Homework Assignment 7

Due by Friday 11/21/2014 at start of class.

Collected:

(1) (3 points) For each of the following matrices A, find S and Λ so that $S^{-1} A S=\Lambda$.
(a) $A=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$
(b) $A=\left[\begin{array}{ccc}2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right]$
(2) (3 points)
(a) Find an orthonormal basis for the subspace of \mathbb{R}^{5} spanned by the vectors:

$$
\left[\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
0
\end{array}\right], \quad\left[\begin{array}{l}
1 \\
1 \\
1 \\
0 \\
1
\end{array}\right], \quad\left[\begin{array}{l}
0 \\
0 \\
1 \\
1 \\
1
\end{array}\right] .
$$

(b) What 5×5 matrix projects onto this subspace?
(3) (4 points) Compute the eigenvalues of $A=\left[\begin{array}{cc}1 & -1 \\ -1 & 2\end{array}\right]$.

BONUS! (5 points). How does the matrix in problem 3 relate to the Fibonacci numbers? Imitate the example in the book and use this matrix to describe a formula for Fibonacci numbers.

