Math 435
Homework Assignment 2

Due Monday 9/28/2015

(1) Prove that a finite set with n elements contains exactly 2^{n} subsets.
(2) Prove that the real line \mathbb{R} and the set $2^{\mathbb{Z}_{+}}$have the same cardinality. What is the cardinality of 2^{Z} ?
(3) In the plane \mathbb{R}^{2}, consider a set A of non-intersecting discs. What is the cardinality of A ?
(4) Let A be the set of all binary sequences (i.e., sequences whose terms are 0 's or 1 's) that have only a finite number of 1 's. What is the cardinality of A ?
(5) What is the cardinality of the set of all functions $f:\{0,1\} \rightarrow \mathbb{Z}_{+}$?
(6) Prove that the cardinality of \mathbb{R}^{n} is continuum for all $n \in \mathbb{Z}_{+}$.
(7) (2 pts) Let $A_{1}, A_{2}, \ldots, A_{n}, \ldots$ be a countably infinite collection of sets each of which has cardinality continuum. Prove that the union $\cup_{n=1}^{\infty} A_{n}$ has cardinality continuum.
(8) (2 pts) We equip the space \mathbb{R}^{2} with two metrics d_{1} and d_{2} as follows. For points $a=\left(a_{1}, a_{2}\right)$ and $b=\left(b_{1}, b_{2}\right)$ in \mathbb{R}^{2} :

$$
d_{1}(a, b)=\sqrt{\left(b_{1}-a_{1}\right)^{2}+\left(b_{2}-a_{2}\right)^{2}}, \quad d_{2}(a, b)=\left|b_{1}-a_{1}\right|+\left|b_{2}-a_{2}\right| .
$$

Given a metric space Y and a map $f: \mathbb{R}^{2} \rightarrow Y$, prove that the map $f:\left(\mathbb{R}^{2}, d_{1}\right) \rightarrow Y$ is continuous if and only if the map $f:\left(\mathbb{R}^{2}, d_{2}\right) \rightarrow Y$ is.

