Math 435 Homework Assignment 4

Due Monday 11/2/2015

- (1) (3 pts) Let A, B denote subsets of a space X. Prove the following:
 - If $A \subset B$, then $\overline{A} \subset \overline{B}$;
 - $\overline{A \cup B} = \overline{A} \cup \overline{B};$
 - $\overline{\bigcup_{\alpha} A_{\alpha}} \supset \bigcup_{\alpha} \overline{A_{\alpha}}$; give an example of proper containment.

(2) (2 pts) Show that a space X is Hausdorff if and only if the diagonal $\Delta = \{(x, x) \in X \times X \mid x \in X\}$

is closed in $X \times X$.

(3) (2 pts) Let Y be an ordered set in the order topology, and let $f, g: X \to Y$ be continuous.

- Show that the set $\{x \in X \mid f(x) \le g(x)\}$ is closed in X.
- Show that the function $h: X \to Y$, $h(x) = \min\{f(x), g(x)\}$ is continuous. (Hint: use the pasting lemma.)
- (4) Let $f: S^1 \to \mathbb{R}$ be continuous. Show that there exists $x \in S^1$ such that f(x) = f(-x).
- (5) Consider a figure eight, i.e., a curve homeomorphic to the one given by the equation $((x-1)^2 + y^2 - 1)((x+1)^2 + y^2 - 1) = 0.$

Show that this figure is not homeomorphic to the circle.

(6) Describe all continuous functions $f \colon \mathbb{R} \to \mathbb{Q}$.

Bonus Problems

To appear later.