{x}=\vec{b}$ can be written in the form $\overrightarrow{x_{p}}+\overrightarrow{x_{n}}\left(\overrightarrow{x_{p}}\right.$ is fixed, $\overrightarrow{x_{n}}$ depends on the given solution.)
(2) (a) Let A be a matrix. As we saw in class, one way to get a basis for $C(A)$ is to transpose the matrix, perform row operations to get into row echelon form U (or R), then transpose again to get U^{T}. The nonzero columns of the resulting matrix U^{T} form a basis of $C(A)$. Explain why this works.
(b) Again start with a matrix A. Another way to get a basis for $C(A)$ is to perform row operations until it is in row echelon form U (or R). Note that I did not say to take the transpose. Observe which columns of U contain the pivots. Then those columns of the original matrix A will be a basis for $C(A)$. Explain why this works.

