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Preface

It may well be doubted whether, in all the range of science,
there is any field so fascinating to the explorer, so rich in hidden
treasures, so fruitful in delightful surprises, as Pure Mathematics.
—Lewis Carroll (Charles Dodgson), 1832–1898

An explorer is one who seeks out new worlds and ideas. As Lewis Carroll
would probably agree, exploration is not always easy—the explorer can at
times find the going tough. But, the treasures and surprises that active
exploration of ideas brings is worth the effort.

Geometry is one of the richest areas for mathematical exploration. The
visual aspects of the subject make exploration and experimentation natural
and intuitive. At the same time, the abstractions developed to explain
geometric patterns and connections make the subject extremely powerful
and applicable to a wide variety of physical situations. In this book we give
equal weight to intuitive and imaginative exploration of geometry as well as
to abstract reasoning and proofs.

As any good school teacher knows, intuition is developed through play,
the sometimes whimsical following of ideas and notions without clear goals
in mind. To encourage a playful appreciation of geometric ideas, we have
incorporated many computer explorations in the text. The software used
in these explorations is Geometry Explorer, a virtual geometry laboratory
where one can create geometric objects (like points, circles, polygons, areas,
etc.), carry out transformations on these objects (dilations, reflections, ro-
tations, and translations), and measure aspects of these objects (like length,
area, radius, etc.). As such, it is much like doing geometry on paper (or
sand) with a ruler and compass. However, on paper such constructions are
static—points placed on the paper can never be moved again. In Geometry
Explorer, all constructions are dynamic. One can draw a segment and then
grab one of the endpoints and move it around the canvas, with the segment
moving accordingly. Thus, one can construct a geometric figure and test out
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hypotheses by experimentation with the construction.

The development of intuitive notions of geometric concepts is a critical
first step in understanding such concepts. However, intuition alone cannot
provide the basis for precise calculation and analysis of geometric quantities.
For example, one may know experimentally that the sides of a right triangle
follow the Pythagorean Theorem, but data alone do not show why this result
is true. Only a logical proof of a result will give us confidence in using it in
any given situation.

Throughout this text there is a dual focus on intuition/experimentation
on the one hand and on explanation/proofs on the other. This integration
of exploration and explanation can be seen most clearly in the use of major
projects to tie together concepts in each chapter. For example, the first
project explores the golden ratio and its amazing and ubiquitous properties.
Students not only experimentally discover the properties of the golden ratio,
but are asked to dig deeper and analyze why these properties are true.

The goal of the projects is to have students actively explore geometry
through a three-fold approach. Students will first see a topic introduced in
the text. Then, they will explore that topic using Geometry Explorer or by
means of in-class group projects. Finally, they will review and report on
their exploration, discussing what was discovered, conjectured, and proved
during the course of the project.

The beginning of each project is designated by a special heading—the
project title set between two horizontal lines. The conclusion of each project
is designated by an ending horizontal line. Projects are illustrated with
screen shots from the Geometry Explorer program, which comes bundled
with the text.

Using Geometry Explorer

Each project includes a series of specific geometric activities using Geometry
Explorer. The following conventions will be used for directing computer
explorations:

• Menu References All menu references will be in bold face type
and will reference the menu option to click on. Parent menus will be
listed in parentheses to assist in navigating to the correct menu. For
example, the phrase “Click on Hide (View menu)” means to go to
the Hide menu under the View menu and select that menu.
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• Selection When asked to select an object on the screen, first check
that the Select button (the one with the left arrow in the Create panel
of buttons) is pressed, and then click on the object to select it.

• Multi-selection To select more than one object, hold down the Shift
key when selecting.

• Creating Objects When asked to create an object on the screen,
use one of the buttons in the Create panel. To create a point, for
example, first click on the Point button in the Create panel and then
click on the screen. To create a circle, click on the Circle button and
click and drag to create a circle.

• Constructing Objects When asked to construct an object, use one
of the buttons in the Construct panel. These buttons will work only
if the correct objects for the construction have already been selected.
For example, to construct the intersection of two circles, first multi-
select the circles and then click on the Intersect button (first button
in first row of Construct panel of buttons).

• Dragging or Moving Objects To move an object, use the Select
tool. Click on the object and drag the mouse to move the object.

• Attaching Points to Objects When asked to attach a point to an
object such as a circle, create a point on top of a portion of the circle.
To test whether a point is attached to an object like a circle, drag the
point with the mouse. The point should move only along the circle;
that is, it is attached to the circle.

Keeping these few conventions in mind will solve many, if not most, of
the user interaction issues that come up when doing the projects of the
text. A more complete reference guide to Geometry Explorer can be found
in Appendix B.

Audience

This text is designed for use by mathematics students at the junior or senior
collegiate level. The background in geometry required is that of elementary
high school Euclidean geometry. Prior experience with proving mathemat-
ical results is highly recommended. Some experience with matrix algebra
and the notion of group from abstract algebra is also highly desirable.
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The arrangement of topics in the text was designed to give as much
flexibility as possible. While Chapters 1 and 2 are fundamental, many of the
other chapters can be covered independently from one another. Chapter 3
covers basic analytic geometry of vectors and angles, as well as complex
numbers and analytic functions. Unless review of such matters is necessary,
Chapter 3 can be viewed as optional foundational material.

Chapter 4 covers Euclidean constructions and depends only on the mate-
rial in Chapters 1 and 2. Chapter 5 is devoted to transformational geometry
and requires only a basic understanding of vectors and angles from Chap-
ter 3, beyond the material covered in Chapters 1 and 2. Chapter 5 is a
pre-requisite for all subsequent chapters. Chapters 6, 7, and 9 can be cov-
ered in any order. Chapter 7 is a pre-requisite for Chapter 8.

A suggested syllabus for a one-semester course for prospective high-
school geometry teachers would include Chapters 1, 2, 4, sections 5.1–5.6,
sections 7.1–7.6, and as much of the first four sections of Chapter 9 as time
permits.

A suggested syllabus for a one-semester course for math majors of better
than average ability would include Chapters 1, 2, 5, 6, 7, and 9.

A suggested syllabus for a one-semester course focusing on non-Euclidean
geometry would include Chapters 1, 2, and section 3.5, as well as Chapters 5,
7, and as much of Chapter 8 as time permits.

Technical Requirements

The software that accompanies this book, Geometry Explorer, runs on Mac-
intosh, Windows, and Linux computers, and also on any other computer
that has a Java Virtual Machine (Java 1.2 or above). At least 128 MB of
RAM is needed for the program to effectively function. On Macintosh com-
puters the operating system must be 9.0 or above. On PCs the operating
system must be at least at the level of Windows 98/NT. For an acceptable
level of performance, Geometry Explorer should be installed on computers
that have clock speeds of at least 200 MHz. To install the software, follow
the instructions on the Installation Guide that comes with the software CD.
For software updates and bug fixes, check the Geometry Explorer web site
http://www.gac.edu/~hvidsten/gex.
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Chapter 1

Geometry and the Axiomatic
Method

We owe geometry to the tax collector.

—J. L. Heilbron, Geometry Civilized [20]

Let no one ignorant of geometry enter here.

—Inscription over the doors to Plato’s Academy

1.1 Early Origins of Geometry

In a fundamental sense, geometry is a natural outgrowth of our exposure
to the physical universe and in particular to the natural world. In our
interactions with our environment, we encounter physical shapes, such as
rocks and mountains, that we then organize by patterns into groups and
classes. Rocks get put into the “round” category and mountains into a
separate category. As our powers of perception become more refined, we
notice other patterns of objects, such as the symmetries found in nature.
An example of a natural symmetry is that of the rotational symmetry found
in the California poppy (Fig. 1.1).

1



2 CHAPTER 1. GEOMETRY AND THE AXIOMATIC METHOD

Fig. 1.1 California Poppy, Mimi Kamp, Southwest School of Botanical
Medicine

It is not surprising that human beings, being embedded in the natural
world, should be inspired by and curious about geometrical shapes. For
example, when constructing shelters our ancestors invariably chose to use
precise geometric figures—most often circles or rectangles. There were very
practical reasons to use these shapes; rectangular structures are easily laid
out and circular huts provide a maximum of living space for the area they
enclose.

While ancient peoples used geometric shapes for quite utilitarian pur-
poses, they also surrounded themselves with patterns and designs that did
not have any functional purpose.

In this ancient Navajo rug, there
is no practical need to decorate the
fabric with such an intricate design.
The decoration met a different need
for the individual who created it,
the need for beauty and abstrac-
tion.
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From the earliest times geometric figures and patterns have been used to
represent abstract concepts, concepts that are expressed through the con-
struction of objects having specific geometric shapes. A good example of this
connection between the abstract and the concrete is that of the pyramids of
ancient Egypt (Fig. 1.2).

Fig. 1.2 The Giza Plateau Complex, Copyright 1997 Oriental Institute, Uni-
versity of Chicago

The pyramids were built primarily as tombs for the pharaohs. However,
a tomb for a pharaoh could not be just an ordinary box. The pharaoh
was considered a god and as such his tomb was designed as a passageway
connecting this life to the afterlife. The base of each pyramid represented
the earth. It was laid out precisely with four sides oriented to face true
north, south, east, and west. From the base the sides reached a peak that
symbolized the connection with the Egyptian sun god.

While the design and construction of the pyramids required very specific
geometric knowledge—basic triangle geometry and formulas for the volume
of four-sided pyramids—the Egyptians also developed simple geometric rules
for handling a quite different task, that of surveying. The arable land of
ancient Egypt lay close to the Nile and was divided into plots leased to
local Egyptians to farm. Each year, after the Nile had flooded and wiped
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out portions of the land, tax collectors were forced to re-calculate how much
land was left in order to levy the appropriate amount of rent. The Egyptians’
study of land measurement was passed on to the Greeks and is evidenced
by the word geometry itself, which in Greek means “earth measure.”

A special class of Egyptian priests arose to handle these two types of
geometrical calculations—practical surveying and the more abstract and
spiritual design of monuments and tombs. The ancient Greek philosopher
Aristotle believed that the existence of this priestly class motivated a more
abstract understanding of geometry by the Egyptians than by any of their
predecessors. However, this higher study of geometry was still quite primi-
tive by our standards. A truly abstract and logical understanding of geom-
etry would come with the Greeks’ absorption of Egyptian ideas through the
schools of Thales and Pythagoras.

1.2 Thales and Pythagoras

The Egyptians had remarkably good formulas for the volume of a truncated
pyramid (not surprisingly) and had a good approximation (about 31

6) for
the constant π. However, there was a serious problem with Egyptian ge-
ometry. They did not delineate between values that were approximations
and those that were exact. Indeed, nowhere in Egyptian geometry is there
a concern for what the “actual” value of a computation is. Their method of
solving a problem was to take the numbers involved and follow a recipe of
adding, subtracting, and so on, until they ended up with a final number. For
example, they knew that certain triples of integers, say 3, 4, and 5, would
form the lengths of a right triangle, but they had no notion of what the
relationship between the sides of a right triangle were in general.

In the period between 900 and 600 BC, while the Egyptian empire was
waning, a new seafaring and trading culture arose in Greece. As the Greeks
traveled throughout the Mediterranean, they interacted with a diverse set of
cultures, including the Egyptians. The entrepreneurial spirit of the Greeks
was reflected in the creation of independent schools of learning led by master
teachers such as Thales and Pythagoras. This was in stark contrast to the
centralized monopoly of the priestly class in Egypt. The Greeks created a
marketplace of ideas where theories were created and debated vigorously.

In this society of ideas, two notable schools arose—the Ionian school
founded by Thales of Miletus and the Pythagorean school founded by Pytha-
goras of Samos. Much about both men is lost to history and comes down to
us through myths and legends. However, the impact that their schools had
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on mathematics, science, music, and philosophy was revolutionary.

To understand the profound change that occurred in how we think
of mathematics now versus before the Greeks, let us consider a simple
problem—that of computing the area of a triangle. The Egyptians were
aware that if the triangle were a right triangle, then one could “flip” the
triangle across the longest side and get a rectangle. The triangle’s area is
then half the product of the two shortest sides.

They also knew that in some special triangles, with certain fixed lengths
of sides, the area was half the length of one side times the height of the
triangle. However, this is all that the Egyptians knew, or wanted to know,
about the area of a triangle in general. Geometry to them was an empirical
subject, needed only to analyze those triangles found in real objects.

The Greeks, on the other hand, viewed the abstraction of things as
the ideal and perfect form of reality. Sides and edges in this world were
imperfect. By abstracting edges into segments having no width and having
exact length, the Greeks could talk about the exact answer to questions such
as the area of a triangle. And not only that, they could discuss in general
what the area should be for any triangle that is built of three abstract
segments.

This abstraction, freed from the constraints of empirical foundation, al-
lowed for the study of classes of objects, rather than the objects themselves.
For example, if one supposed the earth was a sphere, then one could deduce
many properties of the earth just by using what was known about abstract
spheres.

But this way of thinking required a new way of determining the veracity
of statements. For the Egyptians, the statement “a triangle with sides of
length 3, 4, and 5 has a right angle” would be accepted as true if one drew
a 3-4-5 triangle in the sand and measured the angle to be approximately
a right angle. However, a statement about abstract triangles cannot be
proved this way—one cannot draw a perfect 3-4-5 triangle, no matter how
hard one tries. The greatest achievement of the Greeks was the development
of a precise and logical way of reasoning called the deductive method, which
provided sound rules of argument to be used for abstract systems of objects.
The deductive method has formed the basis for scientific reasoning from the
time of the Greeks until the modern age.

The Greeks’ focus on abstraction and their creation of the deductive
method can be traced to the two great schools of Thales and Pythagoras.
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1.2.1 Thales

Thales (ca. 624–548 BC) lived in the coastal city of Miletus in the ancient
region of Ionia (present day Turkey). He is reported to have visited Egypt
in the first half of the sixth century BC. While there, he studied Egyptian
mathematics and measured the height of the Egyptian pyramids by the use
of shadows and similar triangles.

Thales was, in many respects, a bridge between the empirical and myth-
ical world of the Egyptians and the abstract and rational world of Greek
civilization. To the Egyptians, reality was infused with the actions of spiri-
tual and mystical beings, and thus, while one could discover some basic facts
about how things worked, the true nature of reality was not important—the
gods would do as they wanted to with the world. Thales is known as the first
scientist because he believed in a rational world where one could discover
universal truths about natural phenomena by abstracting properties of the
world into ideal terms. This was a fundamental shift in how nature was
perceived. No longer were natural processes simply the whims of mythical
beings; they were products of processes that could be described in terms
that could be debated and proved true or false. Thales was perhaps the
first thinker to seriously consider the question, What is matter composed
of? His answer was water, which we know today to be incorrect, but it was
an answer that Thales could back up with a logical argument and could, in
principle, be shown to be true or false.

Thales is known for being the first mathematician, the first to use de-
ductive reasoning to prove mathematical results. As best we can tell, his
methods of proof actually involved a combination of deductive reasoning
and inductive reasoning from examples. The full development of deductive
reasoning from first principles (axioms) would come later, with its most
complete expression found in the work of Euclid.

The five geometric theorems attributed to Thales are

1. A circle is bisected by a diameter.

2. The base angles of an isosceles triangle are equal.

3. The pairs of vertical angles formed by two intersecting lines are equal.

4. Two triangles are congruent if they have two angles and the included
side equal.

5. An angle inscribed in a semicircle is a right angle.
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The last result has become known as “The Theorem of Thales.” It can
be proved in several ways. In Fig. 1.3 we suggest one method. Try proving
this theorem. That is, show that β + γ = 90, using Thales’ theorem on
isosceles triangles and the fact that the sum of the angles in a triangle is
180 degrees.

B CA

D

α

βγ

Fig. 1.3

1.2.2 Pythagoras

According to legend, Pythagoras (ca. 580–500 BC) was a pupil of Thales.
Like Thales, Pythagoras traveled widely, gathering not only mathematical
ideas, but also religious and mystical teachings. To the Pythagoreans, philos-
ophy and mathematics formed the moral basis of life. The words philosophy
(love of wisdom) and mathematics (that which is learned) were coined by
the Pythagoreans.

In the Pythagorean worldview, mathematics was the way to study the
ideal, that which was truly harmonious and perfect. “Numbers rule the uni-
verse” was their motto. They believed that all of nature could be explained
by properties of the natural numbers 1, 2, 3, . . . . The search for harmony
and perfection were of utmost importance and translated directly to a focus
on ratios and proportion—the harmonious balance of numbers.

The theorem historically attributed to Pythagoras, that in a right tri-
angle the square on the hypotenuse is equal to the sum of the squares on the
two sides, was known as an empirical fact to the Egyptians and others in
the ancient Orient. However, it was the Pythagoreans who first provided a
logical proof of this result.
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The Pythagoreans’ development of geometry and their focus on the the-
ory of numbers in relation to music, astronomy, and the natural world had
a profound effect on Greek culture. As Boyer and Merzbach state in their
history of mathematics [7, page 57], “Never before or since has mathematics
played so large a role in life and religion as it did among the Pythagoreans.”

One of the most important features of the schools of both Pythagoras and
Thales was their insistence that mathematical results be justified or proved
true. This focus on proofs required a method of reasoning and argument that
was precise and logical. This method had its origins with Pythagoras and
Thales and culminated with the publication of The Elements by Euclid in
about 300 BC. The method has become known as the “Axiomatic Method.”
Howard Eves in [14] records the invention of the axiomatic method as one
of the very greatest moments in the history of mathematics. Before we
investigate the axiomatic method, let’s take a little side trip into one of the
most elegant constructions used by the Pythagoreans—the construction of
the golden section.

1.3 Project 1 - The Ratio Made of Gold

Leonardo Da Vinci called it the “Sectio aurea.” Luca Paccioli, an Italian
mathematician of the 1500s, wrote a book, which Da Vinci illustrated, called
De Divine Proportione. Johannes Kepler, in the late 1500s, said:

Geometry has two great treasures: one is the theorem of Pytha-
goras; the other, the division of a line into extreme and mean
ratio. The first we may compare to a measure of gold; the second
we may name a precious jewel.

What these great thinkers were referring to is one of the simplest, yet
most aesthetically pleasing, geometric constructions—that of the golden ra-
tio.

The first study of the golden ratio is attributed to the Pythagoreans.
In their search for harmony of number, they sought the ideal figure, one in
which the dimensions were in perfect harmony of proportion. Proportion has
to do with ratios of measurements. We say that two ratios are in proportion
if they are equal to one another. The simplest geometric ratio is that of
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two segment lengths. The simplest way to create a proportion of ratios is
to start with a single segment and cut it into two parts. We create one
ratio by looking at the ratio of the total segment to the longer of the two
sub-pieces, and we can create another ratio by that of the longer sub-piece
to the smaller. The splitting of the segment will be most harmonious if these
two ratios are equal, that is, if they are in proportion.

Our first project will be to construct geometric figures that have this
perfect harmony of proportion. We will do so by using the software environ-
ment Geometry Explorer that came bundled with this text. Before you start
this project, review the brief notes on using Geometry Explorer found in
the preface. In particular, review the notes on creating versus constructing
geometric objects and the information about attaching points to objects. As
you progress through the lab, refer to the software reference guide found in
Appendix B for any other user interface issues that arise.

You should work through all the constructions and exercises until you
come to the end of the project, where you will find instructions on how to
write up a report of work done for this project.

1.3.1 Golden Section

Start Geometry Explorer. You should see a window like the one in Fig. 1.4.
Our first task will be to create a segment AB on the screen. Using the
Segment tool in the Create panel of buttons, click and drag on the screen
to create a segment. (You can use the Label tool—the one with the “A” on
it in the Create panel—to click on the endpoints of this segment and make
labels visible.) Using the Point tool, attach a point C to segment AB. Note
that C is always “stuck” on AB; if we drag C around, it will always stay on
AB. Holding down the Shift key, multi-select points A,B, and C (in that
order). Now choose Ratio (Measure menu). We have measured the ratio
of the length of segment AB to the length of segment BC, and this ratio
measurement will appear on the screen, as shown in Fig. 1.4.

Now, multi-select points B,C, and A (in that order) and choose Ratio
(Measure menu). The length ratio of segment BC to CA will now appear
on the screen below the previous ratio. Drag point C around and see if
you can get these two ratios to match up; that is, see if you can create a
proportion of ratios.

Interesting!! The ratios seem to match at a magic ratio of about 1.6.
Let’s see why this is. For the sake of argument, let’s set the length of BC
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Fig. 1.4 Geometry Explorer Main Window

equal to 1. Let x be the length of AB. Then, what we are looking for is a
value of x that satisfies the equation

x

1
=

1

x− 1

If we solve this equation, we get that x must satisfy x2 − x − 1 = 0.

This has two roots 1±
√

5
2 . The positive solution is 1+

√
5

2 , which is about
1.62. This ratio is the perfection of balance for which the Pythagoreans
were searching. The segment subdivision having this ratio is what Da Vinci
called the Golden Section.

Construction of the Golden Ratio

We can see from the previous discussion that it is not too hard to approxi-
mate the golden ratio by moving point C. However, in the true Pythagorean
spirit, is it possible to construct two segments whose ratio of lengths is ex-
actly the golden ratio?
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Traditionally, the question of geometric construction of numerical values
or geometric figures has played a key role in the development of geometry.
(Euclid’s notion of construction encompasses both of the ideas of creating
and constructing used in Geometry Explorer.) Euclidean constructions are
carried out by drawing lines (or segments) and circles and by finding the
intersections of lines and circles. Such constructions are called straightedge
and compass constructions as they represent pencil and paper constructions
using a straightedge (line) and compass (circle). A review of constructions
will come later in the text. For now, we point out that all of the tools avail-
able in the Create and Construct panels of buttons in Geometry Explorer
are valid Euclidean constructions.

To construct the golden ratio of a segment, we will need to split a segment
into two sub-segments such that the ratio of the larger to the smaller sub-

segment is exactly 1+
√

5
2 . How can we do this? Since the fraction 1

2 appears
in the expression for the golden ratio, it might be useful to construct the
midpoint of a segment. Also, an easy way to construct

√
5 would be to

construct a right triangle with base lengths of 1 and 2. We’ll keep these
ideas in mind as we explore how to construct the golden ratio.

Golden Ratio Construction Step 1

To get started, we need a segment. Clear the screen (Clear (Edit menu))
and create segment AB.

Since we already discussed the need
for midpoints, let’s construct the
midpoint C of AB by selecting the
segment and clicking on the Mid-
point button (second button in first
row of the Construct panel). To
make life easier for ourselves, let’s
assume the length of AB is 2. Then,
we have one base of the triangle we
discussed above.

A BC

To get the other base, we need a right angle at B. Multi-select segment
AB and point B (remember to hold the Shift key down while selecting) and
construct the perpendicular (third button in first row of Construct panel)
to AB at B (refer to the preceding figure).
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Golden Ratio Construction Step 2

Now, we need to create a segment up from B along the vertical line that has
length 1. This can be done using a circle centered at B of radius 1. To create
this circle, select the Circle tool (in the Create panel) and click on point B.
Keeping the mouse button down, drag the cursor until it is directly over
point C. When the cursor is over C, that point will become highlighted (a
small circle will pop up around C). The cursor represents the radius point
of the circle we want to construct, and we want this radius point to be equal
to C so that the circle has radius exactly equal to 1. Release the mouse
button and drag points A and B around the screen. Notice how the circle
radius is always of constant length equal to the length of BC.

The technique of dragging a point of a new circle or line until it matches
an existing point will be a common technique used throughout the labs in
this text. It is an easy way to create objects that are in synchronization
with existing objects.

To construct the vertical leg of the
desired right triangle, return A and
B to the position shown and multi-

select the circle and the line
←→
BD.

Construct the intersection points D
and E by using the Intersect tool in
the Construct panel of buttons.

A BC

D

E

At this point, you should check
that you have constructed all of the
figures correctly. Drag points A and
B around the screen and check that
your circle moves accordingly, with
center B and radius to C, and that
your intersection points D and E
move with the circle and the per-
pendicular.

A

B

C

D

E

A great advantage in using Geometry Explorer over paper and pencil con-
struction is that you can dynamically move figures, exploring how their
properties change (or stay constant) as you do so.
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Golden Ratio Construction Step 3

Point D is the point we are after, so hide the circle (click on the circle and
choose Hide Object (View menu)). Hide point E in a similar fashion.
Move AB back to a horizontal position and create a segment connecting A
to D. (Use the Segment tool. Click on A and drag the cursor to D.) To
finish our triangle, create segment BD.

By the Pythagorean Theorem we know that the length of AD will be√
5. So we have constructed all the numbers that appear in the fraction for

the golden ratio, but we have not actually found a point on AB that will
subdivide this segment in this ratio.

Let’s experiment a bit with what we are trying to find. Suppose G is a
point between A and B that subdivides the segment into the golden ratio;

that is AB
AG = 1+

√
5

2 . Let x be the length of AG. (Draw a picture on a scrap
piece of paper—all good mathematicians always have paper on hand when
reading math books!)

Exercise 1.3.1. Given that the length of AB is 2, argue that x must be equal
to
√

5− 1.

From this exercise, we see that to finish our construction we need to find
a point G on AB such that the length of AG is

√
5− 1. Explore (on paper)

for a couple minutes how you might find such a point and then continue on
with the project.

We make use of the fact that we al-
ready have a length of

√
5 in the hy-

potenuse of our right triangle. To
cut off a length of 1 from the hy-
potenuse, create a circle centered
at D with radius point B (using
the click and drag technique as de-
scribed above). Then, multi-select
AD and this new circle and con-
struct the intersection point F (us-
ing the Intersect button).

A BC

D

F
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To construct G, we just need to
transfer AF to AB. Create a circle
with center A and radius point F
and construct the intersection point
G of this new circle with AB. (Use
the Intersect button again.) Multi-
select A, G, and B and choose Ra-
tio (Measure menu) to compute
the ratio of the length of AG to the
length of GB.

A BC

D

E

F

G

Ratio((A, G), (G,B)) = 1.62

It looks like our analysis was correct. We have constructed a golden section
for AB at G!

1.3.2 Golden Rectangles

The golden ratio has been used extensively in art and architecture—not in
the subdivision of a single segment but in the creation of rectangular shapes
called golden rectangles. A Golden Rectangle is a rectangle where the ratio
of the long side to the short side is exactly the golden ratio.

To construct a golden rectangle, we will again need to construct the
numbers 1, 2, and

√
5. But this time we can interpret the numerator and

denominator of the golden ratio fraction 1+
√

5
2 as the separate side lengths

of a rectangle. It makes sense to start out with a square of side length 2, as
we can take one of its sides as the denominator and can split an adjacent
side in two to get the 1 term in the numerator. To get the

√
5 term, we need

to extend this smaller side appropriately.

Golden Rectangle Construction Step 1

To start the construction, clear the screen (Clear (Edit menu)) and create
segment AB. We will assume this segment is of length 2.
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To construct a square on AB, first
construct the perpendicular to AB
at A. (Multi-select the segment
and A and click on the Perpendicu-
lar button in the Construct panel.)
Then construct a circle at A with ra-
dius AB by multi-selecting point A
and segment AB and clicking on the
Circle Construction button (second
from left in second row of Construct
panel). Next, multi-select the cir-
cle and the perpendicular and con-
struct the intersection point C. Do
a similar series of constructions at
B to get point E as shown.

A B

C E

Points A,B,C, and E will form
a square. Hide all of the per-
pendiculars and circles (select the
objects and choose Hide Object
(View menu)) and create the seg-
ments AC, CE, and EB to form a
square.

A B

C E

Golden Rectangle Construction Step 2

Select CE and construct the midpoint G of CE. If we can extend CE to a
point H so that EH has length

√
5− 1, then segment CH will have length√

5 + 1 and we will have the length ratio of CH to AB equal to the golden
ratio.
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To extend CE, create a ray from C
to E. (Use the Ray tool and click
on C and drag the cursor to E.)
Then, create a circle with center at
G and radius point B. Multi-select
this circle, and the ray through C
and E, and construct the intersec-
tion point H.

A B

C EG H

Exercise 1.3.2. Use a right triangle to argue that EH has length
√

5− 1, given
the construction of H done in the step above.

Golden Rectangle Construction Step 3

Finally, to finish off the rectangle
partially defined by B, E, and H,
we construct a perpendicular to ray
GE at H, then create a ray from
A to B, and construct the inter-
section point J of the perpendicu-
lar with this ray. Multi-select A, B,
and J and choose Ratio (Measure
menu). We have created a segment
(AJ) that is cut in the golden ratio
atB, as well as a rectangle (EHJB)
that is “golden.” A B

C EG H

J

Ratio((A,B),(B,J))=1.62

Exercise 1.3.3. Grab a ruler and a few of your friends and measure the pro-
portions of the rectangles enclosing your friends’ faces. Measure the ratio of the
distance from the bottom of the chin to the top of the head to the distance between
the ears. Make a table of these distances and find the average “face ratio.” Does
the average come close to the golden ratio? Find some magazine photos of actors
and actresses considered beautiful. Are their faces “golden”?

The Fibonacci sequence has a fascinating connection with the golden
ratio. The sequence is defined as a sequence of numbers u1, u2, u3, . . . where
u1 = 1, u2 = 1, and un = un−1 + un−2. Thus, u3 = 2, u4 = 3, u5 = 5, and so
on. The first ten terms of this sequence are 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89.
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These numbers come up in surprising places. They appear in the branching
patterns of plants, in the numbers of rows of kernels in a sunflower head,
and in many spiral patterns, such as the spiral found in the Nautilus shell.
The ratio of successive Fibonacci numbers is also related to the golden ratio.
Consider the first few ratios of terms in the sequence

2

1
= 2

3

2
= 1.5

5

3
= 1.666...

8

5
= 1.6

13

8
= 1.625

21

13
= 1.61538...

It appears that these ratios are approaching the golden ratio. In fact, these
ratios actually do converge exactly to the golden ratio (see [25] for a proof).

Exercise 1.3.4. Find five objects in your environment that have dimensions
given by two succeeding terms in the Fibonacci sequence. For example, a simple
3x5 index card is close to being a golden rectangle as 5

3 is one of our Fibonacci
ratios. Once you start looking, you will be amazed at how many simple, everyday
objects are nearly golden.

Project Report

This ends the exploratory phase of this project. Now it is time for the ex-
planation phase—the final project report. The report should be carefully
written and should include three main components: an introduction, a sec-
tion discussing results, and a conclusion.

The introduction should describe what was to be accomplished in the
project. It should focus on one or two major themes or ideas that were
explored.

The main body of the report will necessarily be composed of the results
of your investigation. This will include a summary of the constructions you
carried out. This should not be a verbatim list or recipe of what you did,
but rather a general discussion of what you were asked to construct and
what you discovered in the process. Also, all results from exercises should
be included in this section.
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The conclusion of the report should document what you learned by doing
the project and also include any interesting ideas or conjectures that you
came up with while doing the project.

1.4 The Rise of the Axiomatic Method

In the last section we looked at the ancient Greeks’ search for the perfect
harmony of proportion. In this section we consider another example of the
Greeks’ quest for perfection—that of perfection of reasoning. This quest
culminated in the creation of a pattern of reasoning called the axiomatic
method.

The axiomatic method is based on a system of deductive reasoning. In
a deductive system, statements used in an argument must be derived, or
based upon, prior statements used in the argument. These prior statements
must themselves be derived from even earlier statements, and so on. There
are two logical traps that one can fall into in such a system.

First, there is the trap of producing a never-ending stream of prior state-
ments. Consider, for example, the definition of a word in the dictionary. If
we want to define a word like orange we need to use other words such as fruit
and round. To define fruit we need to use seed, and so forth. If every word
required a different word in its definition, then we would need an infinite
number of words in the English language!

Second, there is the trap of circular reasoning. In some dictionaries a line
is defined as a type of curve, and a curve is defined as a line that deviates
from being straight.

The Greeks recognized these traps and realized that the only way out of
these logical dilemmas was to establish a base of concepts and statements
that would be used without proof. This base consisted of undefined terms
and postulates/axioms.

Undefined terms were those terms that would be accepted without any
further definition. For example, in the original formulation of Euclid’s ge-
ometry, the terms breadth and length are undefined, but a line is defined as
“breadth-less length.” One may argue whether this is a useful definition of
a line, but it does allow Euclid to avoid an infinite, or circular, regression of
definitions. In modern treatments of Euclidean geometry, the terms point
and line are typically left undefined.

A postulate or axiom is a logical statement about terms that is accepted
as true without proof. To the Greeks, postulates referred to statements
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about the specific objects under study and axioms (or common notions)
referred to more universal statements about general logical systems. For
example, the statement “A straight line can be drawn from any point to
any point” is the first of Euclid’s five postulates; whereas the statement “If
equals be added to equals, the wholes are equal” is one of Euclid’s axioms.
The first is a statement about the specifics of a geometric system and the
second is a general logical statement. In modern mathematical axiomatic
systems, there is no distinction between these two types of mutually accepted
statements, and the terms axiom and postulate are used interchangeably to
refer to a statement accepted without proof.

Starting from a base of undefined terms and agreed upon axioms, we can
define other terms and use our axioms to argue the truth of other statements.
These other statements are called the theorems of the system. Thus, our
deductive system consists of four components:

1. Undefined Terms

2. Axioms (or Postulates)

3. Defined Terms

4. Theorems

A system comprising these four components, along with some basic rules
of logic, is an axiomatic system. (In Appendix A there is a complete listing
of the axiomatic system Euclid used at the start of his first book on plane
geometry.)

One way to think about an axiomatic system is by analogy with playing
a game like chess. We could consider the playing pieces (as black and white
objects) and the chessboard as undefined parts of the game. They just
exist and we use them. A particular playing piece, for example the bishop,
would be a defined term, as it would be a special kind of playing piece.
The rules of chess would be axioms. The rules are the final say in what is
allowed and what is not allowed in playing the game. Everyone (hopefully)
agrees to play by the rules. Once the game starts, a player moves about the
board, capturing his or her opponent’s pieces. A particular configuration
of the game, for example with one player holding another player in check,
would be like a theorem in the game in that it is derived from the axioms
(rules), using the defined and undefined terms (pieces) of the game, and it
is a configuration of the game that can be verified as legal or not, using the
rules. For example, if we came upon a chessboard set up in the starting
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position, but with all of a player’s pawns behind all of the other pieces, we
could logically conclude that this was not a legal configuration of the game.

It is actually very useful to have a game analogy in mind when working in
an axiomatic system. Thinking about mathematics and proving theorems is
really a grand game and can be not only challenging and thought-provoking
like chess, but equally as enjoyable and satisfying.

As an example of playing the axiomatic game, suppose that we had a
situation where students enrolled in classes. Students and classes will be left
as undefined terms as it is not important for this game what they actually
mean. Suppose we have the following rules (axioms) about students and
classes.

A1 There are exactly three students.

A2 For every pair of students, there is exactly one class in which they
are enrolled.

A3 Not all of the students belong to the same class.

A4 Two separate classes share at least one student in common.

What can be deduced from this set of axioms? Suppose that two classes
shared more than one student. Let’s call these classes C1 and C2. If they
share more than one student—say students A and B are in both classes—
then we would have a situation where A and B are in more than one class.
This clearly contradicts the rule we agreed to in Axiom 2, that two students
are in one and only one class. We will use a rule of logic that says that
an assumption that contradicts a known result or an axiom cannot be true.
The assumption that we made was that two classes could share more than
one student. The conclusion we must make is that this assumption is false,
and so two classes cannot share more than one student.

By Axiom 4 we also know that two separate classes share at least one
student. Thus, two separate classes must have one and only one student
in common. We can write these results down as a theorem. The set of
explanations given above is called a proof of the theorem.
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Theorem 1.1. Two separate classes share one and only one student in
common.

Here are a couple more results using our axiomatic system:

Theorem 1.2. There are exactly three classes in our system.

Proof: By Axiom 2 we know that for each pair of students, there is a
class. By Axiom 3 all three students cannot be in a common class. Thus,
there must be at least three classes, say C1, C2, C3, as there are three dif-
ferent pairs of students. Suppose there is a fourth class, say C4. By the
theorem just proved, there must be a student shared by each pairing of C4

with one of the other three classes. So C4 has at least one student. It cannot
contain all three students by Axiom 3. Also, it cannot have just one student
since if it did, then classes C1, C2, and C3 would be forced by Axiom 4 to
share this student and, in addition, to have three other, different students
among them, because the three classes must have different pairs of students.
This would mean that there are at least four students and would contradict
Axiom 1. Thus, C4 must have exactly two students. But, since this pair
of students must already be in one of the other three classes, we have a
contradiction to Axiom 2. Thus, there cannot be a fourth class. 2

Theorem 1.3. Each class has exactly two students.

Proof: By the previous theorem we know that there are exactly three
classes. By Axiom 4 we know that there is at least one student in a class.
Suppose a class had just one student, call this student S. All classes would
then have student S by Axiom 4. The other two students are in some class,
call it class X, by Axiom 2. Class X must then have all three students as it
also needs to have student S, the student common to all three classes. But,
this contradicts Axiom 3. Thus, all classes must have at least two students
and by Axiom 3 must have exactly two students. 2

It is important to point out that the precise meaning of the terms stu-
dents and classes is not important in this system. We could just as well have
used the following axiom set:

A1 There are exactly three snarks.

A2 For every pair of snarks, there is exactly one bittle.

A3 Not all of the snarks belong to the same bittle.

A4 Two separate bittles have at least one snark in common.
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By changing the labels in the theorems above, we would get equivalent
theorems about snarks and bittles. The point of this silly little aside is that
we are concerned about the relationships and patterns among the objects in
an abstract axiomatic system and not about the objects themselves. This is
the great insight of the Greeks—that it is the relationships that matter and
not how we apply those relationships to objects.

The insistence on proofs in formal axiomatic mathematics can seem, at
times, to be a tedious exercise in belaboring the obvious. This sentiment
is actually as old as Greek geometry itself. J. L. Heilbron, in [20] describes
how the Greek philosopher Epicurus (341–270 BC) criticized Euclid’s proof
that no side of a triangle can be longer than the sum of the other two sides.
As Epicurus stated, “It is evident even to an ass.” For if a donkey wanted
to travel to a bale of hay, it would go directly there along a line and not go
through any point not on that line (Fig. 1.5).

Donkey Hay Bale

Fig. 1.5 Donkey Geometry

But, the Greek geometer Proclus (411–485 AD) refuted this criticism by
arguing that something that seems evident to our senses cannot be relied on
for scientific investigation. By training our minds in the most careful and
rigorous forms of reasoning abstracted from the real world, we are preparing
our minds for the harder task of reasoning about things that we cannot
perceive. For Proclus, this type of reasoning “arouses our innate knowledge,
awakens our intellect, purges our understanding, brings to light the concepts
that belong essentially to us, takes away the forgetfulness and ignorance that
we have from birth, and sets us free from the bonds of unreason” [20, page 8].

One clear illustration of Proclus’ point is the development of modern
views on the nature of the universe. From the time of Euclid, mathemati-
cians believed that the universe was flat, that it was essentially a three-
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dimensional version of the flat geometry Euclid developed in the plane. In
fact, Euclidean geometry was considered the only possible axiomatic geomet-
ric system. This was a reasonable extrapolation from these mathematicians’
experience of the world. However, in the nineteenth century, a revolution
occurred in the way mathematicians viewed geometry. Non-Euclidean ge-
ometries were developed that were just as logically valid as Euclidean geom-
etry. The notion of a curved universe was now mathematically possible, and
in 1854 George Frederich Riemann (1826–1866) set out the basic mathemat-
ical principles for analyzing curved spaces of not just three dimensions, but
arbitrary dimensions. This mathematical theory must have seemed incredi-
bly wild and impractical to non-mathematicians. However, the groundwork
laid by Riemann was fundamental in Einstein’s development of the theory
of relativity and in his view of space-time as a four-dimensional object.

This revolution in the axiomatic basis of geometry laid the groundwork
for a movement to formalize the foundations of all of mathematics. This
movement reached its peak in the formalist school of the late 1800s and
early 1900s. This school was led by David Hilbert (1862–1943) and had as
its goal the axiomatic development of all of mathematics from first princi-
ples. Hilbert’s Grundlagen der Geometrie, published in 1899, was a careful
development of Euclidean geometry based on a set of 21 axioms.

Exercise 1.4.1. Trace the following words through a dictionary until a circular
chain of definitions has been formed for each: power, straight, real (e.g., power -
strength - force - power). Why must dictionary definitions be inherently circular?

Exercise 1.4.2. In the game of Nim, two players are given several piles of coins,
each pile having a finite number of elements. On each turn a player picks a pile and
removes as many coins as he or she wants from that pile but must remove at least
one coin. The player who picks up the last coin wins. (Equivalently, the player
who no longer has coins to pick up loses.) Suppose that there are two piles with
one pile having more coins than the other. Show that the first player to move can
always win the game.

Exercise 1.4.3. Consider a system where we have children in a classroom choos-
ing different flavors of ice cream. Suppose we have the following axioms:

A1 There are exactly five flavors of ice cream: vanilla, chocolate, strawberry,
cookie dough, and bubble gum.

A2 Given any two different flavors, there is exactly one child who likes these
two flavors.

A3 Every child likes exactly two different flavors among the five.

How many children are there in this classroom? Prove your result.
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Exercise 1.4.4. Using the ice cream axiom system, show that any pair of children
likes at most one common flavor.

Exercise 1.4.5. In the ice cream system, show that for each flavor there are
exactly four children who like that flavor.

One of the most universal of abstract mathematical structures is that of
a group. A group G consists of a set of undefined objects called elements
and a binary operation “◦” that relates two elements to a third. The axioms
for a group are

A1 For all elements x and y, the binary operation on x, y is again an
element of G. That is, for all x, y ∈ G, x ◦ y ∈ G.

A2 For all x, y, z ∈ G, (x ◦ y) ◦ z = x ◦ (y ◦ z). That is, the binary
operation is associative.

A3 There is a special element e ∈ G such that x ◦ e = x for all x ∈ G.
The element e is called the identity of G.

A4 Given x ∈ G, there is an element x−1 ∈ G such that x ◦ x−1 = e.
The element x−1 is called the inverse to x.

Exercise 1.4.6. Show that if x, y, z ∈ G and x ◦ z = y ◦ z, then x = y.

Exercise 1.4.7. Show that the binary operation is commutative with the identity.
That is, show that for all x ∈ G, we have x ◦ e = e ◦ x. [Hint: Be careful—you may
use only the four axioms and the previous exercise.]

Exercise 1.4.8. Show that a group G can have only one identity.

In 1889 Giuseppe Peano (1858–1932) published a set of axioms, now
known as the Peano axioms, as a formal axiomatic basis for the natural
numbers. Peano was one of the first contributors to the modern axiomatic
and formalist view, and his system included five axioms based on the unde-
fined terms natural number and successor. We will let N stand for the set
of all natural numbers in the following listing of Peano’s axioms.

A1 1 is a natural number.

A2 Every natural number x has a successor (which we will call x′) that
is a natural number, and this successor is unique.

A3 No two natural numbers have the same successor. That is, if x, y are
natural numbers, with x 6= y, then x′ 6= y′.
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A4 1 is not the successor of any natural number.

A5 Let M be a subset of natural numbers with the property that

(i) 1 is in M .

(ii) Whenever a natural number x is in M , then x′ is in M .

Then, M must contain all natural numbers, that is, M = N .

Exercise 1.4.9. The fifth Peano axiom is called the Axiom of Induction. Let M
be the set of all natural numbers x for which the statement x′ 6= x holds. Use the
axiom of induction to show that M = N , that is, x′ 6= x for all natural numbers x.

Exercise 1.4.10. Must every natural number be the successor of some number?
Clearly, this is not the case for 1 (why not?), but what about other numbers?
Consider the statement “If x 6= 1, then there is a number u with u′ = x.” Let M be
the set consisting of the number 1 plus all other x for which this statement is true.
Use the axiom of induction to show that M = N and, thus, that every number
other than 1 is the successor of some number.

Exercise 1.4.11. Define addition of natural numbers as follows:

• For every x, define x+ 1 = x′.

• For every x and y, define x+ y′ = (x+ y)′.

Show that this addition is well-defined. That is, show that for all x and w, the
value of x+ w is defined. [Hint: You may want to use induction.]

Exercise 1.4.12. Think about how you might define multiplication in the Peano
system. Come up with a two-part definition of multiplication of natural numbers.

Exercise 1.4.13. Hilbert once said that “mathematics is a game played according
to certain simple rules with meaningless marks on paper.” Lobachevsky, one of the
founders of non-Euclidean geometry, once said, “There is no branch of mathematics,
however abstract, which may not someday be applied to phenomena of the real
world.” Discuss these two views of the role of mathematics. With which do you
most agree? Why?

Exercise 1.4.14. Historically, geometry had its origins in the empirical explo-
ration of figures that were subsequently abstracted and proven deductively. Imagine
that you are designing the text for a course on geometry. What emphasis would
you place on discovery and empirical testing? What emphasis would you place on
the development of proofs and axiomatic reasoning? How would you balance these
two ways of exploring geometry so that students would become confident in their
ability to reason logically, yet also gain an intuitive understanding of the material?
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1.5 Properties of Axiomatic Systems

In this section we will look a bit deeper into the properties that characterize
axiomatic systems. We will look at the axiomatic structure itself and at its
properties.

In the last section, we looked at an axiomatic system consisting of classes
and students. We saw that we could re-label these terms as snarks and
bittles without any real change in the structure of the system or in the
relationships between the terms of the system. In an axiomatic system, it
does not matter what the terms represent. The only thing that matters
is how the terms are related to each other. By giving the terms a specific
meaning, we are creating an interpretation of the axiomatic system.

Suppose in our example of the last section that we replaced class and
student by line and point. Also, suppose that we interpret line to be one
of the three segments shown below, and point to be any one of the three
endpoints of the segments, as shown in Fig. 1.6.

B C

A

Fig. 1.6 Three-Point Geometry

Then, our axioms would read as follows:

A1 There are exactly three points.

A2 Two distinct points belong to one and only one line.

A3 Not all of the points belong to the same line.

A4 Two separate lines have at least one point in common.
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We should check that our axioms still make correct sense with this new
interpretation and they do. In our new interpretation, the theorems above
now say that there are exactly three lines, each pair of lines intersects in
exactly one point, and each line has exactly two points, as can be seen in
Fig. 1.6. This system is called Three-Point geometry.

This new interpretation of our original axiomatic system is called a model
of the system.

Definition 1.1. A model is an interpretation of the undefined terms of an
axiomatic system such that all of the axioms are true statements in this new
interpretation.

In any model of an axiomatic system, all theorems in that system are
true when interpreted as statements about the model. This is the great
power of the axiomatic method. A theorem of the abstract system needs to
be proved once, but can be interpreted in a wide variety of models.

Three important properties of an axiomatic system are consistency, in-
dependence, and completeness.

1.5.1 Consistency

Consider the following axiomatic system:

A1 There are exactly three points.

A2 There are exactly two points.

One may consider this a rather stupid system, and rightly so. It is
basically useless as Axiom 1 contradicts Axiom 2. It would be impossible to
logically deduce theorems in this system as we start out with a fundamental
contradiction. The problem here is that this system is inconsistent. One
may argue that to avoid creating an inconsistent system, we just need to
choose axioms that are not self-contradictory. This is not always easy to
do. It may be the case that the axioms look fine, but there is some theorem
that contradicts one of the axioms. Or, perhaps two theorems contradict
one another. Any of these situations would be disastrous for the system.

Definition 1.2. An axiomatic system is consistent if no two statements
(these could be two axioms, an axiom and theorem, or two theorems) con-
tradict each other.
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To determine whether an axiomatic system is consistent, we would have
to examine every possible pair of axioms and/or theorems in the system. In
systems such as Euclidean geometry, this is not possible. The best we can
do is to show relative consistency. If we can find a model for a system—let’s
call it system A—that is embedded in another axiomatic system B, and if we
know that system B is consistent, then system A must itself be consistent.
For, if there were two statements in A that were contradictory, then this
would be a contradiction in system B, when interpreted in the language of B.
But, B is assumed consistent, so there can be no contradictory statements
in B.

If we believe that Euclidean geometry is consistent, then the axiomatic
system for classes and students we have described must be consistent as it
has a model (Three-Point geometry) that is embedded in Euclidean geome-
try.

1.5.2 Independence

Definition 1.3. An individual axiom in an axiomatic system is called in-
dependent if it cannot be proved from the other axioms.

For example, consider the following system for points and lines:

A1 There are exactly three points.

A2 Two distinct points belong to one and only one line.

A3 Not all of the points belong to the same line.

A4 Two separate lines have at least one point in common.

A5 A line has exactly two points.

In the preceding section, we saw that Axiom 5 could be proved from the
first four. Thus, Axiom 5 is not independent. While this axiomatic system
would be perfectly fine to use (it is just as consistent as the original), it is not
as economical as it could be. A system with numerous axioms is difficult
to remember and confusing to use as a basis for proving theorems. Just
as physicists search for the most simple and elegant theories to describe the
structure of matter and the evolution of the universe, so too mathematicians
search for the most concise and elegant basis for the foundations of their
subject. However, it is often the case that the more compact an axiomatic
system is, the more work has to be done to get beyond elementary results.
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How do we show an axiom is independent of the other axioms in an ax-
iomatic system? Suppose that we could find a model for a system including
Axiom X. Suppose additionally that we could find a model for the system
where we replaced Axiom X by its logical negation. If both models are
consistent then Axiom X must be independent of the other axioms. For if
it were dependent, then it would have to be provably true from the other
axioms and its negation would have to be provably false. But, if consistent
models exist with both X and the negation of X valid, then X must be
independent of the other axioms.

As an example, consider the system for Three-Point geometry. Suppose
we replaced Axiom 3 with “All of the points belong to the same line.” A
model for this would be just a line with three points. This would clearly
be consistent with the first two axioms. Since there is only one line in the
system, Axiom 4 would be vacuously true. (Here we use the logical rule
that a statement is true if the hypothesis, the existence of two lines in this
case, is false.) Thus, we can say that Axiom 3 is independent of Axioms 1,
2, and 4.

1.5.3 Completeness

The last property we will consider is that of completeness.

Definition 1.4. An axiomatic system is called complete if it is impossible
to add a new consistent and independent axiom to the system. The new
axiom can use only defined and undefined terms of the original system.

An equivalent definition would be that every statement involving defined
and undefined terms is provably true or false in the system. For if there were
a statement that could not be proved true or false within the system, then it
would be independent of the system, and we could add it to get an additional
axiom.

As an example consider the following system for points and lines:

A1 There are exactly three points.

A2 Two distinct points belong to one and only one line.

Now consider the additional statement “Not all of the points belong to
the same line.” (This is our original Axiom 3 from the last section.) We
have already looked at a consistent model for this larger system. Now,
consider the logical opposite of this statement: “All of the points belong
to the same line.” A consistent model for a system with axioms A1, A2,
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and this additional statement is that of three points on a line. Thus, the
statement “Not all of the points belong to the same line” is not provably
true or false within the smaller system consisting of just axioms A1 and A2,
and this smaller system cannot be complete.

What of the four axioms for Three-Point geometry? Do they form a
consistent system? Suppose we label the points A,B,C. We know from
Theorem 1.2 and Theorem 1.3 in section 1.4 that there must be exactly three
lines in Three-Point geometry and that each line has exactly two points. The
three lines can then be symbolized by pairs of points: (A,B), (A,C), (B,C).

Suppose we had another model of Three-Point geometry with points
L,M,N . Then, we could create a one-to-one correspondence between these
points and the points A,B,C so that the lines in the two models could be
put into one-to-one correspondence as well. Thus, any two models of this
system are essentially the same, or isomorphic; one is just a re-labeling of the
other. This must mean that the axiomatic system is complete. For if it were
not complete, then a statement about points and lines that is independent
of this system could be added as a new axiom. If this were the case, we
could find a consistent model not only for this new augmented system, but
also for the system we get by adding the negation of this new axiom, and
obviously these two models could not be isomorphic.

An axiomatic system is called categorical if all models of that system
are isomorphic to one other. Thus, Three-Point geometry is a categorical
system. In Chapters 7 and 8 we will see a much more powerful display of
this idea of isomorphism of systems when we look in detail at the system of
non-Euclidean geometry called Hyperbolic Geometry.

1.5.4 Gödel’s Incompleteness Theorem

We cannot leave the subject of completeness without taking a side-trip into
one of the most amazing results in modern mathematics—the Incomplete-
ness Theorem of Kurt Gödel.

At the second International Congress of Mathematics, held in Paris in
1900, David Hilbert presented a lecture entitled “Mathematical Problems”
in which he listed 23 open problems that he considered critical for the devel-
opment of mathematics. Hilbert was a champion of the formalist school of
thinking in mathematics, which held that all of mathematics could be built
as a logical axiomatic system.

Hilbert’s second problem was to show that the simplest axiomatic sys-
tem, the natural numbers as defined by Peano, was consistent; that is, the
system could not contain theorems yielding contradictory results.
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Ten years after Hilbert posed this challenge to the mathematical com-
munity, Bertrand Russell (1872–1970) and Alfred North Whitehead (1861–
1947) published the first volume of the Principia Mathematica, an ambitious
project to recast all of mathematics as an expression of formal logic. This
line of reasoning has become known as logicism. Russell and Whitehead suc-
ceeded in deriving set theory and natural number arithmetic from a formal
logical base, yet their development still begged the question of consistency.
However, the Principia was very influential in that it showed the power of
formal logical reasoning about mathematics.

In 1931, an Austrian mathematician named Kurt Gödel (1906–1978)
published a paper titled “On Formally Undecidable Propositions of Prin-
cipia Mathematica and Related Systems” in the journal Monatshefte für
Mathematik und Physik. In this paper Gödel used the machinery of formal
logic to show the impossibility of the universalist approach taken by the
formalists and the logicists. This approach had as its goal the development
of consistent and complete systems for mathematics.

To address the question of consistency, Gödel showed the following result:

Theorem 1.4. Given a consistent axiomatic system that contains the nat-
ural number system, the consistency of such a system cannot be proved from
within the system.

Thus, Hilbert’s second problem is impossible! If one built a formal sys-
tem, even one based on pure logic like Whitehead and Russell, then Gödel’s
theorem implies that it is impossible to show such a system has no internal
contradictions.

Even more profound was the following result of Gödel’s on the complete-
ness of systems:

Theorem 1.5 (Incompleteness Theorem). Given a consistent axiomatic
system that contains the natural number system, the system must contain
undecidable statements, that is, statements about the terms of the system
that are neither provable nor disprovable.

In other words, a system sufficiently powerful to handle ordinary arith-
metic will necessarily be incomplete! This breathtaking result was revo-
lutionary in its scope and implication. It implied that there might be a
simple statement in number theory that is undecidable, that is impossible
to prove true or false. Even with this disturbing possibility, most mathe-
maticians have accepted the fact of incompleteness and continue to prove
those theorems that are decidable.
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Now that we have reviewed most of the important features of axiomatic
systems, we will take a closer look in the next section at the first, and
for most of history the most important, axiomatic system—that of Euclid’s
geometry.

Exercise 1.5.1. Consider sets as collections of objects. If we allow a set to
contain objects that are themselves sets, then a set can be an element of another
set. For example, if sets A,B are defined as A = {{a, b}, c} and B = {a, b}, then
B is an element of A. Now, it may happen that a set is an element of itself! For
example, the set of all mathematical concepts is itself a mathematical concept.

Consider the set S which consists only of those sets which are not elements of
themselves. Can an axiomatic system for set theory, that allows the existence of S,
be a consistent system? [Hint: Consider the statement “S is an element of itself.”]
The set S has become known as the Russell Set in honor of Bertrand Russell.

Exercise 1.5.2. Two important philosophies of mathematics are those of the
platonists and the intuitionists. Platonists believe that mathematical ideas actually
have an independent existence and that a mathematician only discovers what is
already there. Intuitionists believe that we have an intuitive understanding of
the natural numbers and that mathematical results can and should be derived by
constructive methods based on the natural numbers, and such constructions must
be finite.

Of the four main philosophies of mathematics—platonism, formalism, logicism,
and intuitionism—which most closely matches the way you view mathematics?
Which is the prevalent viewpoint taken in the teaching of mathematics?

Exercise 1.5.3. Gödel’s Incompleteness Theorem created a revolution in the
foundations of mathematics. It has often been compared to the discovery of in-
commensurable magnitudes by the Pythagoreans in ancient Greece. Research the
discovery of incommensurables by the Pythagoreans and compare its effect on Greek
mathematics with the effect of Gödel’s theorem on modern mathematics.

The exercises that follow deal with various simple axiomatic systems.
To gain facility with the abstract notions of this section, carefully work out
these examples.

In Four-Point geometry we have the same types of undefined terms as
in Three-Point geometry, but the following axioms are used:

A1 There are exactly four points.

A2 Two distinct points belong to one and only one line.

A3 Each line has exactly two points belonging to it.

Exercise 1.5.4. Show that there are exactly six lines in Four-Point geometry.
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Exercise 1.5.5. Show that each point belongs to exactly three lines.

Exercise 1.5.6. Show that Four-Point geometry is relatively consistent to Eu-
clidean geometry. [Hint: Find a model.]

Exercise 1.5.7. A regular tetrahedron is a polyhedron with four sides being
equilateral triangles (pyramid-shaped). If we define a point to be a vertex of the
tetrahedron and a line to be an edge, will the tetrahedron be a model for Four-Point
geometry? Why or why not?

Exercise 1.5.8. Consider an axiomatic system that consists of elements in a set
S and a set P of pairings of elements (a, b) that satisfy the following axioms:

A1 If (a, b) is in P , then (b, a) is not in P .

A2 If (a, b) is in P and (b, c) is in P , then (a, c) is in P .

Let S = {1, 2, 3, 4} and P = {(1, 2), (2, 3), (1, 3)}. Is this a model for the
axiomatic system? Why or why not?

Exercise 1.5.9. In the previous problem, let S be the set of real numbers and
let P consist of all pairs (x, y) where x < y. Is this a model for the system? Why
or why not?

Exercise 1.5.10. Use the results of the previous two exercises to argue that the
axiomatic system with sets S and P is not complete. Think of another independent
axiom that could be added to the axioms in Exercise 1.5.8, for which S and P from
Exercise 1.5.8 is still a model, but S and P from Exercise 1.5.9 is not a model.

1.6 Euclid’s Axiomatic Geometry

The system of deductive reasoning begun in the schools of Thales and
Pythagoras was codified and put into definitive form by Euclid (ca. 325–
265 BC) around 300 BC in his 13-volume work Elements. Euclid was a
scholar at one of the great schools of the ancient world, the Museum of
Alexandria, and was noted for his lucid exposition and great teaching abil-
ity. The Elements were so comprehensive in scope that this work superseded
all previous textbooks in geometry.

What makes Euclid’s exposition so important is its clarity. Euclid begins
Book I of the Elements with a few definitions, a few rules of logic, and ten
statements that are axiomatic in nature. Euclid divides these into five geo-
metric statements which he calls postulates, and five common notions. These
are listed in their entirety in Appendix A. We will keep Euclid’s terminology
and refer to the first five axiomatic statements—those that specifically deal
with the geometric basis of his exposition—as postulates.
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1.6.1 Euclid’s Postulates

Euclid I To draw a straight line from any point to any point.

Euclid II To produce a finite straight line continuously in a straight
line.

Euclid III To describe a circle with any center and distance (i.e., ra-
dius).

Euclid IV That all right angles are equal to each other.

Euclid V If a straight line falling on two straight lines makes the in-
terior angles on the same side less than two right angles, the
two straight lines, if produced indefinitely, meet on that side on
which are the angles less than the two right angles.

The first three postulates provide the theoretical foundation for con-
structing figures based on a hypothetically perfect straightedge and compass.
We will consider each of these three in more detail, taking care to point out
exactly what they say and what they do not say.

The first postulate states that given two points, one can construct a line
connecting these points. Note, however, that it does not say that there is
only one line joining two points.

The second postulate says that finite portions of lines (i.e., segments)
can be extended. It does not say that lines are infinite in extent, however.

The third postulate says that given a point and a distance from that
point, we can construct a circle with the point as center and the distance
as radius. Here, again, the postulate does not say anything about other
properties of circles, such as continuity of circles.

As an example of Euclid’s beautiful exposition, consider the very first
theorem of Book I of the Elements. This is the construction of an equilateral
triangle on a segment AB (Fig. 1.7). The construction goes as follows:

1. Given segment AB.

2. Given center A and distance equal to the length of AB, construct
circle c1. (This is justified by Postulate 3.)

3. Given center B and distance equal to the length of BA, construct
circle c2. (This is justified by Postulate 3.)

4. Let C be a point of intersection of circles c1 and c2.
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5. Construct segments from A to C, from C to B, and from B to A.
(This is justified by Postulate 1.)

6. Since AC and AB are radii of circle c1, and CB and AB are radii of
c2, then AC and CB are both equal to AB and, thus, must be equal
to one another. (This is justified by use of the Common Notions.)

7. By definition, then, triangle ABC is equilateral.

A B

c1
c2

C

Fig. 1.7 Euclid Book I, Proposition I

The proof is an almost perfect example of a well-written mathematical
argument. Euclid takes care to justify the steps in the construction in terms
of the initial set of five postulates and five common notions, except for the
step where the intersection point of the two circles is found. Euclid here
assumed a principle of continuity of circles. That is, since circle c1 has points
inside and outside of another circle (c2), then the two circles must intersect
somewhere. In other words, there are no holes in the circles. To make this
proof rigorous, we would have to add a postulate on circle continuity, or
prove circle continuity as a consequence of the other five postulates.

We can see that from the very first proposition, Euclid was not logically
perfect. Let’s look at the last two postulates of Euclid.

Whereas the first three postulates are ruler and compass statements, the
fourth postulate says that the rules of the game we are playing do not change
as we move from place to place. In many of Euclid’s theorems, he moves
parts of figures on top of other figures. Euclid wants an axiomatic basis by
which he can assume that segment lengths and angles remain unchanged
when moving a geometric figure. In the fourth postulate, Euclid is saying
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that, at least, right angles are always equal no matter what configuration
they are in.

In many of his proofs, Euclid assumes much more than Postulate 4 guar-
antees. For example, in his proof of the Side-Angle-Side Congruence Theo-
rem for triangles, Euclid starts with two triangles ABC and DEF with AB
congruent to DE, AC congruent to DF , and angle A congruent to angle D,
as shown in Fig. 1.8. (For the time being, assume congruent to mean equal
in magnitude.)

A

B

C

D

E

F

Fig. 1.8 Euclid SAS Theorem

Euclid proceeds by moving angle A on top of angle D. Then, he says
that since two sides are congruent and the angles at A and D are congruent,
then point B must move to be on top of point E and point C must move to
be on top of point F . Thus, the two triangles have to be congruent.

The movement or transformation of objects was not on a solid logical
basis in Euclid’s geometry. Felix Klein, in the late 1800s, developed an
axiomatic basis for Euclidean geometry that started with the notion of an
existing set of transformations and then constructed geometry as the set of
figures that are unchanged by those transformations. We will look at trans-
formations and transformational geometry in greater detail in Chapter 5.

The final postulate seems very different from the first four. Euclid himself
waited until Proposition 29 of Book I before using the fifth postulate as a
justification step in the proof of a theorem. Euclid’s fifth postulate is often
referred to as the parallel postulate, even though it is actually more of an
“anti-parallel” postulate as it specifies a sufficient condition for two lines to
intersect.

From the time of Euclid, the fifth postulate’s axiomatic status has been
questioned. An axiom should be a statement so obvious that it can be
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accepted without proof. The first four of Euclid’s postulates are simple
statements about the construction of figures, statements that resonate with
our practical experience. We can draw lines and circles and can measure
angles. However, we cannot follow a line indefinitely to see if it intersects
another line.

Many mathematicians tried to find simpler postulates, ones that were
more intuitively believable, to replace Euclid’s fifth postulate, and then
prove the postulate as a theorem. Others tried to prove Euclid’s fifth pos-
tulate directly from the first four. That is, they tried to show that the fifth
postulate was not independent of the other four.

One of the attempts to find a simpler postulate for Euclid’s fifth was that
of John Playfair (1748–1819). His substitute can be expressed as follows:

Given a line and a point not on the line, it is possible to construct
one and only one line through the given point parallel to the line.

This statement, which has become known as Playfair’s Postulate, is cer-
tainly easier to read and understand when compared to Euclid’s fifth pos-
tulate. However, it is not hard to show that this statement is logically
equivalent to Euclid’s fifth postulate and, thus, does not really simplify Eu-
clid’s system at all. A full discussion of this and other statements about
parallelism can be found in the next chapter.

Other mathematicians tried to prove that Euclid’s fifth postulate was
actually a theorem that could be derived from the first four postulates. A
popular method of attack was to assume the logical opposite of Euclid’s fifth
postulate and try to prove this new statement false, or find a contradiction to
an already accepted result. Amazingly, no one could prove that the negation
of the fifth postulate was false or produced a contradiction.

In hindsight, this persistent lack of success would seem to imply that
there could be consistent non-Euclidean geometries, obtained by replacing
the fifth postulate by its opposite. However, this possibility ran counter to
the generally held belief that Euclidean geometry was the only consistent
geometry possible. This belief had been a bedrock of philosophy from the
time of Euclid, and it was not until the 1800s that non-Euclidean geome-
try was fully explored. Even then, Carl Frederich Gauss (1777–1855), who
was undoubtedly the first to recognize the consistency of non-Euclidean ge-
ometry, refrained from publishing results in this area. It wasn’t until the
work of Janos Bolyai (1802–1860) and Nicolai Lobachevsky (1793–1856) that
theorems resulting from non-Euclidean replacements for Euclid’s fifth pos-
tulate appeared in print. We will look at the fascinating development of
non-Euclidean geometry in more detail in Chapter 7.
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To end this discussion of Euclid’s original axiomatic system, let’s consider
the system in terms of the properties discussed in the last section. Perhaps
the most important question is whether this system is complete. A careful
reading of the postulates shows that Euclid assumed the existence of points
with which to construct his geometry. However, none of the postulates
implies that points exist! For example, the statement “There exists at least
two points” cannot be proven true or false from the other postulates. Thus,
Euclid’s axiomatic system is not complete.

Euclid’s work contains quite a few hidden assumptions that make his
axiomatic system far from complete. However, we should not be too hard
on Euclid. It was only in the late 1800s that our modern understanding of
abstract axiomatic systems and their properties was developed. No theo-
rem that Euclid included in the Elements has ever been shown to be false,
and various attempts to provide better axioms for Euclidean geometry have
served to shore up the foundations of the subject, but the results that Euclid
proved thousands of years ago are just as true today.

The first geometric axiomatic system to be shown logically consistent
(at least relative to the consistency of natural number arithmetic) was the
system developed by David Hilbert in 1899 [21]. Other modern axiomatic
systems for geometry have been developed since then and it would be in-
teresting to compare and contrast these. However, having a good axiomatic
foundation is only the first step in exploring geometry. One must also do
geometry, that is, one must experiment with geometric concepts and their
patterns and properties. In the next chapter we will start with a basic set
of geometric results and assumptions that will get us up and running in the
grand game of Euclidean geometry.

Exercise 1.6.1. Euclid’s Elements came to be known in Europe through a most
circuitous history. Research this history and describe the importance of Arabic
scholars to the development of Western mathematics of the late Middle Ages.

Exercise 1.6.2. The 13 books of Euclid’s Elements contain a wealth of results
concerning not only plane geometry, but also algebra, number theory, and solid
geometry. Book II is concerned with geometric algebra, algebra based on geometric
figures. For example, the first proposition of Book II is essentially the distributive
law of algebra, but couched in terms of areas. Show, using rectangular areas, how
the distributive law (a(b+ c) = ab+ ac) can be interpreted geometrically.

Exercise 1.6.3. Show how the algebraic identity (a+ b)2 = a2 + 2ab+ b2 can be
established geometrically.

Exercise 1.6.4. Euclid’s Elements culminates in Book XIII with an exploration
of the five Platonic Solids. Research the following questions:



1.6. EUCLID’S AXIOMATIC GEOMETRY 39

• What are the Platonic Solids? Briefly discuss why there are only five such
solids.

• The solids have been known for thousands of years as Platonic solids. What is
the relationship to Plato and how did Plato use these solids in his explanation
of how the universe was constructed?

Exercise 1.6.5. The Elements is most known for its development of geometry,
but the 13 books also contain significant non-geometric material. In Book VII of
the Elements, Euclid explores basic number theory. This book starts out with one
of the most useful algorithms in all of mathematics, the Euclidean Algorithm. This
algorithm computes the greatest common divisor (gcd) of two integers. A common
divisor of two integers is an integer that divides both. For example, 4 is a common
divisor of 16 and 24. The greatest common divisor is the largest common divisor.
The Euclidean Algorithm works as follows:

• Given two positive integers a and b, assume a ≥ b.

• Compute the quotient q1 and remainder r1 of dividing a by b. That is, find
integers q1, r1 with a = q1b + r1 and 0 ≤ r1 < b. If r1 = 0, we stop and b is
the gcd(a, b).

• Otherwise, we find the quotient of dividing b by r1, that is, find q2, r2 with
b = q2r1 + r2 and 0 ≤ r2 < r1. If r2 = 0, we stop and r1 is the gcd(a, b).

• Otherwise, we iterate this process of dividing each new divisor (r1, r2, etc.)
by the last remainder (r2, r3, etc.), until we finally reach a new remainder of
0. The last non-zero remainder is then the gcd of a, b.

Use this algorithm to show that the gcd(36, 123) = 3.

Exercise 1.6.6. Prove that the Euclidean Algorithm works, that it does find the
gcd of two positive integers.

Exercise 1.6.7. Suppose we re-interpreted
the term point in Euclid’s postulates to
mean a point on a sphere and a line to
be a part of a great circle on the sphere.
A great circle is a circle on the sphere
cut by a plane passing through the cen-
ter of the sphere. O BA

Find a ball (beach ball, bowling ball, soccer ball, etc.) and a string and experi-
ment with constructing lines on the sphere. Now, think about how you would define
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a circle on the sphere. Experiment with the string and come up with a definition
of a circle. How would you define an angle?

Show that Euclid’s first four postulates hold in this new spherical geometry, but
that the fifth postulate (or equivalently Playfair’s Postulate) does not hold.

In the following exercises, experiment with spherical geometry to deter-
mine if each statement is most likely true or false in spherical geometry.
Give short explanations (not proofs—we do not yet have the resources to do
proofs in spherical geometry) for your answers.

Exercise 1.6.8. The sum of the angles of a triangle is 180 degrees.

Exercise 1.6.9. Given a line and a point not on the line, there is a perpendicular
to the line through that point.

Exercise 1.6.10. A four-sided figure with three right angles must be a rectangle.

Exercise 1.6.11. One can construct a triangle with three right angles.

1.7 Project 2 - A Concrete Axiomatic System

We have seen that the axioms in an axiomatic system are the state-
ments about the terms of the system that must be accepted without proof.
Axioms are generally statements that are written down at the start of the
development of some mathematical area.

When exploring geometry using Geometry Explorer, there are similarly
constructions and tools that one uses without proof. That is, we draw lines
and circles, find intersections, and construct perpendiculars using the tools
built into the software, assuming that these constructions are valid. We
might say that the abstract Euclidean axiomatic system has been made
concrete within the software world of the program.

When one first starts up the Geometry Explorer program, constructions
are based on the Euclidean axiomatic system. However, there is a second
axiomatic system available for exploration in the program. To explore this
system, start up the program and choose New (File menu). A dialog box
will pop up asking you to specify which type of geometry environment you
wish to work in. Choose “Hyperbolic” and hit “Okay.” A new window will
pop up with a large circle inside. Note that the tools and buttons in this
window are the same as we had in the Euclidean main window (Fig. 1.9).
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Fig. 1.9 A Concrete Axiomatic System

Try creating some segments, lines, rays, and circles using the tools in the
Create panel of buttons.

How is this system like Euclidean geometry and how is it different? Let’s
review Euclid’s first postulate—that between any two points we can draw
a segment. As we experiment with creating segments on the screen, we see
that points in this new geometry are restricted to points within the large
disk. However, it does appear that given any two points in this disk, we can
always create a segment connecting those points. It is true that segments
do not look “normal” in the sense that they are not straight. However, we
must use the axiomatic view in this new geometry. That is, a segment is
whatever gets created when we use the Segment tool. Thus, it appears that
Euclid’s first postulate holds in this new geometry.

Euclid’s second postulate states that segments can always be extended.
Before we explore the validity of this postulate in our new geometry, let’s
consider what is meant by extending segments. In Euclidean geometry we
can extend a segment AB by moving one of the endpoints, say B, a cer-
tain distance in the direction determined by the segment AB. (Think of
the direction as an arrow pointing from A to B.) As has been mentioned
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before, the movement of objects in Euclidean geometry is not specified in
the postulates, but is nevertheless assumed by Euclid in many of his proofs.

We will define a translation of an object to be movement of the object
in a certain direction by a specified distance (or length). The combined
effect of distance along a specified direction is so useful that we will define a
term for it; we will define a vector to be a quantity encapsulating a direction
and length. Thus, a translation is defined by a vector. Also, a vector can
be defined by a segment, with the direction given by the endpoints of the
segment and the length given by the length of the segment.

For example, here we have a seg-
ment AB and another segment CD.
We have translated CD by the vec-
tor determined by AB (i.e., moved
all of the points on CD in the di-
rection from A to B, through a dis-
tance equal to the length of AB).

A

B

C

D

E

F

Can we do this in our new ge-
ometry? Clear the screen (Clear
(Edit menu)) and create two seg-
ments AB and CD on the screen.

A

B

C
D
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We will now define AB as a vec-
tor. Multi-select points A and B (in
that order) and click and hold the
mouse on the button labeled Mark
in the Transform panel of buttons.
A menu will pop down. Choose
Vector to define AB as a vector,
that is a direction and length. A
dialog box will pop up asking for
“Translate Type.” Choose “By two
points.”

Now, we will translate CD by
this vector. Select the segment CD
(click somewhere between C and
D) and then click on the Trans-
late button (first button in first row
of Transform panel) to translate
CD to a new segment EF . Note
that this translation leaves CD un-
changed and translates CD as a
copied segment to its new position.

A

B

C
D

E

F

You may be surprised by the appearance of the translated segment EF .
Its length should be the same as the length of CD (we just picked it up
and moved it), but it looks a lot smaller in the picture above. In your
construction, it may look smaller, the same size, or perhaps larger. But, is
it really different in length? Remember that we have to think about this
system as its own “universe,” where the axioms and definitions of geometric
quantities like length are determined within the system, not by imposing
definitions from outside the system.
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Let’s check the lengths from within
the system. Select segment CD
and choose Length (Measure
menu). Then, select EF and choose
Length (Measure menu).

A

B

C
D

E

F

Length(b) = 1.43

Length(c) = 1.43

Interesting! The length of seg-
ment CD is preserved under trans-
lation. Try moving CD around
and verify that this property per-
sists. Here is a configuration where
the translation looks almost like it
would in Euclidean geometry, with
movement from A to B taking D to
F and C to E. However, other con-
figurations look completely alien to
our usual notions of translation.

A

B

C

D

E

F

Length(b) = 1.43

Length(c) = 1.43

The point of this example is that translation in this strange new geometry
has some properties, like preservation of length, that are just like Euclidean
translations, but in other respects behaves quite differently from Euclidean
translations.

Let’s return to the question of Euclid’s second postulate and whether it
holds in this new geometry.
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Clear the screen (Clear (Edit
menu)) and create a segment AB.
Define AB as a vector, as you did
previously. Then, select B and
translate it to point C by clicking
the Translate button in the Trans-
form panel.

A

B

C

Measure the distance from A to
B and then the distance from B
to C (using Distance (Measure
menu)). Since the translation has
moved point C a certain distance
along the direction from A to B, we
have successfully extended AB.

A

B

C

Dist(A,B) = 1.98

Dist(B,C) = 1.98
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Select segment AB and drag it
to the boundary. Even though it
appears that the points have piled
up at the boundary, point C still
extends beyond AB, as is evident
by the distance measurements.

A
B

C

Dist(A,B) = 1.98

Dist(B,C) = 1.98

Now, let’s consider Euclid’s third postulate on the constructibility of
circles.

Clear the screen (Clear (Edit
menu)) and create a segment AB
and a point C. To construct the
circle of radius equal to the length
of AB having center point C, multi-
select C and the segment and click
on the Circle Constructor button
(second button in second row of the
Construct panel).

A

B

C
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If we drag point C toward the
boundary, we see that the circle
with radius AB still exists, al-
though it doesn’t look like we would
expect it to look. A

B

C

Thus, it appears that circles with any center and any specified length
can be constructed in this geometry.

Let’s now consider the fourth Euclidean axiom—that all right angles are
congruent. Let’s consider not just a right angle, but any angle.

Clear the screen and create a seg-
ment AB near the center of the
disk. Then, create another seg-
ment AC originating from A. Next,
multi-select the points B,A, and C
(in that order) and choose Angle
(Measure menu).

A B

C

Angle(B,A,C) = 43.52 degrees

Note that if you select the points in the reverse order (try it), you will not
have an equivalent angle measure. The reason is that Geometry Explorer
measures angles in an oriented fashion, going counterclockwise. Thus, if
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angle ABC has measure 90 degrees, then angle CBA will have measure 360−
90 = 270 degrees. Be careful to measure angles in the correct orientation as
you do the labs in the text.

Multi-select the three points A, B,
and C and drag the mouse, moving
the angle around the screen. Verify
that movement of the angle has no
effect on the angle measurement.

A

B
C

Angle(B,A,C) = 43.52 degrees

We see that the first four of Euclid’s axioms still hold in this strange
new geometry. What about the parallel axiom?

Clear the screen and create a line
l near the bottom. Then, create
a point P above l. As shown in
the figure at the right, one can cre-
ate many lines through P that do
not intersect l, that is, are parallel
to l. In fact, there should be two
unique parallels through P that are
just parallel to l. These are lines n
and m in the figure.

l

P

m n



1.7. PROJECT 2 - A CONCRETE AXIOMATIC SYSTEM 49

The geometry we have been discussing in this project is called hyperbolic
geometry. From the last construction above on parallel lines we see that Eu-
clid’s fifth postulate does not hold in this geometry, and so we have had our
first exploration of a non-Euclidean geometry. We will cover this geometry
in more depth in Chapter 7.

Exercise 1.7.1. Determine which of the following Euclidean properties holds in
the hyperbolic geometry of Geometry Explorer.

• Rectangles can be constructed. (Try any construction you remember from
high school geometry.)

• The sum of the angles of a triangle is 180 degrees.

• Euclid’s construction of an equilateral triangle.

• Given a line and a point not on the line there is a perpendicular to the line
through that point.

Project Report

Your report should include a general discussion of how this new system of
geometry is similar to Euclidean geometry and how it is different. This
discussion should reference the five postulates as we have explored them in
this chapter, and should include your analysis from Exercise 1.7.1.





Chapter 2

Euclidean Geometry

Euclid alone has looked on Beauty bare.
Let all who prate of Beauty hold their peace,
And lay them prone upon the earth and cease
To ponder on themselves, the while they stare
At nothing, intricately drawn nowhere
In shapes of shifting lineage; let geese
Gabble and hiss, but heroes seek release
From dusty bondage into luminous air.
O blinding hour, O holy, terrible day,
When first the shaft into his vision shone
Of light anatomized! Euclid alone
Has looked on Beauty bare. Fortunate they
Who, though once only and then but far away,
Have heard her massive sandal set on stone.

—Edna St. Vincent Millay (1892–1950)

In the last chapter we saw that the origins of our modern views on
geometry can be traced back to the work of Euclid and earlier Greek math-
ematicians. However, Euclid’s axiomatic system is not a complete axiomatic
system. Euclid makes many assumptions that are never formalized as axioms
or theorems. These include assumptions about the existence of points, the
unboundedness and continuity of space, and the transformation of figures.

Since the time of Euclid, mathematicians have attempted to “complete”
Euclid’s system by either supplementing Euclid’s axioms with additional
axioms or scrapping the whole set and replacing them with an entirely new
set of axioms for Euclidean geometry.

51
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Hilbert’s Grundlagen der Geometrie [21] is the best example of a consis-
tent formal development of geometry in the spirit of Euclid. Hilbert uses six
undefined terms (point, line, plane, on, between, congruent) and a set of 21
axioms as a foundation for Euclidean geometry. Hilbert’s axioms for plane
geometry are included in Appendix D. Some of Euclid’s axioms are repeated
in Hilbert’s axioms and others are provable as theorems. Is Hilbert’s sys-
tem complete? Is it consistent? Hilbert developed a model for his geometry
based on the real numbers. Assuming real arithmetic is consistent, then
Hilbert’s system is consistent as well [21], [pages 29-30]. Hilbert had hoped
to show his system complete, but as we saw in the last chapter, Gödel’s
Incompleteness Theorem implies the incompleteness of Hilbert’s system, as
it does any system containing ordinary arithmetic.

A very different axiomatic development of Euclidean geometry was cre-
ated in 1932 by G. D. Birkhoff [6]. This system departs significantly from
Euclid’s style of using purely geometric constructions in axioms and theo-
rems and assumes at the outset an arithmetic structure of the real numbers.
The system has only four axioms and two of these postulate a correspondence
between numbers and geometric angles and lengths. From this minimal set
of axioms (fewer than Euclid!), Birkhoff develops planar Euclidean geom-
etry, and his development is as logically consistent as Hilbert’s. Birkhoff
achieves his economy of axioms by assuming the existence of the real num-
bers and the vast array of properties that entails, whereas Hilbert has to
construct the reals from purely geometric principles.

We will not take the time at this point to go through the sequence
of proofs and definitions needed to base Euclidean geometry firmly and
carefully on Hilbert’s axioms or Birkhoff’s axioms. Appendix D contains
an outline of Hilbert’s approach to geometry, while Birkhoff’s system is
described in Appendix C and also discussed at the end of Chapter 3. We will,
however, review some of the basic results from classical Euclidean geometry
as a basis for considering some interesting results not often covered in high
school geometry. We will take care to provide precise definitions of terms
and to point out areas where the work of Hilbert and Birkhoff has filled in
the “gaps” of Euclid described above.

2.1 Angles, Lines, and Parallels

The simplest figures in geometry are points, lines, and angles. The terms
point and line will remain undefined, and an angle will be defined in terms
of rays, which are themselves defined in terms of segments. We used many
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of these terms in the last chapter without really giving them a precise def-
inition. To begin our review of Euclidean geometry, it is critical to have a
solid set of definitions for these basic terms.

Definition 2.1. A segment AB
consists of points A and B and all
those points C on the line through
A and B such that C is between A
and B.

A BC

Note that this definition relies on the first of Euclid’s postulates, the
postulate on the existence of lines. Also, this definition uses an undefined
term—between. The notion of the ordering of points on a line is a critical
one, but one which is very hard to define. Hilbert, in his axiomatic system,
leaves the term between undefined and establishes a set of axioms on how the
quality of betweenness works on points. We will assume that betweenness
works in the way our intuition tells us it should.

Also, note that this definition is not very useful unless we actually have
points to work with and can tell when they lie on a line. Here, again,
Hilbert introduces a set of axioms about the existence of points and how the
property of being on a line works, the term on being left undefined.

Definition 2.2. A ray
−−→
AB consists

of the segment AB together with
those points C on the line through
A and B such that B is between A
and C.

A

B

C
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Definition 2.3. The angle with
vertex A consists of the point A to-

gether with two rays
−−→
AB and

−→
AC

(the sides of the angle). We denote
an angle with vertex A and sides−−→
AB and

−→
AC by ∠BAC.

A B

C

Definition 2.4. Two angles with
a common vertex and whose sides
form two lines are called vertical an-
gles.

Definition 2.5. Two angles are
supplementary if they share a com-
mon side and the other sides lie in
opposite directions on the same line.
(Here ∠BAC and ∠CAD are sup-
plementary.)

A B

C

D

We will often talk of congruent angles and segments. Congruence is
another of those terms that is difficult to define explicitly. For Euclid, con-
gruence of angles or segments meant the ability to move an angle or segment
on top of another angle or segment so that the figures coincided. This trans-
formational geometry pre-supposes an existing set of transformations that
would itself need an axiomatic basis. Hilbert leaves the term congruence
undefined and provides a set of axioms as to how the quality of congruence
works for angles, as well as for segments.

When speaking of two angles being congruent, we will assume that we
have a way of associating an angle with a real number, called the degree
measure of the angle, in such a way that

• The measure of an angle is a real number between 0 and 180 degrees.
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• Congruent angles have the same angle measure.

• The measure of a right angle is 90.

• If two angles are supplementary, then the sum of the measures of the
angles is 180.

Definition 2.6. The degree measure of ∠ABC will be denoted by m∠ABC.

Similarly, for any segment AB we will assume that we have a way of
associating a real number, called the length of AB, satisfying the usual
notions of Euclidean length. For example, congruent segments will have the
same length, and if B is between A and C, then the length of AC is equal
to the sum of the lengths of AB and BC.

Definition 2.7. The length of AB will be denoted by AB.

In classical Euclidean geometry, the orientation of an angle is not sig-
nificant. Thus, ∠ABC is congruent to ∠CBA, and both angles have the
same measure, which is less than or equal to 180 degrees. This is distinctly
different from the notion of angle commonly found in trigonometry, where
orientation is quite significant. Be careful of this distinction between ori-
ented and unoriented angles, particularly when using Geometry Explorer, as
the program measures angles as oriented angles.

Definition 2.8. A right angle is an angle that has a supplementary angle
to which it is congruent.

Definition 2.9. Two lines that intersect are perpendicular if one of the
angles made at the intersection is a right angle.

Definition 2.10. Two lines are parallel if they do not intersect.

Definition 2.11. A bisector of a
segment AB is a point C on the seg-
ment such that AC is congruent to
CB. A bisector of an angle ∠BAC
is a ray

−−→
AD such that ∠BAD is con-

gruent to ∠DAC. A

Segment Bisector

BC A

Angle Bisector

B

C

D
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Now that we have a good base of precise definitions, let’s review some of
the basic results on points, lines, and angles from the first 28 propositions
of Book I of Euclid’s Elements. We will review these propositions without
proof. Proofs of these results can be found in [17].

Theorem 2.1. (Prop. 9, 10 of Book I) Given an angle or segment, the
bisector of that angle or segment can be constructed.

We point out that to construct a geometric figure we mean a very specific
geometric process, a sequence of steps carried out using only a straightedge
and compass. Why just these two types of steps? Clearly, if one does
geometry on paper (or sand), the most basic tools would be a straightedge,
for drawing segments, and a compass, for drawing circles. Euclid, in his first
three axioms, makes the assumption that there are ideal versions of these
tools that will construct perfect segments and circles. Euclid is making an
abstraction of the concrete process we carry out to draw geometric figures.
By doing so, he can prove, without a shadow of a doubt, that properties
such as the apparent equality of vertical angles are universal properties and
not just an artifact of how we draw figures.

For example, how would we use a straightedge and compass to bisect an
angle? The following is a list of steps that will bisect ∠BAC (see Fig. 2.1).
The proof is left to the reader as an exercise at the end of the next section.

A

C

B

D

E

Fig. 2.1 Bisector of an Angle

• At A construct a circle of radius AB, intersecting
−→
AC at D.

• At B construct a circle of radius BD and at D construct a circle of
radius BD. These will intersect at E.
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• Construct ray
−→
AE. This will be the bisector of the angle.

A more complete discussion of constructions can be found in Chapter 4.
You may wish to review some of the simple constructions in the first section
of that chapter before continuing.

Theorem 2.2. (Prop. 11, 12 of Book I) Given a line and a point either
on or off the line, the perpendicular to the line through the point can be
constructed.

Theorem 2.3. (Prop. 13, 15 of Book I) If two straight lines cross one
another they make the vertical angles congruent. Also, the angles formed by
one of the lines crossing the other either make two right angles or will have
angle measures adding to two right angles. In Fig. 2.2, ∠BEC and ∠AED
are congruent and m∠BEC +m∠CEA = 180.

E

A

D B

C

Fig. 2.2 Angles Made by Lines

Theorem 2.4. (Prop. 14 of Book I) If the measures of two adjacent angles
add to two right angles (180 degrees), then the angles form a line.

Theorem 2.5. (Prop. 23 of Book I) Given an angle, a line (or part of
a line), and a point on the line, an angle whose vertex is at the point, and
whose measure is equal to the measure of the given angle, can be constructed.

For the next set of theorems, we need a way of specifying types of angles
created by a line crossing two other lines.

Definition 2.12. Let t be a line crossing lines l and m and meeting l at A
and m at A′, with A 6= A′ (Fig. 2.3). Choose points B and C on either side
of A on l and B′ and C ′ on either side of A′ on m, with C and C ′ on the
same side of t.
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l

m

t

A

A’

C

C’

B

B’

Fig. 2.3 Interior-Exterior Angles

Then ∠CAA′, ∠C ′A′A, ∠BAA′, and ∠B′A′A are called interior angles

(the angles having
−−→
AA′ as a side). Also, ∠CAA′ and ∠B′A′A are called al-

ternate interior angles, as are ∠C ′A′A and ∠BAA′. All other angles formed
are called exterior angles. Pairs of nonadjacent angles, one interior and one
exterior, on the same side of the crossing line t are called corresponding
angles.

Definition 2.13. We will say an angle is greater than another angle if its
angle measure is greater than the other angle’s measure.

Theorem 2.6. (The Exterior Angle Theorem, Prop. 16 of Book I) Given
∆ABC, if one of the sides (AC) is extended, then the exterior angle pro-
duced (∠DAB) is greater than either of the two interior and opposite angles
(∠BCA or ∠ABC) as shown in Fig. 2.4.

A

B

C

D

Fig. 2.4
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Theorem 2.7. (Prop. 27 of Book I) If a line n falling on two lines l and m
makes the alternate interior angles congruent to one another, then the two
lines l and m must be parallel (Fig. 2.5).

l

m

n

Fig. 2.5 Alternate Interior Angles

Theorem 2.8. (Prop. 28 of Book I) If a line n falling on two lines l and
m makes corresponding angles congruent, or if the sum of the measures of
the interior angles on the same side equal two right angles, then l and m are
parallel (Fig. 2.6).

l

m

n

Fig. 2.6 Angles and Parallels

We note here that all of the preceding theorems are independent of the
fifth Euclidean postulate, the parallel postulate. That is, they can be proved
from an axiom set that does not include the fifth postulate. Such results
form the basis of what is called absolute or neutral geometry.

The first time that Euclid actually used the fifth postulate in a proof
was for Proposition 29 of Book I. Recall that the fifth postulate states:

If a straight line falling on two straight lines make the interior an-
gles on the same side less than two right angles, the two straight
lines, if produced indefinitely, meet on that side on which are the
angles less than the two right angles.
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As was noted in the last chapter, many mathematicians have attempted
to prove this postulate or replace it with a more palatable alternative. One
of these alternatives is Playfair’s Postulate, which we restate here:

Given a line and a point not on the line, it is possible to construct
one and only one line through the given point parallel to the line.

Let’s see how Playfair’s Postulate can be used to prove Proposition 29,
which is essentially the converse of Propositions 27 and 28.

Theorem 2.9. (Prop. 29 of Book I) If a line n falls on two parallel lines
l and m, then alternate interior angles are congruent, corresponding angles
are congruent, and the sum of the measures of the interior angles on the
same side of n is equal to two right angles (see Fig. 2.7).

A D

n

l

m
B F

E

C

G
H

Fig. 2.7 Proposition 29

Proof: Let n be the line through A and B and let the two parallel lines
be ones through A,D and B,F . We will prove the statement about the
exterior angle and leave the other two parts of the proof as an exercise.

Assume ∠FBG is not congruent to ∠DAB. We may assume that ∠FBG
is greater than ∠DAB. By Theorem 2.5 we can create a new angle ∠HBG
on
−−→
BG so that ∠HBG is congruent to ∠DAB. By Theorem 2.8 the line

through H and B will be parallel to
←→
AD. But this means that there are

two different lines through B that are parallel to
←→
AD, which contradicts

Playfair’s Postulate. 2
In Euclid’s original proof of Proposition 29, he bases the proof on the fifth

Euclidean postulate, whereas we have used Playfair’s Postulate. Actually,
these two postulates are logically equivalent. Either postulate, when added
to Euclid’s first four postulates, produces an equivalent axiomatic system.
How can we prove this?
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The simplest way to show logical equivalence is to prove that each pos-
tulate is a theorem within the other postulate’s axiomatic system. To show
this, we need to prove two results: first, that Playfair’s Postulate can be
derived using the first five Euclidean postulates and second, that Euclid’s
fifth postulate can be derived using the first four Euclidean postulates plus
Playfair’s Postulate. These derivations are shown in the exercises.

Exercise 2.1.1. Finish the proof of Theorem 2.9. That is, show that ∠DAB is
congruent to ∠EBA and that m∠DAB +m∠ABF = 180.

Exercise 2.1.2. Use the Exterior Angle Theorem to show that the sum of the
measures of two interior angles of a triangle is always less than 180 degrees.

It is critical to have a clear understanding of the terms of an axiomatic
system when working on a mathematical proof. One must use only the facts
given in the definitions and not impose preconceived notions on the terms.

Exercise 2.1.3. Each of the following statements are about a specific term of
this section. Determine, solely on the basis of the definition of that term, if the
statement is true or false.

(a) A right angle is an angle whose measure is 90 degrees.

(b) An angle is the set of points lying between two rays that have a common vertex.

(c) An exterior angle results from a line crossing two other lines.

(d) A line is the union of two opposite rays.

Exercise 2.1.4. In this exercise we will practice defining terms. Be careful to
use only previously defined terms, and take care not to use imprecise and colloquial
language in your definitions.

(a) Define the term midpoint of a segment.

(b) Define the term perpendicular bisector of a segment.

(c) Define the term triangle defined by three non-collinear points A,B,C.

(d) Define the term equilateral triangle.

In the next set of exercises, we consider the logical equivalence of Euclid’s
fifth postulate with Playfair’s Postulate. You may use any of the first 28
Propositions of Euclid (found in Appendix A) and/or any of the results from
this section for these exercises.

Exercise 2.1.5. In this exercise you are to show that Euclid’s fifth postulate im-
plies Playfair’s Postulate. Given a line l and a point A not on l, we can copy ∠CBA
to A to construct a parallel line n to l. (Which of Euclid’s first 28 Propositions
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is this based on?) Suppose that there was another line t through A that was not
identical to n. Use Euclid’s fifth postulate to show that t cannot be parallel to l
(Fig. 2.8).

B

l

A
n

m

C
E

tD

Fig. 2.8

Exercise 2.1.6. Now, we will prove the converse of the preceding exercise, that
Playfair’s Postulate implies Euclid’s fifth postulate. Consider Fig. 2.8. Suppose
line m intersects lines t and l such that the measures of angles ∠CBA and ∠BAD
add up to less than 180 degrees. Copy ∠CBA to A, creating line n, and then use
Playfair’s Postulate to argue that lines t and l must intersect. We now need to show
that the lines intersect on the same side of m as D and C. We will prove this by
contradiction. Assume that t and l intersect on the other side of m from point C,
say at some point E. Use the exterior angle ∠CBA to triangle ∆ABE to produce
a contradiction.

Exercise 2.1.7. Show that Playfair’s Postulate is equivalent to the statement,
Whenever a line is perpendicular to one of two parallel lines, it must be perpendic-
ular to the other.

Exercise 2.1.8. Given triangle ∆ABC, construct a parallel to
←→
BC at A. (How

would we do this?) Use this construction to show that Playfair’s Postulate (or
Euclid’s fifth) implies that the angle sum in a triangle is 180 degrees, namely, equal
to two right angles. (The converse to this statement is also true: If the angle sum
of a triangle is always 180 degrees, then Playfair’s Postulate is true. For a proof
see [41], [pages 21-23].)

Exercise 2.1.9. Show that Playfair’s Postulate is equivalent to the statement,
Two lines that are parallel to the same line are coincident (the same) or themselves
parallel.

Exercise 2.1.10. Show that Playfair’s Postulate is equivalent to the statement,
If a line intersects but is not coincident with one of two parallel lines, it must
intersect the other.
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2.2 Congruent Triangles and Pasch’s Axiom

One of the most useful tools in a geometer’s toolbox is that of congruence,
especially triangle congruence. In this section we will review the basic tri-
angle congruence results found in Propositions 1–28 of Book I of Elements.

Definition 2.14. Two triangles are congruent if and only if there is some
way to match vertices of one to the other such that corresponding sides are
congruent and corresponding angles are congruent.

If ∆ABC is congruent to ∆XY Z, we shall use the notation ∆ABC ∼=
∆XY Z. We will use the symbol “∼=” to denote congruence in general for
segments, angles, and triangles. Thus, ∆ABC ∼= ∆XY Z if and only if

AB ∼= XY ,AC ∼= XZ,BC ∼= Y Z

and

∠BAC ∼= ∠Y XZ,∠CBA ∼= ∠ZY X,∠ACB ∼= ∠XZY

Let’s review a few triangle congruence theorems.

Theorem 2.10. (SAS: Side-Angle-
Side, Prop. 4 of Book I) If in two
triangles there is a correspondence
such that two sides and the included
angle of one triangle are congruent
to two sides and the included angle
of another triangle, then the trian-
gles are congruent.

A

B

C

X

Y

Z

This proposition is one of the axioms in Hilbert’s axiomatic basis for
Euclidean geometry. Hilbert chose to make this result an axiom rather than
a theorem to avoid the trap that Euclid fell into in his proof of the SAS
result. In Euclid’s proof, he moves points and segments so as to overlay
one triangle on top of the other and thus prove the result. However, there
is no axiomatic basis for such transformations in Euclid’s original set of
five postulates. Most modern treatments of Euclidean geometry assume
SAS congruence as an axiom. Birkhoff chooses a slightly different triangle
comparison result, the SAS condition for triangles to be similar, as an axiom
in his development of Euclidean geometry.
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Theorem 2.11. (ASA: Angle-Side-
Angle, Prop. 26 of Book I) If in
two triangles there is a correspon-
dence in which two angles and the
included side of one triangle are
congruent to two angles and the in-
cluded side of another triangle, then
the triangles are congruent.

A

B

C

X

Y

Z

Theorem 2.12. (AAS: Angle-Angle-
Side, Prop. 26 of Book I) If in two
triangles there is a correspondence
in which two angles and the side
subtending one of the angles are
congruent to two angles and the side
subtending the corresponding angle
of another triangle, then the trian-
gles are congruent.

A

B

C

X

Y

Z

Theorem 2.13. (SSS: Side-Side-
Side, Prop. 8 of Book I) If in two
triangles there is a correspondence
in which the three sides of one tri-
angle are congruent to the three
sides of the other triangle, then the
triangles are congruent.

A

B

C

X

Y

Z

We note here for future reference that the four fundamental triangle
congruence results are independent of the parallel postulate; that is, their
proofs do not make reference to any result based on the parallel postulate.

Let’s see how triangle congruence can be used to analyze isosceles trian-
gles.

Definition 2.15. An isosceles triangle is a triangle that has two sides con-
gruent. The two congruent sides are called the legs of the triangle and the
third side is called the base. The base angles of the triangle are those angles
sharing the base as a side.

Isosceles triangles were a critical tool for many of Euclid’s proofs, and
he introduced the next result very early in the Elements. It followed imme-
diately after SAS congruence (Proposition 4).
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Theorem 2.14. (Prop. 5 of Book I) In an isosceles triangle, the two base
angles are congruent.

Proof: Let triangle ∆ABC have sides AB and BC congruent, as shown

in Fig. 2.9. Let
−−→
BD be the bisector of ∠ABC, with D inside the triangle.

Let
−−→
BD intersect AC at E. Then, by SAS we have triangles ∆ABE and

∆CBE congruent and thus ∠EAB ∼= ∠ECB and we’re done. 2

A

B

CE

D

Fig. 2.9 Base Angles Congruence

This proof seems okay—it relies solely on definitions, on the existence
of an angle bisector, and on the SAS congruence result. It is the proof one
finds in many modern geometry texts, but is not the proof Euclid used. Why
not?

If we were true to Euclid’s development, we would have a major problem
with this proof. First, the construction of angle bisectors comes in Propo-
sition 9 of the Elements, which itself depends on Proposition 5, the result
we are trying to prove. To use angle bisectors for this proof would be circu-
lar reasoning, if we assumed Euclid’s development of axioms and theorems.
Circular reasoning is an often subtle error that can creep into our attempts
to prove a result.

Beyond the problem of circular reasoning, there is an even more fun-
damental axiomatic problem with this proof, as seen from within Euclid’s
system. The use of SAS congruence is fine, except for a hidden assumption
that has slipped into the proof—that the bisector actually intersects the
third side of the triangle. This seems intuitively obvious to us, as we see
triangles having an inside and an outside; that is, we see the triangle sep-
arating the plane into two regions. In fact, Euclid assumes this separation
property without proof and does not include it as one of his axioms.

Moritz Pasch (1843–1930) was the first to notice this hidden assump-
tion of Euclid, and in 1882 he published Vorlesungen uber neure Geometrie,
which for the first time introduced axioms on separation and ordering of
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points in the plane. One of these axioms specifically addresses the issue of
triangle separation and has become known as Pasch’s Axiom:

Let A,B,C be three non-collinear points and let l be a line that
does not pass through A, B, or C. If l passes through side AB,
it must pass through either a point on AC or a point on BC,
but not both.

Hilbert built on Pasch’s work in his own axiomatic system. Hilbert’s
four axioms of “order” are essentially the axioms Pasch used in 1882. Using
Pasch’s Axiom, the hidden assumption in Euclid’s proof of Theorem 2.14
can be justified.

In fact, the proof given above for the isosceles triangle theorem is per-
fectly correct within Hilbert’s axiomatic system, as the triangle intersection
property, as well as SAS congruence, are axioms in this system, and thus
need no proof, and angle bisection properties are proved before this theorem
appears.

We see, then, that the same proof can be valid in one system and not valid
in another. What makes the difference is how the two systems progressively
build up results that then are used for proving later results. Can we give a
valid proof in Euclid’s system? We know that we can safely use SAS as it
is Proposition 4 of Book I. If we consider ∆ABC in comparison to itself by
the ordering ∆ABC with ∆CBA, then we get the base angles congruent by
a simple application of SAS. (Convince yourself of this.) This may seem like
cheating, but if we look carefully at the statement of SAS, it never stipulated
that the two triangles for comparison needed to be different.

This concludes our whirlwind review of the highlights of basic planar
geometry (the first 28 Propositions of Book I of Elements). This basic
material concerns points, lines, rays, segments and segment measure, angles
and angle measure, parallels, and triangles as covered in many elementary
geometry courses. We summarized these areas without taking the time to
carefully derive the results from first principles, although we did take care
to point out where more foundational work was needed.

Our brief treatment of formal issues is not an indication that careful
axiomatic exposition of basic geometry is unimportant. Hilbert’s axiomatic
system is an outstanding achievement in the foundations of geometry. How-
ever, to better appreciate such foundational work, it is advisable to explore
the power and complexity of more advanced geometric concepts and tech-
niques, which we do in the rest of this chapter and in the following chapters.

Exercise 2.2.1. Is it possible for a line to intersect all three sides of a triangle?
If so, does this contradict Pasch’s Axiom?
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Exercise 2.2.2. Use Pasch’s Axiom to show that a line intersecting one side of a
rectangle, at a point other than one of the vertices of the rectangle, must intersect
another side of the rectangle. Will the same be true for a pentagon? A hexagon?
An n-gon? If so, develop a proof for the case of a line intersecting a side of a regular
n-gon (all sides and angles equal).

Exercise 2.2.3. If a line intersects three (or more) sides of a four-sided polygon
(any shape made of four connected segments), must it contain a vertex of the
polygon? If so, give a proof; if not, give a counter-example.

Let l be a line and A,B two points not on l. If A = B, or if segment
AB contains no points on l, we will say that A and B are on the same side
of l. Otherwise, they are on opposite sides (i.e., AB must intersect l). We
say that the set of points all on one side of l are in the same half-plane.

Use Pasch’s Axiom to prove the following pair of results, which Hilbert
termed the Plane Separation Property. This property is sometimes used to
replace Pasch’s Axiom in modern axiomatic developments of geometry.

Exercise 2.2.4. For every line l and every triple of points A,B,C not on l, if
A,B are on the same side of l and B,C are on the same side of l, then A,C are on
the same side of l.

Exercise 2.2.5. For every line l and every triple of points A,B,C not on l, if
A,B are on opposite sides of l and B,C are on opposite sides of l, then A,C are
on the same side of l.

Definition 2.16. Define a point D
to be in the interior of an angle
∠ABC if D is on the same side of←→
AC as B and also D is on the same
side of

←→
AB as C. (The interior is

the intersection of two half-planes.)

A

B

C

D

Exercise 2.2.6. Define precisely what is meant by the interior of a triangle.

The next set of exercises deal with triangle congruence.

Exercise 2.2.7. Prove the converse to the preceding isosceles triangle result; that
is, show that if a triangle has two angles congruent, then it must be isosceles.

Exercise 2.2.8. Use congruent triangles to prove that the angle bisector con-
struction discussed in section 2.1 is valid.

Exercise 2.2.9. Show that if two sides of a triangle are not congruent, then the
angles opposite those sides are not congruent, and the larger angle is opposite the
larger side of the triangle. [Hint: Use isosceles triangles.]
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Exercise 2.2.10. Using SAS congruence, prove Angle-Side-Angle congruence.

Exercise 2.2.11. Show that for two right triangles, if the hypotenuse and leg of
one are congruent to the hypotenuse and leg of the other, then the two triangles
are congruent. [Hint: Try a proof by contradiction.]

Exercise 2.2.12. State and prove a SASAS (Side-Angle-Side-Angle-Side) con-
gruence result for quadrilaterals.

2.3 Project 3 - Special Points of a Triangle

Triangles are the simplest two-dimensional shapes that we can construct
with segments. The simplicity of their construction masks the richness of
relationships exhibited by triangles. In this project we will explore several
interesting points of intersection that can be found in triangles.

2.3.1 Circumcenter

Start Geometry Explorer and use
connected segments to create ∆ABC
on the screen.

A

B

C

Multi-select all three sides (hold
down the Shift key to do a multiple
selection) and construct the mid-
points D,E, F of the sides (click the
Midpoint button in the Construct
panel).

A

B

C

D E

F
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Now, construct the perpendic-
ular bisectors of AB and BC by
multi-selecting a side and the mid-
point of that side and clicking on
the Perpendicular tool. After con-
structing these two perpendiculars,
multi-select the perpendiculars and
click on the Intersect tool to con-
struct the intersection point G.
Create a segment from F to G
and measure ∠CFG. (Multi-select
C,F,G, in that order, and choose
Angle (Measure menu). It ap-

pears that
←→
GF is perpendicular to←→

AC and thus all three perpendicular
bisectors meet at G. Drag the ver-
tices of the triangle around. Does
the common intersection property
persist? This suggests a theorem.

A

B

C

D E

F

G

Angle(C,F,G) = 90.00 degrees

Theorem 2.15. The perpendicular bisectors of the sides of a triangle in-
tersect at a common point called the circumcenter of the triangle.

Let’s see if we can prove this.
Consider the two perpendicular bisectors we constructed, the ones at D

and E. Since
←→
AB and

←→
BC are not parallel, we can find their intersection at

point G.

Exercise 2.3.1. Show that triangles ∆DGB and ∆DGA are congruent, as are
triangles ∆EGB and ∆EGC. Use this to show that the line through F and G
will be a perpendicular bisector for the third side, and thus all three perpendicular
bisectors intersect at point G. (Make sure your labels match the ones shown above.)

Create a circle with center at the circumcenter (point G above) and
radius point equal to one of the vertices of the triangle. (Be careful that
you drag the radius point onto one of the triangle vertices, thus attaching
the circle’s radius point to a triangle vertex.) What do you notice about the
circle in relation to the other vertices of the triangle?

Corollary 2.16. The circle with center at the circumcenter of a triangle and
radius out to one of the vertices will pass through the other vertices of the
triangle. This is called the circumscribed circle of the triangle (Fig. 2.10).
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A

B
C

Circumcenter

Circumscribed Circle

Fig. 2.10 Circumscribed Circle of a Triangle

Exercise 2.3.2. Prove Corollary 2.16.

2.3.2 Orthocenter

An altitude of a triangle will be a perpendicular to a side of the triangle
that passes through the opposite vertex. In Fig. 2.11, line a is an altitude
to ∆ABC through vertex B.

A

B

C

a

Fig. 2.11 Altitude

What can we say about the three altitudes of a given triangle? Do they
intersect at a common point?

We will show that the altitudes of a triangle do intersect at a common
point by showing that the altitudes are also the perpendicular bisectors of
an associated triangle to the given triangle.
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Clear the screen and create a trian-
gle ∆ABC. Multi-select a side and
the vertex opposite and click on the
Parallel tool. Repeat this construc-
tion for the other two sides to con-
struct the three parallels to ∆ABC
as shown in the figure. Since the
original sides of ∆ABC were not
parallel, each pair of the new par-
allels will intersect. These three
intersection points will form a new
triangle, ∆DEF . We will call this
the associated triangle to ∆ABC.

B

A

C

D
E

F

Drag the vertices around and
notice the relationship among the
four triangles ∆BAD, ∆ABC,
∆FCB, and ∆CEA. What would
your conjecture be about the re-
lationship among these four trian-
gles? B

A

C

D

E

F

Exercise 2.3.3. Use Theorem 2.9 to verify the angle congruences illustrated in
Fig. 2.12 for ∆ABC and its associated triangle ∆DEF . Then, show that all four
sub-triangles are congruent. That is,

∆ABC ∼= ∆BAD ∼= ∆FCB ∼= ∆CEA
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A

B

C

D

E

F

Fig. 2.12

This leads directly to the following result:

Theorem 2.17. The altitudes of a triangle are the perpendicular bisectors
of the associated triangle as we have described.

Exercise 2.3.4. Prove Theorem 2.17. [Hint: Use the preceding exercise.]

Since the altitudes of a triangle are the perpendicular bisectors of the
associated triangle, and since we have already shown that the three perpen-
dicular bisectors of any triangle have a common intersection point, then we
have the following.

Corollary 2.18. The altitudes of a triangle intersect at a common point.
This point is called the orthocenter of the triangle.

Corollary 2.19. The orthocenter of a triangle is the circumcenter of the
associated triangle.

Does the orthocenter have a nice circle like the circumscribed circle?
Create a circle with center at the orthocenter and radius point equal to one
of the vertices of triangle ∆ABC. What do you notice that is different about
this situation in comparison to the preceding circumscribed circle?
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2.3.3 Incenter

Clear the screen and create ∆ABC
one more time. In this part of our
project, we will find the angle bi-
sectors of each of the three interior
angles of the triangle. For example,
to bisect ∠CBA multi-select points
C,B,A (in that order!) and click
on the Angle Bisector construction
tool. Note that angles are always
oriented in Geometry Explorer, so
you need to select the points in
the correct order to define an an-
gle. The selection order for the an-
gles in the triangle shown would be
C,B,A followed by B,A,C followed
by A,C,B.

B

A

C

D

X

Y

It appears that the three ray bi-
sectors have a common intersection
point, point D in the figure at right.

Theorem 2.20. The angle bisectors of triangle ∆ABC intersect at a com-
mon point. This point is called the incenter of the triangle.

Proof: First note that the bisector at A will intersect side BC at some
point X. The bisector at B will intersect AC at some point Y and AX at
some point D that is interior to the triangle.

In the next exercise, we will show that the points on an angle bisector are
equidistant from the sides of an angle and, conversely, if a point is interior
to an angle and equidistant from the sides of an angle, then it is on the

bisector. Thus, the distance from D to
−−→
AB equals the distance from D to−→

AC. Also, the distance from D to
−−→
AB equals the distance from D to

−−→
BC,

as D is on the bisector at B. Thus, the distance from D to
−→
AC equals the

distance from D to
−−→
BC, and D must be on the bisector at C. 2

Exercise 2.3.5. Use congruent triangles to show that the points on an angle
bisector are equidistant from the sides of the angle and, conversely, if a point
is interior to an angle and equidistant from the sides of an angle, then it is on
the bisector. [Hint: Distance from a point to a line is measured by dropping
a perpendicular from the point to the line. You may also use the Pythagorean
Theorem if you wish.]
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Drop a perpendicular line from the incenter to one of the sides of the
triangle and find the intersection of this perpendicular with the side. (For
example, we get point Z in Fig. 2.13 by dropping a perpendicular from D

to
←→
BC.) Create a circle with center at the incenter and radius point equal

to the intersection point.

Definition 2.17. The circle just constructed is called the inscribed circle
to the triangle. A circle is inscribed in a triangle (or other polygon) if it
intersects each side of the triangle (polygon) in a single point.

B

A

C

D

X

Y

Z

Fig. 2.13

Project Report

It is amazing what structure exists in a simple shape like a triangle! In your
report discuss the similarities and differences you discovered in exploring
these three special points of a triangle. Also, take care that all of your work
on proofs and exercises is written in a logical and careful fashion.

2.4 Measurement and Area in Euclidean
Geometry

Euclid, in his development of triangle congruence, had a very restrictive
notion of what congruence meant for segments and angles. When we hear
the word congruence our modern mathematical background prompts us to
immediately think of numbers being equal. For example, we immediately
associate a number with a segment and consider two segments congruent if
their numerical lengths are equal.



2.4. MEASUREMENT AND AREA 75

This is very different from the way that Euclid viewed congruence. In
fact, Euclid’s notion of congruence was one of coincidence of figures. That
is, two segments were congruent if one could be made to be coincident with
the other, by movement of one onto the other. Euclid never used segments
as substitutes for numerical values, or vice versa. If one looks at Book II of
Euclid, where he develops what we would now call algebraic relationships,
we see that these relationships are always based on geometric figures. When
Euclid mentions the square on segment AB, he literally means the geometric
square constructed on AB and not the product of the length of AB with
itself.

Modern axiomatic treatments of Euclidean geometry resolve this prob-
lem of dealing with numerical measure by axiomatically stipulating that
there is a way to associate a real number with a segment or angle. Hilbert,
staying true to Euclid, does not explicitly tie numbers to geometric figures,
but instead provides two axioms of continuity that allow for the development
of measurement through an ingenious but rather tedious set of theorems.
Birkhoff, on the other hand, directly specifies a connection between real
numbers and lengths in his first axiom and between numbers and angles in
his third axiom (see Appendix C).

In the following project, we will continue to assume the standard con-
nection between geometric figures and real numbers via lengths and angle
degree measures. This connection will lead naturally to a definition of area
based on segment length.

2.4.1 Mini-Project - Area in Euclidean Geometry

In this project we will create a definition for area, based on properties
of four-sided figures. Whereas earlier projects utilized computer software,
for this project we will primarily be using human “grayware,” that is, the
canvas of our minds.

Definition 2.18. A quadrilateral ABCD is a figure comprised of segments
AB, BC, CD, and DA such that no three of the points of the quadrilateral
are collinear and no pair of segments intersects, except at the endpoints. We
call AB, BC, CD, and DA the sides of the quadrilateral and AC, BD the
diagonals of the quadrilateral.
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Definition 2.19. A parallelogram is a quadrilateral ABCD, where
←→
AB is

parallel to
←→
CD and

←→
BC is parallel to

←→
AD. That is, opposite sides are parallel.

Here’s the first exercise to work through. The tools that will prove most
helpful to you include the theorems covered so far on parallels and triangle
congruence.

Exercise 2.4.1. Show that in a par-
allelogram opposite sides are congruent.

A

B

D

C

Exercise 2.4.2. (Prop. 34 of Book I) Show that in parallelogram ABCD, oppo-
site angles are congruent and the diagonal bisects the parallelogram. (That is, the
diagonal divides the parallelogram into two congruent triangles.)

Definition 2.20. We will call two geometric figures equivalent if each figure
can be split into a finite number of polygonal pieces so that all pieces can
be separated into congruent pairs.

Exercise 2.4.3. Why would it be acceptable to replace “polygonal” with “trian-
gular” in Definition 2.20?

Exercise 2.4.4. (Prop. 35 of Book I) In this exercise we will show that two
parallelograms having the same base and defined between the same parallels are
equivalent.

To do this, let parallelograms ABCD
and EBCF be two parallelograms shar-

ing base BC with
←→
AF parallel to

←→
BC.

There are two possible configurations
for the parallelograms: either D will be
between E and F as shown in the top
configuration, or D will not be on seg-
ment EF as shown in the second config-
uration. In either case use SAS to show
that triangles ∆EAB and ∆FDC are
congruent. Then, argue by adding and
subtracting congruent figures that the
two parallelograms are equivalent.

B
C

A
E

D

F

B C

A E D
F
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We now are in a position to define area in terms of rectangles!

Definition 2.21. A rectangle is a quadrilateral in which all the angles de-
fined by the vertices are right angles. Given a rectangle ABCD, we can
identify two adjacent sides and call the length of one of the sides a base of
the rectangle and the length of the other a height. The area of the rectangle
will be defined as the product of a base and height.

Exercise 2.4.5. Show that this definition of rectangular area is not ambiguous.
That is, it does not depend on how we choose the sides for the base and height. [Be
careful—this is not as trivial as it may appear. You need to base your argument
only on known geometric theorems and not on analytic or numerical reasoning.]

Definition 2.22. If two figures can be made equivalent, we will say that
they have the same area.

Definition 2.23. If we identify a side of a parallelogram to be a base side,
then the height of the parallelogram, relative to that base side, is the per-
pendicular distance between the base side and the opposite side.

Exercise 2.4.6. Show that the area of a parallelogram ABCD is the product
of its base length and its height by showing the parallelogram is equivalent to a
rectangle with those side lengths (Fig. 2.14). [Hint: Given parallelogram ABCD,

with base AB, drop perpendiculars from A to
←→
CD at E and from B to

←→
CD at F .

Show that ABFE is a rectangle with the desired properties.]

D C

A

E

B

F

Fig. 2.14

The next set of theorems follows immediately from your work.

Theorem 2.21. The area of a right triangle is one-half the product of the
lengths of its legs, the legs being the sides of the right angle.

Theorem 2.22. (Essentially Prop. 41 of Book I) The area of any triangle
is one-half the product of a base of the triangle with the height of the triangle.
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Project Report

In this project we have developed the notion of area from simple figures such
as parallelograms and rectangles. From these simple beginnings, we could
expand our idea of area to arbitrary polygonal figures, and from there find
areas of curved shapes by using approximating rectilinear areas and limits,
as is done in calculus when defining the integral.

Provide a summary of the proofs for each of the exercises in this project.
If you finish early, discuss what aspects of area are still not totally defined.
That is, were there hidden assumptions made in our proofs that would ne-
cessitate area axioms?

2.4.2 Cevians and Areas

We will now apply our results on areas to a very elegant development of
the intersection properties of cevians. A full account of the theory of ce-
vians can be found in the monograph Geometry Revisited, by Coxeter and
Greitzer [11].

Definition 2.24. Given a triangle, a cevian is a segment from a vertex to
a point on the opposite side.

Theorem 2.23. Given ∆ABC, and cevians AX, BY , and CZ (refer to
Fig. 2.15), if the three cevians have a common intersection point P , then

BX

XC

CY

Y A

AZ

ZB
= 1

B

A

C

Z

X

Y

P

Fig. 2.15
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Proof: Since two triangles with the same altitudes have areas that are
proportional to the bases, then area(∆ABX)

area(∆AXC) = BX
XC , and area(∆PBX)

area(∆PXC) = BX
XC .

A little algebra shows

area(∆ABX)− area(∆PBX)

area(∆AXC)− area(∆PXC)
=
area(∆ABP )

area(∆APC)
=
BX

XC

Similarly, area(∆BCP )
area(∆APB) = CY

Y A , and area(∆CAP )
area(∆BPC) = AZ

ZB .
Thus,

BX

XC

CY

Y A

AZ

ZB
=
area(∆ABP )

area(∆APC)

area(∆BCP )

area(∆ABP )

area(∆APC)

area(∆BCP )

Cancellation of terms yields the desired result. 2
This theorem has become known as Ceva’s Theorem, in honor of Gio-

vanni Ceva (1647–1734), an Italian geometer and engineer. The term cevian
is derived from Ceva’s name, in recognition of the significance of his theorem
in the history of Euclidean geometry.

The converse to Ceva’s theorem is also true.

Theorem 2.24. If the three cevians satisfy

BX

XC

CY

Y A

AZ

ZB
= 1

then they intersect at a common point (refer to Fig. 2.16).

B

A

C

Z

X

Y

P

X’

Fig. 2.16

Proof: BY will intersect CZ at some point P which is interior to the

triangle. The ray
−→
AP will intersect BC at some point X ′ that is between B

and C. By the previous theorem we have

BX ′

X ′C

CY

Y A

AZ

ZB
= 1
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Thus, BX′

X′C = BX
XC .

Suppose that X ′ is between B and X. Then

BX

XC
=
BX ′ +X ′X

X ′C −X ′X

Since BX′

X′C = BX
XC , we have

BX ′

X ′C
=
BX ′ +X ′X

X ′C −X ′X

Cross-multiplying in this last equation gives

(BX ′)(X ′C −X ′X) = (X ′C)(BX ′ +X ′X)

Simplifying we get

− (BX ′)(X ′X) = (X ′C)(X ′X)

Since X ′ is between B and C, the only way that this equation can be satisfied
is for X ′X to be zero. Then X ′ = X.

A similar result would be obtained if we assumed that X ′ is between X
and C. 2

Definition 2.25. A median of a triangle is a segment from the midpoint of
a side to the opposite vertex.

Exercise 2.4.7. Show that the medians of a triangle intersect at a common point.
This point is called the centroid of the triangle.

Exercise 2.4.8. Use an area argument to show that the centroid must be the
balance point for the triangle. [Hint: Consider each median as a “knife edge” and
argue using balancing of areas.]

Exercise 2.4.9. The medians of a triangle split the triangle into six sub-triangles.
Show that all six have the same area.

Exercise 2.4.10. Use Exercise 2.4.9 and an area argument to show that the
medians divide one another in a 2:1 ratio.

2.5 Similar Triangles

One of the most useful tools for a more advanced study of geometric prop-
erties (e.g., the geometry used in surveying) is that of similar triangles.
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Definition 2.26. Two triangles are similar if and only if there is some way
to match vertices of one to the other such that corresponding sides are in
the same ratio and corresponding angles are congruent.

If ∆ABC is similar to ∆XY Z, we shall use the notation ∆ABC ∼
∆XY Z. Thus, ∆ABC ∼ ∆XY Z if and only if

AB

XY
=
AC

XZ
=
BC

Y Z
and

∠BAC ∼= ∠Y XZ,∠CBA ∼= ∠ZY X,∠ACB ∼= ∠XZY

Similar figures have the same shape but are of differing (or the same)
size. One is just a scaled-up version of the other. The scaling factor is the
constant of proportionality between corresponding lengths of the two fig-
ures. Thus, similarity has to do with the equality of ratios of corresponding
measurements of two figures.

Let’s review some basic similarity and proportionality results.

Theorem 2.25. Suppose that a line is parallel to one side of a triangle and
intersects the other two sides at two different points. Then, this line divides
the intersected sides into proportional segments (refer to Fig. 2.17).

A

B C

l D E

F

Fig. 2.17

Proof: Let line l be parallel to
←→
BC in ∆ABC. Let l intersect sides AB

and AC at points D and E. Construct a perpendicular from point E to
←→
AB

intersecting at point F . Consider the ratio of the areas of triangles ∆BED
and ∆AED:

Area(∆BED)

Area(∆AED)
=

1
2(BD)(EF )
1
2(AD)(EF )

=
BD

AD

Now, consider dropping a perpendicular from D to
←→
AC, intersecting this

line at point G (Fig. 2.18).
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A

B C

l D E

G

Fig. 2.18

Then,
Area(∆CED)

Area(∆AED)
=

1
2(CE)(DG)
1
2(AE)(DG)

=
CE

AE

Now, triangles BED and CED share base DE and so the heights of
these two triangles will be the same, as both heights are the lengths of

perpendiculars dropped to
←→
DE from points on another line parallel to

←→
DE.

Thus, these two triangles have the same area and

Area(∆BED)

Area(∆AED)
=
Area(∆CED)

Area(∆AED)

Thus,

BD

AD
=
CE

AE

This completes the proof. 2

Corollary 2.26. Given the assumptions of Theorem 2.25, it follows that

AB

AD
=
AC

AE

Proof: Since AB = AD +BD and AC = AE + CE, we have

AB

AD
=
AD +BD

AD
= 1 +

BD

AD
= 1 +

CE

AE
=
AE + CE

AE
=
AC

AE

2
The converse to this result is also true.

Theorem 2.27. If a line intersects two sides of a triangle so that the seg-
ments cut off by the line are proportional to the original sides of the triangle,
then the line must be parallel to the third side.
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Proof: Let line l pass through ∆ABC at sides AB and AC, intersecting
at points D and E (Fig. 2.19).

A

B C

D E l

F m

Fig. 2.19

It is given that
AB

AD
=
AC

AE

By Playfair’s Axiom there is a unique parallel m to
←→
BC through D.

Since m is parallel to
←→
BC and it intersects side AB, then it must intersect

side AC at some point F . But, Corollary 2.26 then implies that

AB

AD
=
AC

AF

Thus,
AC

AE
=
AC

AF

and AE = AF . This implies that points E and F are the same and lines l

and m are the same. So, l is parallel to
←→
BC. 2

We now have enough tools at our disposal to prove the following simi-
larity condition.

Theorem 2.28. (AAA Similarity Condition) If in two triangles there is a
correspondence in which the three angles of one triangle are congruent to the
three angles of the other triangle then the triangles are similar (Fig. 2.20).

Proof: Let ∆ABC and ∆DEF be two triangles with the angles at A,B,
and C congruent to the angles at D,E, and F , respectively. If segments AB
and DE are congruent, then the two triangles are congruent by the AAS
congruence theorem and thus are also similar.
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A

B C

D

G H

E F

Fig. 2.20 AAA Similarity

Suppose that AB and DE are not congruent. We can assume that one
is larger than the other, say DE is larger than AB. Then, there is a point G
between D and E such that DG ∼= AB. Also, there must be a point H along

the ray
−−→
DF such that DH ∼= AC. Then, since the angles at A and D are

congruent, we have that ∆ABC ∼= ∆DGH (SAS) and ∠DGH ∼= ∠ABC.
Since ∠ABC and ∠DEF are assumed congruent, then ∠DGH ∼= ∠DEF
and GH ‖ EF (Theorem 2.7). This implies that H is between D and F .
Applying Corollary 2.26, we get that

DG

DE
=
DH

DF

Since DG ∼= AB and DH ∼= AC, we get

AB

DE
=
AC

DF

A similar argument can be used to show that

AB

DE
=
BC

EF

2
Another important similarity condition is the SAS condition.

Theorem 2.29. (SAS Similarity Condition) If in two triangles there is a
correspondence in which two sides of one triangle are proportional to two
sides of the other triangle and the included angles are congruent, then the
triangles are similar (Fig. 2.21).
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A

B C

D

E FG H

Fig. 2.21 SAS Similarity Condition

Proof: Let triangles ∆ABC and ∆DEF be as specified in the theorem
with

AB

DE
=
AC

DF

If AB and AC are congruent to their counterparts in ∆DEF , then the
triangles are congruent by SAS and thus are similar as well. We may then
assume that AB and AC are greater than their counterparts in ∆DEF .
On AB and AC there must be points G and H such that AG = DE and

AH = DF . It is left as an exercise to show that
←→
GH and

←→
BC are parallel

and thus the angles at B and C are congruent to the angles at E and F . 2

Exercise 2.5.1. In ∆ABC let points D and E be the midpoints of sides AB and
AC. Show that DE must be half the length of BC.

Exercise 2.5.2. Fill in the gap in Theorem 2.29. That is, show in Fig. 2.21 that←→
GH and

←→
BC are parallel.

Exercise 2.5.3. (SSS Similarity Condition) Suppose that two triangles have three
sides that are correspondingly proportional. Show that the two triangles must be
similar.

Exercise 2.5.4. Let ∆ABC be a
right triangle with the right angle at
C. Let a, b, and c be the side lengths of
this triangle. Let CD be the altitude to
side AB (the hypotenuse). Use similar-
ity to prove the Pythagorean Theorem;
that is, show that

A

C

b

B

a

c

Dx y

a2 + b2 = c2
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Exercise 2.5.5. The basic results on similar triangles allow us to define the
standard set of trigonometric functions on angles as follows:

Given an acute angle ∠BAC, construct a right triangle with one angle congruent
to ∠BAC and right angle at C. Then, define

• sin(∠A) = BC
AB

• cos(∠A) = AC
AB

Show that these definitions are well defined; that is, they do not depend on the
construction of the right triangle.

Exercise 2.5.6. We can extend the functions defined in the last exercise to obtuse
angles (ones with angle measure greater than 90 degrees) by defining

• sin(∠A) = sin(∠A′)

• cos(∠A) = − cos(∠A′)

where ∠A′ is the supplementary angle to ∠A. We can extend the definitions to
right angles by defining sin(∠A) = 1 and cos(∠A) = 0 if ∠A is a right angle.

Using this extended definition of the trig functions, prove the Law of Sines,
that in any triangle ∆ABC, if a and b are the lengths of the sides opposite A and
B, respectively, then

a

b
=

sin(∠A)

sin(∠B)

[Hint: Drop a perpendicular from C to AB at D and use the two right triangles
∆ADC and ∆BDC.]

Exercise 2.5.7. In this exercise we
will prove Menelaus’s Theorem: Given
triangle ABC, let R be a point outside
of the triangle on the line through A
and B. From R draw any line intersect-
ing the other two sides of the triangle
at points P,Q. Then

CP

PA

AR

RB

BQ

QC
= 1

C

A BR

Q
P

S

Prove this result using similar triangles. Specifically, construct a parallel to
←→
AC

through B and let this intersect
←→
RP at point S. (Why must these lines intersect?)

Then, show that ∆RBS and ∆RAP are similar, as are ∆PCQ and ∆SBQ, and
use this to prove the result. (Menelaus was a Roman mathematician who lived in
Alexandria from about 70–130 AD.)
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Exercise 2.5.8. Blaise Pascal (1623–1662) did fundamental work in many areas
of science and mathematics, including the physics of hydrostatics, the geometry
of conic sections, and the foundations of probability and philosophy. He is also
credited with inventing the first digital calculator. The following result is due to
Pascal.

Given ∆ABC, construct a line
←→
DE, in-

tersecting sides AB and AC at D,E,

and parallel to
←→
BC. Pick any point F

on BD and construct FE. Then, con-

struct
←→
BG parallel to

←→
FE, intersecting

side AC at G. Then,
←→
FC must be par-

allel to
←→
DG.

C

A

B

D E

F G

Prove Pascal’s Theorem. [Hint: Use the theorems in this section on parallels and
similar triangles to show that AD

AG = AF
AC .] Hilbert [21, page 46] used Pascal’s

Theorem extensively to develop his “arithmetic of segments,” by which he connected
segment length with ordinary real numbers.

2.5.1 Mini-Project - Finding Heights

A surveyor is one who measures things like distances and elevations.
While modern surveyors use sophisticated equipment like laser range find-
ers, the basic mathematics of surveying is that of triangle geometry and in
particular similar triangles.

Consider the situation shown in Fig. 2.22. At C we have a water tower.
At a particular time of the day, the sun will cast a shadow of the tower that
hits the ground at A. Suppose that a person stands at exactly point B,
where his or her shadow will match the shadow of the tower at A.
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B CA

Fig. 2.22 Finding Heights

For this project, choose a partner and find a tall building (or tree) to
measure in this fashion. You will need a long tape measure (or you can use
a yard stick) and a pencil and paper for recording your measurements.

The report for this part of the project will include (1) a discussion of how
to calculate the height using similar triangles, (2) a table of measurements
needed to find the height of the building (or tree), and (3) the calculation
of the height of your tall object.

Now, let’s consider a second method of finding the height, as depicted
in Fig. 2.23. For this method you will need a measuring device and a small
mirror. Place the mirror flat on the ground some distance from the tall
object whose height you wish to measure. Then, walk back from the mirror
and stop when the top of the object is just visible in the mirror. Describe
how you can find the height of the object using this mirror method. Include
in your project report a table of measurements for this second method and a
short discussion of which method is more accurate and/or practically useful.

B CM

Fig. 2.23 Finding Heights by Mirror
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2.6 Circle Geometry

One of the most beautiful of geometric shapes is the circle. Euclid devoted
Book III of the Elements to a thorough study of the properties of circles.

To start our discussion of circles, we need a few definitions.

Definition 2.27. Let c be a circle with center O (Fig. 2.24). If A and B
are distinct points on c, we call the segment AB a chord of the circle. If a
chord passes through the center O, we say it is a diameter of the circle.

O

B

c

A

Chord

A’

Diameter

Fig. 2.24

Definition 2.28. A chord AB of a circle c with center O will divide the
points of a circle c (other than A and B) into two parts, those points of c

on one side of
←→
AB and those on the other side. Each of these two parts is

called an open arc of the circle. An open arc determined by a diameter is
called a semi-circle. If we include the endpoints A,B we would call the arc
or semi-circle closed.

Definition 2.29. Note that one of the two open arcs defined by a (non-
diameter) chord AB will be within the angle ∠AOB. This will be called a
minor arc. This is arc a1 in Fig. 2.25. The arc that is exterior to this angle
is called a major arc. This is arc a2 in the figure.
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O

A

c

B
a1

a2
P

Fig. 2.25

Definition 2.30. A central angle of a circle is one that has its vertex at
the center of the circle. For example, ∠AOB in Fig. 2.25 is a central angle
of the circle c. An inscribed angle of a circle within a major arc is one that
has its vertex on the circle at a point on the major arc and has its sides
intercepting the endpoints of the arc (∠APB in the figure).

Now, let’s look at some basic properties of circles.

Theorem 2.30. Given three distinct points, not all on the same line, there
is a unique circle through these three points.

Proof: Let the three points be A,B,C. Let l1 and l2 be the perpendic-
ular bisectors of AB and BC, with M1,M2 the midpoints of AB and BC
(Fig. 2.26). We first show that l1 and l2 must intersect.

A

B

C

M
1

M
2

l
1

l
2

E

Fig. 2.26

Suppose l1 and l2 were parallel. Then, since
←→
AB intersects l1, it must

intersect l2 at some point E (by Exercise 2.1.10). Since A,B,C are not
collinear, then E cannot beM2. Since l1 and l2 are parallel, then by Theorem
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2.9 ∠BEM2 must equal the right angle at M1. But, this is impossible as
then triangle ∆BEM2 would have an angle sum greater than 180 degrees.
This would contradict Exercise 2.1.8, which showed that the angle sum for
a triangle is 180 degrees.

Thus l1 and l2 intersect at some point O (Fig. 2.27). By SAS we know
that ∆AM1O and ∆BM1O are congruent, as are ∆BM2O and ∆CM2O,
and thus AO ∼= BO ∼= CO and the circle with center O and radius AO
passes through these three points.

A

B

C

M
1

M
2

l
1

l
2

O

Fig. 2.27

Why is this circle unique? Suppose there is another circle c′ with center
O′ passing through A,B,C. Then, O′ is equidistant from A and B and thus
must be on the perpendicular bisector l1. (This can be seen from a simple
SSS argument.) Likewise O′ is on l2. But, l1 and l2 already meet at O and
thus O = O′. Then, O′A ∼= OA and c′ must be equal to the original circle.
2

Theorem 2.31. The measure of an angle inscribed in a circle is half that
of its intercepted central angle.

Proof: Let ∠APB be inscribed in circle c having center O. Let
−−→
PO

intersect circle c at Q. Then, either A and B are on opposite sides of
←→
PO

(as shown in Fig. 2.28), or A is on the diameter through OP , or A and B

are on the same side of
←→
PO. We will prove the result in the first case and

leave the remaining cases as an exercise.
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O

A

c

B

P

Q

Fig. 2.28

Now, OP ∼= OB ∼= OA and ∆POB and ∆POA are isosceles. Thus,
the base angles are congruent (Theorem 2.14). Let α = m∠PBO and β =
m∠PAO. Then, m∠POB = 180 − 2α and m∠POA = 180 − 2β. Also,
m∠QOB = 2α and m∠QOA = 2β.

Clearly, the measure of the angle at P , which is α+β, is half the measure
of the angle at O, which is 2α+ 2β. 2

The following two results are immediate consequences of this theorem.

Corollary 2.32. If two angles are inscribed in a circle such that they share
the same arc, then the angles are congruent.

Corollary 2.33. An inscribed angle in a semi-circle is always a right angle.

Definition 2.31. A polygon is inscribed in a circle if its vertices lie on the
circle. We also say that the circle circumscribes the polygon in this case.

Corollary 2.34. If quadrilateral ABCD is inscribed in a circle, then the
opposite angles of the quadrilateral are supplementary.

The proof is left as an exercise.

Theorem 2.35. (Converse to Corollary 2.33) If an inscribed angle in a
circle is a right angle, then the endpoints of the arc of the angle are on a
diameter.

Proof (refer to Fig. 2.29): Let ∠BAC be a right angle inscribed in a
circle c. We need to show that BC is a diameter of the circle.
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A

B CD

c

E

Fig. 2.29

Let D and E be the midpoints of segments BC and AC. Then, since
BD and AE are both in the same proportion to BC and AC, we have by

Theorem 2.27 that
←→
DE is parallel to

←→
AB and thus the angle at E is a right

angle. Then, ∆AED ∼= ∆CED by SAS and DC ∼= DA.

Similarly, BD ∼= DA. Thus, the circle with center D and radius equal to
DA passes through A,B,C. But, c is the unique circle through these points
and thus DA is the radius for the circle and BC is a diameter. 2

Among all lines that pass through a circle, we will single out for special
consideration those lines that intersect the circle only once.

Definition 2.32. A line l is said to be tangent to a circle c if l intersects
the circle at a single point T , called the point of tangency.

What properties do tangents have?

Theorem 2.36. Given a circle c with center O and radius OT , a line l is

tangent to c at T if and only if l is perpendicular to
←→
OT at T .

Proof (refer to Fig. 2.30): First, suppose that l is tangent to c at T . If l

is not perpendicular to
←→
OT at T , then let P be the point on l where

←→
OP is

perpendicular to l. On l we can construct a point Q opposite of T from P
such that PQ ∼= PT . Then, by SAS ∆OPT ∼= ∆OPQ. Then, OT ∼= OQ.
But, this would imply that Q is on the circle, which contradicts T being the
point of tangency.
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O

c

T

l

P

Q

Fig. 2.30

On the other hand, suppose that l is perpendicular to
←→
OT at T . Let P

be any other point on l. By the exterior angle theorem, the angle at P in
∆OPT is smaller than the right angle at T . Thus, since in any triangle the
greater angle lies opposite the greater side and vice versa (Propositions 18
and 19 of Book I), we have that OP > OT and P is not on the circle. Thus,
l is tangent at T . 2

Do tangents always exist? Theorem 2.36 shows us how to construct the
tangent to a circle from a point on the circle. What if we want the tangent
to a circle from a point outside the circle?

Theorem 2.37. Given a circle c with center O and radius OA and given a
point P outside of the circle, there are exactly two tangent lines to the circle
passing through P .

Proof (refer to Fig. 2.31): Let M be the midpoint of OP and let c′ be
the circle centered at M with radius OM . Then, since P is outside circle
c and O is inside, we know that c′ and c will intersect at two points, T1

and T2. Since ∠PT1O is inscribed in a semi-circle of c′, then it must be a

right angle. Thus,
←−→
PT1 is perpendicular to OT1 at T1 and by the previous

theorem T1 is a point of tangency. Likewise, T2 is a point of tangency.
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Fig. 2.31

Can there be any more points of tangency passing through P? Suppose
that W is another point of tangency on c such that the tangent line at W
passes through P . Then, ∠PWO is a right angle. Let c′′ be the circle
through P,W,O. Then, by Corollary 2.33 we know that OP is a diameter
of c′′. But, then M would be the center of c′′ and the radius of c′′ would be
OM . This implies that c′ and c′′ are the same circle and that W must be
one of T1 or T2. 2

Exercise 2.6.1. Finish the proof for the remaining two cases in Theorem 2.31.
That is, prove the result for the case where A is on the diameter through OP and

for where A and B are on the same side of
←→
PO.

Exercise 2.6.2. Prove Corollary 2.34.

Exercise 2.6.3. Two circles meet at
points P and Q. Let AP and BP be
diameters of the circles. Show that
AB passes through the other intersec-
tion Q.

Q BA

P
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Exercise 2.6.4. Let c be the circum-
scribed circle of ∆ABC and let P be
the point on c where the bisector of
∠ABC meets c. Let O be the center
of c. Prove that the radius OP meets
AC at right angles.

B

A C

O

c

P

Exercise 2.6.5. Show that the line passing through the center of a circle and
the midpoint of a chord is perpendicular to that chord, provided the chord is not a
diameter.

Exercise 2.6.6. Let AD and BC
be two chords of a circle that inter-
sect at P . Show that (AP )(PD) =
(BP )(PC). [Hint: Use similar trian-
gles.]

A

B

D

C

P

Exercise 2.6.7. In the last project we saw that every triangle can be circum-
scribed. Show that every rectangle can be circumscribed.

Definition 2.33. Two distinct circles c1 6= c2 are mutually tangent at a
point T if the same line through T is tangent to both circles.
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Exercise 2.6.8. Show that two cir-
cles that are mutually tangent must
have the line connecting their centers
passing through the point of tangency.

A
T

c

B

c’

l

Exercise 2.6.9. Show that mutually tangent circles intersect in only one point.
[Hint: Suppose they intersected at another point P . Use the previous exercise and
isosceles triangles to yield a contradiction.]

Exercise 2.6.10. Show that two circles that are mutually tangent at T must
either be

1. on opposite sides of the common tangent line at T , in which case we will call
the circles externally tangent, or

2. on the same side of the tangent line, with one inside the other, in which case
we will call the circles internally tangent.

Exercise 2.6.11. Given two circles
externally tangent at a point T , let AB
and CD be segments passing through T
with A, C on c1 and B, D on c2. Show

that
←→
AC and

←→
BD are parallel. [Hint:

Show that the alternate interior angles
at C and D are congruent.]

T

c
2

c
1

A

C

B

D

Exercise 2.6.12. Show that the line
from the center of a circle to an outside
point bisects the angle made by the two
tangents from that outside point to the
circle. [Hint: Use Exercise 2.2.11.]

O

P

B

A
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Exercise 2.6.13. Show the converse to the preceding exercise, that is, that the
bisector of the angle made by two tangents from a point outside a circle to the circle
must pass through the center of the circle. [Hint: Try a proof by contradiction.]

Exercise 2.6.14. Let c and c′ be externally tangent at T . Show that there are
two lines that are tangent to both circles (at points other than T ). [Hint: Let m
be the line through the centers. Consider the two radii that are perpendicular to
m. Let l be the line through the endpoints of these radii on their respective circles.
If l and m are parallel, show that l is a common line of tangency for both circles.
If l and m intersect at P , let n be a tangent from P to one of the circles. Show n
is tangent to the other circle.]

2.7 Project 4 - Circle Inversion and Orthogonality

In this project we will explore the idea of inversion through circles. Circle
inversion will be a critical component of our construction of non-Euclidean
geometry in Chapter 7.

We start out with the notion of the power of a point with respect to a
given circle.

Start the Geometry Explorer pro-
gram and create a circle c with cen-
terO and radius point A, and create
a point P not on c.

O

A

c

P
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Now create two lines originating
at P that pass through the circle.
Find the two intersection points of
the first line with the circle (call
them P1 and P2) and the two in-
tersection points of the second line
with the circle (call them Q1 and
Q2). Measure the four distances
PP1, PP2, PQ1, and PQ2. (To
measure distance, multi-select two
points and choose Distance (Mea-
sure menu).)

O

A

c

P

P2

P1

Q2

Q
1

Dist(P,P1) = 1.83

Dist(P,P2) = 6.00

Dist(P,Q1) = 1.82

Dist(P,Q2) = 6.01

Now we will compare the prod-
uct of PP1 and PP2 to the product
of PQ1 and PQ2. To do this we
will use the Calculator in Geometry
Explorer. Go to the Help Web page
(click on Help in the menu bar) and
then go to the “View Menu” link
and from there to the “Calculator”
link. Read through this section to
become familiarized with how to use
the Calculator. Now, choose Cal-
culator (View menu).

Notice that the four distance measurements are listed in the right half of
the Calculator window. Double-click the first distance measure, then click
on the Multiplication button (labeled “*”), and then double-click the second
distance measurement. We have just created an expression for the product
of PP1 and PP2.
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To use this measurement back in
the Geometry Explorer main win-
dow, we click the Evaluate button
and then the Add to Canvas but-
ton. The new product measure will
now be on the screen. Do the same
for the product of PQ1 and PQ2.
[Be sure to “Clear” the Calculator
first.]

O

A

c

P

P2

P1

Q2

Q1

Dist(P,P1) = 1.83

Dist(P,P2) = 6.00

Dist(P,Q1) = 1.82

Dist(P,Q2) = 6.01

Dist(P,P1) *Dist(P,P2)  = 10.95

Dist(P,Q1) *Dist(P,Q2)  = 10.95

Interesting! It appears that these two products are the same. Drag point
P around and see if this conjecture is supported.

Exercise 2.7.1. Our first task in this project is to prove that these two products
are always the same. [Hint: Consider some of the inscribed angles formed by
P1, P2, Q1, Q2. Use Corollary 2.32 to show that ∆PP1Q2 is similar to ∆PQ1P2

and thus show the result.]

Exercise 2.7.2. Show that the product of PP1 and PP2 (or PQ1 and PQ2) can
be expressed as PO2 − r2, where r is the radius of the circle.

Definition 2.34. Given a circle c with center O and radius r and given a
point P , we define the Power of P with respect to c as:

Power of P = PO2 − r2.

Note that by Exercise 2.7.2 the Power of P is also equal to the product
of PP1 and PP2 for any line l from P , with P1 and P2 the intersections of l
with the circle c.

Also note that the Power of P can be used to classify whether P is inside
(Power < 0), on (Power = 0), or outside (Power > 0) the circle.

Now we are ready to define circle inversion.

Definition 2.35. The inverse of P with respect to c is the unique point P ′

on ray
−−→
OP such that OP ′ = r2

OP (or (OP ′)(OP ) = r2).

Note that if the circle had unit radius (r = 1), and if we considered O
as the origin in Cartesian coordinates with OP = x, then the inverse P ′ of
P can be interpreted as the usual multiplicative inverse; that is, we would
have OP ′ = 1

x .
How do we construct the inverse point?
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Clear the screen and create a circle
c with center O and radius point A
and then create a point P inside c.

Create the ray
−−→
OP . At P construct

the perpendicular to
−−→
OP and find

the intersection points (T and U)
of this perpendicular with the cir-
cle. Create segment OT and find
the perpendicular to OT at T . Let
P ′ be the point where this second

perpendicular intersects
−−→
OP .

O

A

c

P

T

U

P’

Measure the distances for seg-
ments OP and OP ′ and measure
the radius of the circle. Use the Cal-
culator to compute the product of
OP and OP ′ and the square of the
radius as shown in the figure.

O

A

c

P

T

U

P’

Dist(O,P) = 1.24

Dist(O,P’) = 5.10

Radius(c) = 2.52

Dist(O,P) *Dist(O,P’) = 6.33

Radius(c) ^2 = 6.33

It appears that we have constructed the inverse!

Exercise 2.7.3. Prove that this construction actually gives the inverse of P .
That is, show that (OP )(OP ′) = r2.

In the last part of this lab, we will use the notion of circle inversion to
construct a circle that meets a given circle at right angles.

Definition 2.36. Two circles c and c′ that intersect at distinct points A
and B are called orthogonal if the tangents to the circles at each of these
points are perpendicular.

Suppose we have a circle c and two points P and Q inside c, with P not
equal to Q and neither point equal to the center O of the circle. The goal
is to construct a circle through P and Q that meets c at right angles.
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Using the ideas covered earlier in this project, construct the inverse P ′

of P with respect to c. Then, select P , P ′, and Q and click on the Circle
tool in the Construct panel to construct the unique circle c′ through these
three points. The claim is that c′ is orthogonal to c.

To see if this is the case, let’s first find the center of c′. Let R be the

intersection of
←→
TP with circle c′ (Fig 2.32).

O

c

P

T

P’

Q

c’

S
1

S
2

R

O’

Angle(O’,S1,O) = 90.00 degrees

Angle(O,S2,O’) = 90.00 degrees

Fig. 2.32

Then ∠RPP ′ is a right angle in circle c′ as ∠OPT is a right angle.
Thus, by Theorem 2.33 RP ′ is a diameter of c′. The midpoint O′ of RP ′

will be the center of c′. Let S1 and S2 be the intersection points of c with
c′. Measure ∠O′S1O and ∠OS2O

′ and check that they are right angles.
Since the tangents to c and c′ are orthogonal to OS1, OS2, O′S1, and O′S2,
then the tangents to the circles at S1 and S2 must also be orthogonal and
the circles are orthogonal. Note that this evidence of the orthogonality of
c and c′ is not a rigorous proof. The proof will be covered when we get to
Theorem 2.38.

Exercise 2.7.4. What do you think will happen to circle c′ as one of the points
P or Q approaches the center O of circle c? Try this out and then explain why this
happens.
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Project Report

The ability to construct orthogonal pairs of circles is crucial to developing a
model of hyperbolic geometry, where parallels to a line through a point are
“abundant.” We will look at this model in detail in Chapter 7.

For the project report, provide detailed analysis of the constructions
used in this project and complete answers to the exercises.

2.7.1 Orthogonal Circles Redux

Here is a proof of orthogonality of the circles constructed in the text pre-
ceding Exercise 2.7.4.

Theorem 2.38. Given a circle c with center O and radius OA and given
two points P and Q inside c, with P not equal to Q and neither point equal
to O, there exists a unique circle c′ (or line) that passes through P and Q
that is orthogonal to the given circle (Fig. 2.33).

O

A

c

P
P’

Q

c’

T

l

Fig. 2.33

Proof: It is clear that if P and Q lie on a diameter of c, then there is
a unique line (coincident with the diameter) that is orthogonal to c. So, in
the rest of this proof we assume that P and Q are not on a diameter of c.

Suppose that one or the other of P or Q, say P , is strictly inside c. As
above construct the inverse P ′ to P and let c′ be the unique circle passing
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through Q,P, P ′. Construct a tangent l to circle c′ that passes through O.
Let l be tangent to c′ at T . (To construct l, use the construction discussed
in Theorem 2.37.) We claim that T is also on circle c. To see this, consider
the power of O with respect to circle c′:

Power of O = (OP )(OP ′) = (OT )2

But, (OP )(OP ′) = r2 (r being the radius of c) since P ′ is the inverse
point to P with respect to c. Thus, (OT )2 = r2 and T is on circle c, and
the circles are orthogonal at T .

To see that this circle is unique, suppose there was another circle c′′

through P and Q that was orthogonal to c. Let P ′′ be the intersection of−−→
OP with c′′. Let T ′′ be a point where c and c′′ intersect. Then (OP )(OP ′′) =
(OT ′′)2. But, (OT ′′)2 = r2 and thus, P ′′ must be the inverse P ′ to P , and
c′′ must then pass through Q,P, P ′ and must be the circle c.

The final case to consider is when both P and Q are on the boundary of
c (Fig. 2.34). Then, any circle through P and Q that is orthogonal to c must
have its tangents at P and Q lying along OP and OQ. Thus, the diameters
of this circle must lie along tangent lines to c at P and Q. Thus, the center
of the orthogonal circle must lie at the intersection of these tangents, which
is a unique point.

O

c

P

Q

O’

c’

Fig. 2.34

2
We conclude this section on orthogonal circles with two results that will

prove useful when we study non-Euclidean geometry in Chapter 7.
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Theorem 2.39. Let c and c′ be two circles and let P be a point that is not
on c and is not the center O of c. Suppose that c′ passes through P . Then,
the two circles are orthogonal if and only if c′ passes through the inverse
point P ′ to P with respect to c.

Proof: First, suppose that c′ passes through the inverse point P ′ (refer
to Fig. 2.35). We know from the proof of Theorem 2.30 that the center O′

of c′ lies on the perpendicular bisector of PP ′. Since P and P ′ are inverses

with respect to c, then they both lie on the same side of ray
−−→
OP . Thus, O

is not between P and P ′ and we have that O′O > O′P . Thus, O is outside
of c′. We then can construct two tangents from O to c′ at points T1 and
T2 on c′. Using the idea of the power of points with respect to c′, we have
(OT1)2 = (OP )(OP ′). But, (OP )(OP ′) = r2 by assumption, where r is the
radius of c. Therefore, (OT1)2 = r2, and T1 is on c. A similar argument
shows that T2 is also on c. This implies that the two circles are orthogonal.
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P
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Fig. 2.35

Conversely, suppose that c and c′ are orthogonal at points T1 and T2.
The tangent lines to c′ at these points then pass through O, which implies

that O is outside c′. Thus,
−−→
OP must intersect c′ at another point P ′. Using

the power of points, we have r2 = (OT1)2 = (OP )(OP ′), and thus P ′ is the
inverse point to P with respect to circle c. 2

Corollary 2.40. Suppose circles c and c′ intersect. Then c′ is orthogonal
to c if and only if the circle c′ is mapped to itself by inversion in the circle c.

Proof: Suppose the circles are orthogonal, and let P be a point on c′. If
P is also on c, then it is fixed by inversion through c. If P is not on c, then
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by the proof of Theorem 2.39, we know that P is also not the center O of c.
Thus, Theorem 2.39 implies that the inverse P ′ of P with respect to c is on
c′. Thus, for all points P on c′, we have that the inverse point to P is again
on c′.

Conversely, suppose c′ is mapped to itself by inversion in the circle c. Let
P be a point on c′ that is not on c and which is not the center O of c. Then,
the inverse point P ′ with respect to c is again on c′. By Theorem 2.39, the
circles are orthogonal. 2



Chapter 3

Analytic Geometry

There once was a very brilliant horse who mastered arithmetic,
plane geometry, and trigonometry. When presented with prob-
lems in analytic geometry, however, the horse would kick, neigh,
and struggle desperately. One just couldn’t put Descartes before
the horse.

—Anonymous

In 1637 Réne Descartes (1596–1650) published the work La Geometrie,
in which he laid out the foundations for one of the most important inven-
tions of modern mathematics—the Cartesian coordinate system and analytic
geometry.

In classical Euclidean geometry, points, lines, and circles exist as ideal-
ized objects independent of any concrete context. In this strict synthetic
geometry, algebraic relations can be discussed, but only in relation to un-
derlying geometric figures.

For example, the Pythagorean Theorem, in Euclid’s geometry, reads
as follows: “The square on the hypotenuse equals the squares on the two
sides.” This statement literally means that the square constructed on the hy-
potenuse equals the other two squares, and Euclid’s proof of the Pythagorean
Theorem amounts to showing how one can rearrange the square figures to
make this equivalence possible.

From the time of Euclid until Descartes, there was always this insistence
on tying algebraic expressions precisely to geometric figures. The Arabs were
the first to introduce symbols, such as x2, for algebraic quantities, but they
too insisted on strict geometric interpretations of algebraic variables—x2

literally meant the square constructed on a segment of length x.

107
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Descartes was the first person to assume that algebraic relationships need
not be tied to geometric figures. For Descartes, expressions like x2, x3, xy,
and the like, were all numbers, or lengths of segments, and algebraic expres-
sions could be thought of as either arithmetic or geometric expressions.

This was a great leap forward in the level of mathematical abstraction,
in that it opened up mathematical avenues of study that were artificially
closed. For example, equations involving arbitrary powers of x were now
possible, since one was no longer restricted to segments (x), squares (x2),
and cubes (x3).

Descartes’ geometry was groundbreaking, although by no means what
we think of today as Cartesian geometry. There were no coordinate axes,
and Descartes did not have algebraic expressions for such simple figures as
straight lines.

A much more modern-looking attempt to merge algebra with geometry
was that of Pierre de Fermat (1601–1655), a contemporary of Descartes
working in Toulouse, who had a system of perpendicular axes and coordinate
equations describing lines, quadratics, cubics, and the conic sections. Fermat
also developed a general method for finding tangents and areas enclosed
by such algebraic expressions. In this regard, his work foreshadowed the
development of calculus by Newton and Leibniz.

The great insight of Descartes and Fermat was to embed the study of
geometric figures in a grid system, where a point is precisely located by
its distances from two fixed lines that are perpendicular to one another.
These two distances are called the coordinates of a point and are customarily
labeled “x” and “y.”

By studying the set of coordinates for a geometric figure, one can identify
patterns in these coordinates. For example, a line is a set of points (x, y)
where x and y have a relationship of the form ax + by + c = 0, with a, b,
and c constants. Similarly, the points making up a circle have their own x-y
relationship.

The coordinate geometry of Descartes and Fermat ultimately led to the
notion of functions and to the creation of calculus by Newton and Leibniz
toward the end of the seventeenth century. The great achievement of analytic
geometry is that it allows one to enrich the traditional synthetic geometry
of figures by the study of the equations of the x-y relationships for those
figures.

In this chapter we will construct analytic geometry from first principles.
Initially, we will develop this geometry from a synthetic geometric base,
similar to the development of Descartes and Fermat. Later in the chapter,
we will develop analytic geometry from a modern axiomatic basis. In the
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chapters following, we will make optimum use of both synthetic and an-
alytic geometry, using whichever approach to Euclidean geometry is most
transparent in devising proofs.

3.1 The Cartesian Coordinate System

In analytic geometry we create a coordinate system in the plane so that we
can have a way of uniquely referencing points by numerical values. The sim-
plest such coordinate system is the rectangular coordinate system (Fig. 3.1).

Let l be a line in the plane and let O be a point on that line. Let m be
a perpendicular to l through O. We will call these two lines the axes of our
coordinate system, with O being the origin.

By the continuity properties of the line, we know that for every real
number x there is a unique point X on l such that the length of OX is x.
We pick one side (ray) of l from O to be the positive side where the length
of OX is x ≥ 0 and let -x be the coordinate of OX ′ on the opposite ray such
that the length of OX ′ is also x. Likewise, there is a similar correspondence
on m. We call x and y the coordinates of the points on the axes.

O X

l

m

Y

X’

P (x,y)

Fig. 3.1

Now, let P be any other point in the plane, not on l or m. We can drop
(unique) perpendiculars down to l and m at points X and Y , represented
by coordinates x and y. The lines will form a rectangle OXPY . Conversely,
given coordinates x and y, we can construct perpendiculars that meet at
P . Thus, there is a one-to-one correspondence between pairs of coordinates
(x, y) and points in the plane. This system of identification of points in the
plane is called the rectangular (or Cartesian) coordinate system.

To see the power of this method, let’s look at the equation of a circle, that
is, the algebraic relationship between the x and y coordinates of points on
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a circle. The circle is defined by starting with two points O,R and consists
of points P such that OP ∼= OR.

Let’s create a coordinate system with origin at O and x-axis along OR.
Let r be the length of OR. Given any point P on the circle, let (x, y)
be its coordinates (Fig. 3.2). The angle ∠OXP is a right angle. By the
Pythagorean Theorem the length of OP is

√
x2 + y2, and this must equal

the length of OR, which is r. Thus, the circle is the set of points (x, y) such
that x2 + y2 = r2, a familiar equation from basic analysis.

O X(x,0)

Y(0,y)

P(x,y)

R(r,0)

Fig. 3.2

In the preceding discussion on the equation of a circle, we saw that the
length between a point (x, y) on a circle and the center of the circle is given
by
√
x2 + y2, assuming the origin of the coordinate system is at the center

of the circle. If the coordinate system is instead constructed so that the
center of the circle is at (x0, y0), then clearly the new length formula will be
given by

√
(x− x0)2 + (y − y0)2

In general this will give the distance between the points (x, y) and (x0, y0)
and is called the distance formula in the plane.

Here are some other useful algebraic-geometric facts.

Theorem 3.1. Let A = (x, y) and B = (-x,-y). Then, the line through A,B
passes through the origin (0, 0) with A and B on opposite sides of the origin
on this line.
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O = (0, 0)

A = (x, y)P

B = (-x, -y) Q

Fig. 3.3

Proof (refer to Fig. 3.3): If A is on either of the two axes, then so is B
and the result is true by the definition of positive and negative coordinates
on the axes.

Otherwise, we can assume that A (and thus B) is not on either axis.
Drop perpendiculars from A and B to the y-axis at P and Q. Then, the
distance from P to the origin will be y as is the distance from Q to the
origin. By the distance formula PA ∼= QB and AO ∼= BO. Thus, by
SSS ∆AOP ∼= ∆BOQ and the angles at O in these triangles are congruent.
Since ∠BOQ and ∠BOP are supplementary, then so are ∠AOP and ∠BOP .
Thus, A, O, and B lie on a line.

If A and B were on the same side of O on the line through A,B, then
since this line intersects the x-axis only at O, they must be on the same side
of the x-axis. But, then P and Q would have to be on the same side of the
x-axis, which is not the case. 2

Theorem 3.2. Let A = (x, y) and k be a number. Then, B = (kx, ky) is
on the line through A and the origin, and the distance from B to the origin
is equal to k times the distance from A to the origin.

Proof: This can be proved using similar triangles and is left as an exer-
cise. 2

Theorem 3.3. If A = (x, y) 6= (0, 0) and B = (x1, y1) are points on the
same line through the origin, then (x1, y1) = k(x, y) for some number k.

The proof of this theorem is left as an exercise.
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Theorem 3.4. If A = (x, y) and B = (x1, y1) are not collinear with the ori-
gin, then the point C = (x+x1, y+ y1) forms, with O,A,B, a parallelogram
where OC is the diagonal.

O

B(x1,y1)

A(x,y)

C

Fig. 3.4

Proof: First we have that AC =
√

(x+ x1 − x)2 + (y + y1 − y)2 (refer
to Fig. 3.4). Thus, AC =

√
(x1)2 + (y1)2 = BO. Similarly, AO = BC. A

simple triangle congruence argument shows that OACB is a parallelogram
and OC is the diagonal. 2

The choice of a coordinate system will divide the set of non-axes points
into four groups, called quadrants. Quadrant I consists of points with both
coordinates positive. Quadrant II is the set of points where x < 0 and y > 0.
Quandrant III has x < 0 and y < 0, and quadrant IV has x > 0 and y < 0.
Thus, all points are either on an axis or in one of the four quadrants.

3.2 Vector Geometry

Analytic geometry has been incredibly useful in modeling natural systems
such as gravity and temperature flow. One reason for analytic geometry’s
effectiveness is the ease of representing physical properties using coordinates.
Many physical systems are governed by variables such as force, velocity,
electric charge, and so forth, that are uniquely determined by their size and
direction of action. Such variables are called vectors.

The concept of a vector can be traced back to the work of William Rowan
Hamilton (1805–1865) and his efforts to treat complex numbers both as or-
dered pairs and as algebraic quantities. His investigations into the algebraic
properties of vector systems led to one of the greatest discoveries of the
nineteenth century, that of quaternions. While trying to create an algebra
of multiplication for three-dimensional vectors (a task at which he repeatedly



3.2. VECTOR GEOMETRY 113

failed), he realized that by extending his vector space by one dimension, into
four dimensions, he could define an operation of multiplication on vectors.

In 1843, as he was walking along the Royal Canal in Dublin, Hamilton
came to a realization:

And here there dawned on me the notion that we must admit,
in some sense, a fourth dimension of space for the purpose of
calculating with triples . . . An electric circuit seemed to close,
and a spark flashed forth. [39]

This realization had such a profound effect on Hamilton that he stopped
by a bridge on the canal and carved into the stone this famous formula:

i2 = j2 = k2 = ijk = −1

Here i, j, and k are unit length vectors along the y, z, and w axes in four
dimensions. Other important figures in the development of vector algebra
include Arthur Cayley (1821–1895) and Hermann Grassman (1809–1877).
Vector methods have come to dominate fields such as mathematical physics.
We will cover the basics of vector methods and then use vectors to study
geometric properties.

Definition 3.1. A vector is a quantity having a length and a direction.
Geometrically, we represent a vector in the plane by a directed line segment
or arrow. The starting point of the vector is called the tail and the point of
direction is called the head. Two parallel directed segments with the same
length and direction will represent the same vector. Thus, a vector is really
a set of equivalent directed segments in the plane.

What is the coordinate representation of a vector? Let the vector be
represented by the segment from (h, k) to (x, y) as shown in Fig. 3.5.

(h,k)

(x,y)

(h,0)

(x, y-k)

(0,0)

(x-h,y-k)
(0,k)

Fig. 3.5



114 CHAPTER 3. ANALYTIC GEOMETRY

If we consider the vector from (h, 0) to (x, y − k), which has its tail on
the x-axis, then, the quadrilateral formed by the heads and tails of these
two vectors forms a parallelogram, since by the distance formula the sides
will be congruent in pairs. These two directed segments are equivalent as
vectors since they have the same length and direction. Similarly, the directed
segment from (0, 0) to (x− h, y − k) represents the same vector.

Thus, given any vector in the plane, there is a unique way of identifying
that vector as a directed segment from the origin. The vector fromA = (h, k)
to B = (x, y) can be represented as the ordered pair (x−h, y−k) if we assume
that the vector’s tail is at the origin. This is the standard way to represent
vectors.

Definition 3.2. Let v be a vector represented by the ordered pair (x, y).
The norm of v will be defined as the length of the directed segment v and
will be denoted by ‖v‖. Thus,

‖v‖ =
√
x2 + y2

It will be convenient to define certain algebraic operations with vectors.

Definition 3.3. Let u, v be vectors and k a positive number. Then

• The vector u+v is the vector representing the diagonal of the parallel-
ogram determined by u and v, if u, v are not on the same line through
the origin. If u, v are on the same line through the origin, then u+ v
is the vector representing the sum of the x and y coordinates of the
vectors.

• The vector -v is the vector having the same length but opposite direc-
tion from v.

• The vector ku is the vector in the same direction as u whose length is
k times the length of u.

It follows from the definitions that the vector u− v, which is u+ (-v), is
the vector from v to u (Fig. 3.6).
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O

v

u

u-v

-v

u+(-v)

Fig. 3.6

Theorem 3.5. Let u = (a, b), v = (s, t) be two vectors in a coordinate
system and k be a number. Then

• The vector u+ v has coordinates (a+ s, b+ t).

• The vector -v has coordinates (-s, -t).

• The vector ku has coordinates (ka, kb).

Proof: Since vectors can be represented by segments from the origin
to points in the plane, then this theorem is basically a restatement of the
algebraic-geometric properties discussed earlier in our discussion of coordi-
nate systems. 2

Vectors can be used to give some very elegant geometric proofs. For
example, consider the following theorem about the medians of a triangle.

Theorem 3.6. The medians of a triangle intersect at a common point that
lies two-thirds of the way along each median.

Let’s see how we can use vectors to prove this theorem (Fig. 3.7).

A

C

B

D

F

E

G

Fig. 3.7
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Proof: First, it is left as an exercise to show that we can represent the
line through A and B by the set of all ~A + t( ~B − ~A), where t is real. ( ~A
stands for the vector from the origin to A.) The midpoint of the segment
AB will then be 1

2( ~A+ ~B) (the proof of this fact is left as an exercise).
Similarly, the midpoints of AB, AC, and BC are given by the three

vectors

~D =
1

2
( ~A+ ~B)

~E =
1

2
( ~B + ~C)

~F =
1

2
( ~A+ ~C)

(3.1)

Consider the median AE. Let G be the point two-thirds along this
segment from A to E. Then

~G− ~A = ~AG =
2

3
~AE =

2

3
( ~E − ~A) =

2

3
(
1

2
( ~B + ~C)− ~A) = (

1

3
~B +

1

3
~C − 2

3
~A)

Adding ~A to both sides yields

~G =
1

3
( ~A+ ~B + ~C)

A similar argument shows that the point that is two-thirds along the
other two medians is also 1

3( ~A + ~B + ~C). Thus, these three points can be
represented by the same vector, and thus the three medians meet at the
point represented by this vector. 2

Exercise 3.2.1. Prove Theorem 3.2.

Exercise 3.2.2. Prove Theorem 3.3.

Exercise 3.2.3. Let l be the line through a point P = (a, b) and parallel to
vector v = (v1, v2). Show that if Q = (x, y) is another point on l, then (x, y) =
(a, b) + t(v1, v2) for some t. [Hint: Consider the vector from P to Q.]

Exercise 3.2.4. Use the previous exercise to show that given a line l, there are
constants A, B, and C such that Ax+By + C = 0, for any point (x, y) on l.

Exercise 3.2.5. Given a segment AB, show that the midpoint is represented as
the vector 1

2 ( ~A+ ~B).

Exercise 3.2.6. Given a quadrilateral ABCD, let W,X, Y, Z be the midpoints
of sides AB,BC,CD,DA, respectively. Use vectors to prove that WXY Z is a
parallelogram.
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3.3 Project 5 - Bézier Curves

So far we have considered fairly simple geometric figures such as lines
and circles, for which we have correspondingly simple equations in x and y.
While these have incredibly useful features for the design of many everyday
objects, they are not so useful for describing complex shapes such as the
curves one finds in automobile designs or in the outlines of the letters of a
font.

For such non-linear and non-circular curves it is very difficult to derive
simple polynomial functions of x and y that completely represent the curve.
In general, the more a curve oscillates, the higher the degree of polynomial
we need to represent the curve. For a designer, having to calculate high-
order polynomials in order to sketch curves such as the fender of a car is not
a pleasant or efficient prospect.

In the 1950s and 1960s the problem of mathematically describing curves
of arbitrary shape was a primary area of research for engineers and mathe-
maticians in the aircraft and automobile industries. As computational tools
for design became more and more widely used, the need for efficient math-
ematical algorithms for modeling such curves became one of the highest
priorities for researchers.

To image a curve on a computer screen, one has to plot each individual
screen pixel that makes up the curve. If one pre-computes all the (x, y)
points needed for accurately representing the curve to the resolution of the
screen, then this will consume significant portions of the computer’s system
memory. A better solution would be to have an algorithm for computing
the curve that stored just a few special points and then computed the rest
of the points “on the fly.”

In this project we will look at a clever method of computing smooth
curves by using a simple set of “control” points in the plane. This method
is due to two automobile designers: Pierre Bézier (1910–1999), who worked
for the French automaker Rénault, and Paul de Casteljau, who also worked
for a French automaker—Citroën. The curves which these engineers discov-
ered have become known as Bézier curves, whereas the algorithm we will
consider for computing them has become known as de Casteljau’s algorithm.
A complete review of Bézier curves, and other curves used in computer-aided
design, can be found in textbooks on computer graphics such as [23] or [16].
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To start our discussion, let’s consider how we would create a curved path
in the plane by using a small number of defining points. Clearly, one point
cannot define a two-dimensional curve and two points uniquely define a line.
Thus, to have any hope of defining a truly curved path in the plane, we need
at least three points.

Start Geometry Explorer and create
three (non-collinear) points A, B,
and C joined by two segments as
shown. A

B

C

Let’s imagine a curve that passes through points A and C and that is
pulled toward B like a magnet. We will define such a curve parametrically.
That is, the curve will be given as a vector function ~c(t) where t will be
a parameter running from 0 to 1. We want ~c(0) = A and ~c(1) = C, and
for each 0 < t < 1 we want ~c(t) to be a point on a smooth curve bending
toward B. By smooth we mean a curve that has no sharp corners, that is,
one whose derivative is everywhere defined and continuous.

So, our task is to find a way to associate the parameter t with points
~c(t) on the curve we want to create.

Bézier’s solution to this problem
was to successively linearly interpo-
late points on the segments to de-
fine ~c(t). Attach a point A′ on the
segment AB as shown and measure
the ratio of AA′ to AB by multi-
selecting A′, A, and B (in that or-
der) and choosing Ratio (Measure
menu).

A

B

C

A’

Ratio((A’, A), (A,B)) = 0.71

The value of this ratio is the value of t that would appear as the parame-
ter value for the point A′ in a parametric equation for AB. This parametric
equation is given by ~l1(t) = ~A + t( ~B − ~A), with 0 ≤ t ≤ 1. (Refer to Exer-
cise 3.2.3.) We will use this ratio parameter as the defining parameter for
the curve ~c(t) we are trying to create. Note that when t = 0 we are at A,
which is what we want. But when t = 1, we are only at B and not at C.
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We will now interpolate a point between B and C that has the same
ratio as the point A′ did along the segment AB. To do this, we will use the
dilating (or scaling) capability of Geometry Explorer. A dilation is defined
by a center point and a numerical ratio. To define these two values we will
use the Mark pop-up menu in the Transform panel. This is a button that,
when clicked, will pop up a menu of items that can be selected.

To define the dilation that will cre-
ate the desired point between B
and C, we first select B and choose
Center under the Mark pop-up
menu. We will use the already cre-
ated ratio measurement as our di-
lation ratio. To do this, click the
mouse somewhere on the text of
the measurement on the screen. A
red box will appear surrounding the
measurement to show it has been
selected.

A

B

C

A’

Ratio((A’, A), (A,B)) = 0.71

Next, choose Ratio under the
Mark pop-up menu to define this
measurement as the dilation ratio
we will use to scale C toward B. Se-
lect C and click on the Dilate but-
ton in the Transform panel (first
button in second row). Point B′ will
be created on BC with the same rel-
ative parameter value as A′ has on
AB. To convince yourself of this,
measure the ratio of B′B to BC as
shown. (Multi-select B′, B, and C
(in that order) and choose Ratio
(Measure menu)).

A

B

C

A’

Ratio((A’, A), (A,B)) = 0.71

B’

Ratio((B’, B), (B,C)) = 0.71

We now have parameterized both segments with two vector functions
~l1(t) = ~A + t( ~B − ~A) and ~l2(t) = ~B + t(~C − ~B), where the parameter t
represents the relative distance points are along their respective segments.
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Since linear interpolation has worked
nicely so far, we carry it one step
further on the new segment A′B′.
Create this segment and then se-
lect A′ and choose Center under
the Mark pop-up menu. We will
scale B′ toward A′ by the same fac-
tor t as for the other segments. To
do this, select B′ and click on the
Dilate button.

A

B

C

A’

Ratio((A’, A), (A,B)) = 0.71

B’

Ratio((B’, B), (B,C)) = 0.71

c(t)

This new point is the point we will use for our definition of ~c(t). Let’s
calculate the precise form for ~c(t).

Since ~c(t) is the interpolated point along A′B′, then it will have equation

~c(t) = ~A′ + t( ~B′ − ~A′)

We also know that ~A′ = ~l1(t) = ~A + t( ~B − ~A) and ~B′ = ~l2(t) = ~B +
t(~C − ~B). Substituting these values into ~c(t) we get

~c(t) = ~A+ t( ~B − ~A) + t(( ~B + t(~C − ~B))− ( ~A+ t( ~B − ~A)))

= ~A+ t(2 ~B − 2 ~A) + t2(~C − 2 ~B + ~A)

We note that ~c(0) = ~A = A and ~c(1) = ~C = C, which is exactly what
we wanted! Also, this function is a simple quadratic function in t and thus
is perfectly smooth. But, what does ~c(t) really look like?

To answer this question, hide the
two measurements and hide the la-
bel for ~c(t), to unclutter our figure.
(To hide a label, Shift-click on it
while the cursor is in text mode.)
Then, select ~c(t) and choose Trace
On (Edit menu). This makes Ge-
ometry Explorer trace a point as it
moves. Drag point A′ back and
forth along AB and see how ~c(t)
traces out the curve we have just
calculated.

A

B

C

A’

B’
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Exercise 3.3.1. It appears from our picture that the curve ~c(t) is actually tangent

to the vector ~B− ~A at ~c(0) and to the vector ~C− ~B at ~c(1). Calculate the derivative
of ~c(t) and prove that this is actually the case.

By controlling the positions of A, B, and C we can create curves that are
of varying shapes, but that have only one “bump.” As we discussed earlier,
for more oscillatory behavior, we will need higher order functions. A simple
way to do this is to have more control points.

Clear the screen and draw four
points connected with segments as
shown. Attach a point A′ to AB
and then measure the ratio of A′A
to AB.

A

B

C

D

A’

Ratio((A’, A), (A,B)) = 0.65

Now, review our methods of
the previous construction, and con-
struct B′ and C ′ on BC and CD
with the same parameter as A′ has
on AB. (In your project write-up,
describe the steps you take to ac-
complish this step and the next set
of steps.)

A

B

C

D

A’

Ratio((A’, A), (A,B)) = 0.65

B’

C’

Next, construct A′B′ and B′C ′.
Now, we have just three points, as
we did at the start of the previous
construction. Construct points A′′

and B′′ on A′B′ and B′C ′ using the
same parameter.

A

B

C

D

A’

Ratio((A’, A), (A,B)) = 0.65

B’

C’

A’’
B’’

Finally, carry out the interpola-
tion process one more time to get
~c(t).

A

B

C

D

A’

Ratio((A’, A), (A,B)) = 0.65

B’

C’

A’’
B’’

c(t)
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If we now trace ~c(t) we again
get a nice smooth curve that passes
through the endpoints A and D.

A

B

C

D

A’

B’

C’

A’’ B’’

c(t)

If we move C to the other side
of
←→
AD we get an oscillation in the

curve. (Make sure to clear the
tracing (Clear All Traces (Edit
menu)) and then re-start the trac-
ing after you move C.)

A

B

C

D

A’

B’
C’

A’’

B’’

c(t)c(t)

What is the equation for this new four-point Bézier curve? Clearly, the
parametric form for ~c(t) will be

~c(t) = ~A′′ + t( ~B′′ − ~A′′)

From our previous work we know that ~A′′ = ~A + t(2 ~B − 2 ~A) + t2(~C −
2 ~B + ~A) and ~B′′ = ~B + t(2~C − 2 ~B) + t2( ~D − 2~C + ~B).

Exercise 3.3.2. Substitute these values of ~A′′ and ~B′′ into the equation of ~c(t)
and show that

~c(t) = ~A+ t(3 ~B − 3 ~A) + t2(3~C − 6 ~B + 3 ~A) + t3(D − 3~C + 3 ~B − ~A)

Bézier curves generated from four points are called cubic Bézier curves
due to the t3 term in ~c(t). Bézier curves generated from three points are
called quadratic Bézier curves.

Exercise 3.3.3. Show that ~c(t) has the same tangent properties as the quadratic

Bézier curve. That is, show that the tangent at t = 0 is in the direction of ~B − ~A
and the tangent at t = 1 is in the direction of ~D − ~C.

We could continue this type of construction of Bézier curves for five
control points, or six control points, or as many control points as we wish,
in order to represent more and more complex curves. However, as we add
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more points, the degree of our parameteric Bézier curve increases as well.
As the number of operations to compute a point increases, so too does the
numerical instability inherent in finite precision computer algebra. Also,
the oscillatory behavior of higher order curves is not always easy to control.
Altering one control point to achieve a bump in one part of the curve can
have unwanted ripple effects on other parts of the curve.

In practice, quadratic and cubic Bézier curves are the most widely used
curves for computer graphics. They are easy to calculate, relatively easy
to control as to shape, and can model highly complex figures by joining
together separately defined curves to form one continuous curve.

As an example, let’s look at one of the most important uses of Bézier
curves in computer graphics—the representation of fonts. Suppose we want
to represent the letter “S”.

Here we have defined two four-point
(cubic) Bézier curves to approxi-
mate the two bumps in the “S”
shape. One curve is controlled by
A, B, C, and D, with A1 the initial
parameter point and c1 the curve
point. The other curve is controlled
by D, E, F , and G with A2 the
parameter point and c2 the curve
point. By “doubling up” on the
point D we make the two curve
pieces join together, and by mak-
ing C, D, and E lie along a line, we
make the curve look smooth across
the joining region (the curves’ tan-
gents line up).

A B

C
D

E

F G

A
1

A
2

c
1

c
2

c
1

c
2

Exercise 3.3.4. Use cubic (or quadratic) Bézier curves to design your own version
of the letter “b.” Describe your construction in detail and provide a printout of the
curves used, similar to that in the preceding example.

In the actual design of a font, we would need to define more than a
simple curve representing the shape. Fonts are not made of one-dimensional
curves, but are made of filled-in areas that are bounded by curves. For
example, look closely at the bold letter G of this sentence. Notice how the
vertical bulge on the left side of the shape is much thicker than the top and
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bottom parts. When designing a font, what we actually design is the outline
of each letter shape; that is, the curve that surrounds the shape. Once this
is defined, we fill in the outline to form the completed shape.

Project Report

The ability to model complex geometric figures is a critical component of
modern computer graphics systems. Computational geometry methods, like
the ones explored in this project, are at the heart of computer-aided design
and also appear in the computer-generated images we see on television and
in film.

For your project report, provide detailed answers to each of the questions,
along with an explanation of the steps you took to construct the four-point
cubic Bézier curve.

3.4 Angles in Coordinate Geometry

As mentioned in the previous chapter, angles have a very precise definition in
classical Euclidean geometry, a definition that is independent of questions of
orientation. In this section we will expand the notion of angle in coordinate
geometry to include the idea of orientation. We start off by defining two
familiar functions.

Definition 3.4. Let θ = ∠CAB
be an acute angle in the plane. Let c
be the circle centered at A of radius
equal to AB. Let l be the perpen-

dicular to
←→
AC through B, intersect-

ing
←→
AC at D.

A

B

C

l

D

Then

cos(θ) =
AD

AB

sin(θ) =
BD

AB
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These are the standard trig formulas everyone learns to love in high
school trigonometry. Note that this definition is consistent with the defini-
tion presented in Exercise 2.5.5 of Chapter 2.

Theorem 3.7. Let (x, y) be a point in the plane making an acute angle of
θ with the x-axis. Let r be the distance from (x, y) to the origin. Then

x = r cos(θ), y = r sin(θ)

Proof: This is an immediate consequence of the definition of sine and
cosine. 2

Corollary 3.8. If (x, y) is a point on the unit circle (in the first quadrant)
making an angle of θ with the x-axis, then x = cos(θ) and y = sin(θ).

We now want to extend the definition of sine and cosine to obtuse angles.
If 90 < θ ≤ 180, we define

cos(θ) = − cos(180− θ)
sin(θ) = sin(180− θ)

It is a simple exercise to show that this new definition still has x = cos(θ)
and y = sin(θ), where (x, y) is a point on the unit circle making an obtuse
angle of θ with the x-axis.

To extend this correspondence between angles and points on the unit
circle into the third and fourth quadrants, we need to expand our definition
of angle measure. Note that for angles whose initial side is on the x-axis,
and whose measures are between 0 and 180 degrees, there is a one-to-one
correspondence between the set of such angles and the lengths of arcs on the
unit circle. This correspondence is given by the length of the arc subtended
by the angle. Thus, it makes sense to identify an angle by the arclength
swept out by the angle on the unit circle. We call this arclength the radian
measure of the angle.

Definition 3.5. An angle has radian measure θ if the angle subtends an arc
of length θ on the unit circle. If θ is positive, then the arclength is swept
out in a counterclockwise fashion. If θ is negative, the arc is swept out in a
clockwise fashion.

Thus, an angle of π radians corresponds to an angle of 180 degrees swept
out in the counterclockwise direction from the x-axis along the unit circle.
Likewise, an angle of 2π would be the entire circle, or 360 degrees, while an
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angle of -π2 would correspond to sweeping out an angle of 90 degrees clockwise
from the x-axis. In this definition of angle, the direction or orientation of the
angle is measured by the positive or negative nature of the radian measure.

Consistent with this extension of the definition of angle measure, we
extend the definitions of sine and cosine in the usual fashion consistent with
the x, y values on the unit circle.

The next result is a generalization of the Pythagorean Theorem.

Theorem 3.9. (The Law of Cosines) Let ABC be a triangle with sides of
lengths a, b, c, with a opposite A, b opposite B, and c opposite C. Then

c2 = a2 + b2 − 2ab cos(∠ACB).

Proof: Let AD be the altitude to side BC at D. There are four cases to
consider.

First, suppose that D = B or D = C. If D = B, then cos(∠ACB) = a
b

and we would have c2 = a2 + b2− 2a2 = b2− a2, which is just a restatement
of the Pythagorean Theorem. If D = C, we again have a restatement of the
Pythagorean Theorem.

A

B

c

Ca

b

A

B

c

Ca

b

A

B

c

Ca

b

D D

D

Fig. 3.8

If D is not B or C, then either D is between B and C, or D is on one

or the other of the sides of BC on
←→
BC. In all three cases (Fig. 3.8) we have

DB2 +AD2 = c2



3.4. ANGLES IN COORDINATE GEOMETRY 127

and

DC2 +AD2 = b2

Solving for AD2, we get

b2 −DC2 = c2 −DB2

Suppose that D is between B and C. Then

a2 = DB2 + 2(DB)(DC) +DC2

and solving for DB2 and substituting into the equation above, we get

c2 − a2 + 2(DB)(DC) +DC2 = b2 −DC2

or

c2 = a2 + b2 − 2(DB +DC)DC = a2 + b2 − 2a(DC)

Since cos(∠ACB) = DC
b , we have

c2 = a2 + b2 − 2ab cos(∠ACB)

A similar argument can be used to show the result in the other two cases.
2

Another very useful result connecting angles and triangles is the Law of
Sines.

Theorem 3.10. (Law of Sines) Let ABC be a triangle with sides of lengths
a, b, c, with a opposite A, b opposite B, and c opposite C. Then

a

sin(∠A)
=

b

sin(∠B)
=

c

sin(∠C)
= d (3.2)

where d is the diameter of the circle that circumscribes the triangle.

Proof: Let σ be the circumscribing circle, which can be constructed using
the techniques from the triangle project in section 2.3 of Chapter 2. Let O
be the center of σ (Fig. 3.9).
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O

A

σ

B

C

b a

c

D

Fig. 3.9

Let D be the intersection of
−−→
BO with σ. If A and D are on the same

side of
←→
BC, then ∠BAC and ∠BDC are congruent, as they share the same

arc (refer to Corollary 2.32 in Chapter 2). Thus, sin(∠A) = sin(∠D),
and since 4DCB is a right triangle (refer to Corollary 2.33), we have
a = sin(∠D)(BD) = sin(∠A)d.

If A and D are on opposite sides of
←→
BC, as illustrated in Fig. 3.10, it is

left as an exercise to show that sin(∠A) = sin(∠D) and thus a = sin(∠A)d.
Similar arguments can be used to show b = sin(∠B)d and c = sin(∠C)d.2

O

A

σ

B

C

b
a

c

D

Fig. 3.10
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We can connect vectors and angles via the following results.

Definition 3.6. The dot product of two vectors v = (v1, v2) and w =
(w1, w2) is defined as

v • w = v1w1 + v2w2

Theorem 3.11. Let v, w be two vectors with tails at the origin in a coor-
dinate system, as illustrated in Fig. 3.11. Let θ be the angle between these
two vectors. Then

v • w = ‖v‖‖w‖ cos(θ)

O

v

w

θ

Fig. 3.11

Proof: Let v = (v1, v2) and w = (w1, w2). The vector from v to w will
be the vector w − v. Let θ be the angle between v and w. By the Law of
Cosines, we have that

‖v − w‖2 = ‖v‖2 + ‖w‖2 − 2‖v‖‖w‖ cos(θ)

Also, since ‖v‖2 = v • v, we have that

‖v − w‖2 = (v − w) • (v − w) = v • v − 2v • w + w • w

and, thus,

‖v − w‖2 = ‖v‖2 + ‖w‖2 − 2v • w

Clearly, v • w = ‖v‖‖w‖ cos(θ). 2
We list here some of the useful identities from trigonometry. The proof

of the first identity is clear from the definition of cosine and sine and the
fact that the point (cos(α), sin(α)) lies on the unit circle. The proofs of the
other two identities are left as exercises.
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Theorem 3.12. For any angles α, β,

• sin2(α) + cos2(α) = 1

• sin(α+ β) = sin(α) cos(β) + sin(β) cos(α)

• cos(α+ β) = cos(α) cos(β)− sin(β) sin(α)

Exercise 3.4.1. LetA = (cos(α), sin(α))
and B = (cos(β), sin(β)). Use the
definition of the dot product, and the
preceding result connecting the dot
product to the angle between vec-
tors, to prove that cos(α − β) =
cos(α) cos(β) + sin(β) sin(α).

α
β

Exercise 3.4.2. Use the previous exercise to show that

cos(α+ β) = cos(α) cos(β)− sin(β) sin(α)

Exercise 3.4.3. Show that

sin(α+ β) = cos(
π

2
− (α+ β))

and then use this to prove that

sin(α+ β) = sin(α) cos(β) + sin(β) cos(α)

Exercise 3.4.4. Finish the proof of the Law of Sines in the case where the points

A and D are on opposite sides of
←→
BC.

3.5 The Complex Plane

Complex numbers were created to extend the real numbers to a system
where the equation x2 + 1 has a solution. This requires the definition of
a new number (symbol),

√
−1. The Swiss mathematician Leonhard Euler

(1707–1783) introduced the notation i for this new number in the late 1700s.
By adding this number to the reals, we get a new number system con-

sisting of real numbers and products of real numbers with powers of i. Since
i2 = −1, these combinations can be simplified to numbers of the form

α = a+ ib



3.5. THE COMPLEX PLANE 131

where a and b are real. The set of all possible numbers of this form will be
called the set of complex numbers and the plane containing these numbers
will be called the complex plane.

Historically, complex numbers were created strictly for solving algebraic
equations, such as x2 + 1 = 0. In the early part of the nineteenth century,
Carl Friedrich Gauss (1777–1855) and Augustin Louis Cauchy (1789–1857)
began working with complex numbers in a geometric fashion, treating them
as points in the plane.

Thus, a complex number has an interesting dual nature. It can be
thought of geometrically as a vector (i.e., an ordered pair of numbers), or
it can be thought of algebraically as a single (complex) number having real
components.

Definition 3.7. If z = x+ iy is a complex number, then x is called the real
part of z, denoted Re(z), and y is called the imaginary part, denoted Im(z).

Given a complex number z = x + iy, or two complex numbers z1 =
x1 + iy1 and z2 = x2 + iy2, we define basic algebraic operations as follows:

Addition-Subtraction z1 ± z2 = (x1 ± x2) + i(y1 ± y2)

Multiplication by Real Scalar kz = kx+ iky, for k a real number

Multiplication z1z2 = (x1x2 − y1y2) + i(x1y2 + x2y1)

Complex Conjugate z = x− iy

Modulus |z| =
√
zz =

√
x2 + y2

Note that complex addition (subtraction) is defined so that this opera-
tion satisfies the definition of vector addition (subtraction). In particular,
complex addition satisfies the parallelogram property described earlier in
this chapter.

The modulus of z is the same as the norm (length) of the vector that
z represents. The conjugate of z yields a number that is the reflection of z
(considered as a vector) across the x-axis.

3.5.1 Polar Form

The x and y coordinates of a complex number z can be written as

x = r cos(θ), y = r sin(θ)
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where r is the length of v = (x, y) and θ is the angle that v makes with the
x-axis. Since r = |z|, then

z = x+ iy = |z|(cos(θ) + i sin(θ))

The term (cos(θ) + i sin(θ)) can be written in a simpler form using the
following definition.

Definition 3.8. The complex exponential function ez is defined as

ez = ex+iy = ex(cos(y) + i sin(y))

From this definition we can derive Euler’s Formula:

eiθ = cos(θ) + i sin(θ)

Thus, the polar form for a complex number z can be written as

z = |z|eiθ

All of the usual power properties of the real exponential hold for ez, for
example, ez1+z2 = ez1ez2 . Thus,

eiθeiφ = ei(θ+φ)

We also note that if z = |z|eiθ, then

z = |z|e−iθ

The angle coordinate for z will be identified as follows:

Definition 3.9. Given z = |z|eiθ, the argument or arg of z is a value between
0 and 2π defined by

arg(z) = θ (mod 2π)

We use here the modular arithmetic definition that a mod n represents
the remainder (in [0, n)) left when a is divided by n. For example, 24 mod 10
is 4.

From the definition of arg, and using the properties of the complex ex-
ponential, we see that if z and w are complex numbers, then

arg(zw) = (arg(z) + arg(w))(mod 2π)

The proof is left as an exercise. Also, if z = |z|eiθ and w = |w|eiφ, then
wz = |w||z|ei(φ+θ).
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3.5.2 Complex Functions

A complex function f in a region R of the plane is a rule that assigns to
every z ∈ R a complex number w. The relationship between z and w is
designated by w = f(z). In the last section, f(z) = ez defined a complex
function on the entire complex plane.

Every complex function is comprised of two real-valued functions. By
taking the real and imaginary parts of w = f(z), we get that

f(x+ iy) = u(x, y) + iv(x, y)

For example, if f(z) = z2, then u(x, y) = x2 − y2 and v(x, y) = 2xy.

One of the simplest classes of complex functions is the set of polynomials
with complex coefficients. One of the most significant results in the area of
complex numbers is that every complex polynomial has at least one root,
and therefore has a complete set of roots (see [28] for a proof).

Theorem 3.13. (Fundamental Theorem of Algebra) Let p(z) be a non-
constant polynomial. Then, there is a complex number a with p(a) = 0.

The Point at Infinity and The Extended Complex Plane

The set of points for which the function w = 1
z is defined will include all

complex numbers, except z = 0. As z approaches 0, the modulus of w will
increase without bound.

Also, for all w 6= 0 there is a point z for which w = 1
z . Thus, f(z) = 1

z
defines a one-to-one function from the complex plane (minus z = 0) to the
complex plane (minus w = 0).

We call a function f that maps a set S to a set S′ one-to-one (1-1) if it
has the property that whenever f(s) = f(t), then s = t, for s and t in S.
We will call fonto if for all elements s′ in S′, there is an s in S such that
f(s) = s′.

In order to make f a function defined on all points of the complex plane,
we extend the complex plane by adding a new element, the point at infinity,
denoted by∞. To be more precise, we define the point at infinity as follows:

Definition 3.10. The point at infinity is the limit point of every sequence
{zn} of complex numbers that is increasing without bound. A sequence is
increasing without bound if for all L > 0 we can find N such that |zn| > L
for all n > N .
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What properties does the point at infinity have? If {zn} increases with-
out bound, then { 1

zn
} must converge to zero. So, if ∞ = limn→∞ zn, then

0 = limn→∞
1
zn

.

Thus, it makes sense to define 1
∞ = 0 and 1

0 = ∞. Then, f(z) = 1
z will

be a one-to-one map of the extended complex plane (the complex plane plus
the point at infinity) onto itself.

Whereas we can conceptualize the set of complex numbers as the Eu-
clidean (x, y) plane, the extended complex plane, with an ideal point at
infinity attached, is harder to conceptualize. It turns out that the extended
complex plane can be identified with a sphere through a process called stereo-
graphic projection.

Stereographic Projection

In a three-dimensional Euclidean space with coordinates (X,Y, Z), let S be
the unit sphere, as shown in Fig. 3.12.

O

N(0,0,1)

P(x,y,0)

P’(X,Y,Z)

Fig. 3.12

Let N be the north pole of the sphere, the point at (0, 0, 1). The sphere
is cut into two equal hemispheres by the X-Y plane, which we will identify
with the complex plane. Given a point P = z = (x + iy) in the complex
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plane, we map P onto the sphere by joining N to P by a line and finding
the intersection point P ′ of this line with the sphere.

Clearly, points for which |z| < 1 will map to the lower hemisphere and
points for which |z| > 1 will map to the upper hemisphere. Also, all points
in the complex plane will map to a point of the sphere, covering the sphere
entirely, except for N . If we identify the point at infinity with N , we get
a one-to-one correspondence between the extended complex plane and the
sphere S. The coordinate equations for this map are

X =
2x

|z|2 + 1
, Y =

2y

|z|2 + 1
, Z =

|z|2 − 1

|z|2 + 1
(3.3)

The derivation of these coordinate equations is left as an exercise.

The map π given by π(P ′) = P identifies points on the sphere with
points in the complex plane. This map is called the stereographic projection
of S onto the complex plane.

An important property of stereographic projection is that it maps circles
or lines to circles or lines.

Theorem 3.14. Let c be a circle or line on the unit sphere. Then, the
image of c under π is again a circle or line.

Proof: We note that c is the intersection of some plane with the sphere.
Planes have the general equation AX+BY +CZ = D, where A, B, C, and
D are constants. Then, using equation 3.3 we have

A
2x

|z|2 + 1
+B

2y

|z|2 + 1
+ C
|z|2 − 1

|z|2 + 1
= D

Simplifying, we get

2Ax+ 2Bx+ C(x2 + y2 − 1) = D(x2 + y2 + 1)

or

(C −D)x2 + (C −D)y2 + 2AX + 2By = C +D

If C−D = 0 we get the equation of a line. Otherwise, this is the equation
of a circle. 2

Stereographic projection also has the property that it preserves angles.
This is true of any map of the extended complex plane that takes circles and
lines to circles and lines (see [9, page 90] or [22, pages 248–254]).
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3.5.3 Analytic Functions and Conformal Maps (Optional)

Two very important properties of a complex function f are its differentia-
bility and its geometric effect on regions in the plane.

Definition 3.11. A complex function f(z) is differentiable at z0 if

lim
z→z0

f(z)− f(z0)

z − z0

exists. The value of the limit will be denoted as f ′(z0).

The complex derivative of a function satisfies the same rules as for a real
derivative: the power rule, product and quotient rules, and the chain rule.
However, the fact that the limit defining the derivative is complex yields
some interesting differences that one would not expect from comparison
with real functions.

For example, the function f(z) = z (complex conjugation) is not differ-
entiable. To see this, let z = z0 + h. Then

lim
z→z0

f(z)− f(z0)

z − z0
= lim

h→0

f(z + h)− f(z)

h

= lim
h→0

z + h− z
h

= lim
h→0

h

h

If h is real, this limit is 1 and if h is pure imaginary, this limit is −1.
Thus, the complex conjugate function is not differentiable.

The functions of most interest to us are those differentiable not only at
a point, but in a region about a point.

Definition 3.12. A function f(z) is analytic at a point z0 if it is differen-
tiable at z0 and at all points in some small open disk centered at z0.

An amazing difference between complex variables and real variables is
the fact that an analytic function is not just one-times differentiable, but is
in fact infinitely differentiable and has a power series expansion about any
point in its domain. The proof of these results would take us far afield of our
main focus of study. For a complete derivation of these results on analytic
functions, see [28] or [24].

We will make extensive use of the geometric properties of analytic func-
tions in Chapter 8. Analytic functions have the geometric property that
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angles and lengths will conform or be in harmony as they are transformed
by the action of the function.

Definition 3.13. Let f(z) be a function defined on an open subset D of
the complex plane. Then, we say that

• f preserves angles if given two differentiable curves c1 and c2 intersect-
ing at z0 with an angle of θ between their tangents (measured from c1

to c2), the composite curves f ◦c1 and f ◦c2 have well-defined tangents
that intersect at the same angle θ (measured from f ◦ c1 to f ◦ c2).

• f preserves local scale if for z near z0, we have |f(z)−f(z0)| ≈ k|z−z0|,
with k a positive real constant, and

lim
z→z0

|f(z)− f(z0)|
|z − z0|

= k

Definition 3.14. A continuous function f(z) defined on an open set D is
said to be conformal at a point z0 in D if f preserves angles and preserves
local scale.

It turns out that an analytic function is conformal wherever its derivative
is non-zero.

Theorem 3.15. If a function f(z) is analytic at z0, and if f ′(z0) 6= 0, then
f is conformal at z0.

Proof: Let z(t) = c(t) be a curve with c(0) = z0. The tangent vector to
this curve at t = 0 is c′(0), and we can assume this tangent vector is non-
zero. (To check conformality, we need to have well-defined angles.) Also,
arg(c′(0)) measures the angle this tangent makes with the horizontal.

The image of c under f is given by w(t) = f(c(t)), and the tangent vector
to this curve at t = 0 will be dw

dt at t = 0. Since

dw

dt
= f ′(c(t))c′(t)

the tangent to w(t) at t = 0 is w′(0) = f ′(c(0))c′(0) = f ′(z0)c′(0). Thus,
w′(0) 6= 0 and arg(w′(0)) = arg(f ′(z0))+arg(c′(0)). We see that the change
in angle between the original tangent to c and the tangent to the image curve
w is always arg(f ′(z0)). Thus, any two curves meeting at a point will be
mapped to a new pair of intersecting curves in such a way that their tangents
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will both be changed by this constant angle, and thus the angle between the
original tangents will be preserved.

For showing preservation of scale, we note that

|f ′(z0)| = lim
z→z0

|f(z)− f(z0)|
|z − z0|

Thus, for z0 close to z, |f(z) − f(z0)| ≈ |f ′(z0)||z − z0| and f preserves
local scale. 2

We note here that if f is analytic, then it preserves not only the size
of angles, but also their orientation, since the angle between two curves
is modified by adding arg(f ′(z0)) to both tangents to get the new angle
between the images of these curves.

The converse to Theorem 3.15 also holds.

Theorem 3.16. If a function f(z) is conformal in a region D, then f is
analytic at z0 ∈ D, and f ′(z0) 6= 0.

For a proof of this theorem see [1].
In Chapter 8 we will be particularly interested in conformal maps defined

on the complex plane or on the extended complex plane.

Theorem 3.17. A conformal map f that is one-to-one and onto the complex
plane must be of the form f(z) = az + b, where a 6= 0 and b are complex
constants.

Proof: By the previous theorem we know that f is analytic and thus
must have a Taylor series expansion about z = 0, f(z) =

∑∞
k=0 akz

k. If
the series has only a finite number of terms, then f is a polynomial of some
degree n. Then, f ′ is a polynomial of degree n−1, and if it is non-constant,
then by the Fundamental Theorem of Algebra, f ′ must have a zero. But,
f ′ 6= 0 anywhere, and thus f(z) = az + b, a 6= 0.

Suppose the series for f has an infinite number of terms. Then there are
points α in the plane for which f(z) = α has an infinite number of solutions,
which contradicts f being one-to-one. (The point α exists by the Casorati-
Weierstrass Theorem and the fact that f(1

z ) has an essential singularity at
z = 0 (see [8, page 105] for more details)). 2

Theorem 3.18. A conformal map f that is one-to-one and onto the ex-
tended complex plane must be of the form f(z) = az+b

cz+d , where ad− bc 6= 0.

Proof: If the point at infinity gets mapped back to itself by f , then f is a
conformal map that is one-to-one and onto the regular complex plane; thus
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f(z) = az + b, a 6= 0 by the previous theorem. Then f(z) = az+b
0z+d , where

d = 1 and ad− bc = a 6= 0.

Otherwise, suppose that z = α is the point that gets mapped to infinity.
Let ζ = 1

z−α . Consider w = f(ζ). At z = α the value of ζ becomes infinite.
Thus, for w = f(ζ), the point at infinity gets mapped to itself, and so
w = f(ζ) = aζ + b, a 6= 0. Then

w = a

(
1

z − α

)
+ b =

a+ b(z − α)

z − α
=
bz − (a+ bα)

z − α

Since −bα− (−(a+ bα)(1)) = a 6= 0, we have proved the result.

2

Definition 3.15. Functions f of the form f(z) = az+b
cz+d are called bilinear

transformations, or linear fractional transformations. If ad− bc 6= 0, then f
is called a Möbius transformation.

Möbius transformations will play a critical role in our study of non-
Euclidean geometry in Chapter 8. We note here that an equivalent definition
of Möbius transformations would be the set of f(z) = az+b

cz+d with ad−bc = 1.
(The proof is left as an exercise.)

Exercise 3.5.1. Prove that eiθeiφ = ei(θ+φ) using Euler’s Formula and the
trigonometric properties from section 3.4.

Exercise 3.5.2. Use Euler’s Formula to prove the remarkable identity eiπ+1 = 0,
relating five of the most important constants in mathematics.

Exercise 3.5.3. Show that arg(zw) = (arg(z) + arg(w))(mod 2π), where z and
w are complex.

Exercise 3.5.4. Use the polar form of a complex number to show that every
non-zero complex number has a multiplicative inverse.

Exercise 3.5.5. Express these fractions as complex numbers by rationalizing
the denominator, namely, by multiplying the numerator and denominator by the
conjugate of the denominator.

1

2i
,

1 + i

1− i
,

1

2 + 4i

Exercise 3.5.6. Derive the stereographic equations (Equation 3.3). [Hint: If N ,
P ′, and P are on a line, then show that (X,Y, Z − 1) = t(x, y,−1). Solve this for
X, Y , Z and use the fact that X2 + Y 2 + Z2 = 1 to find t.]
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Exercise 3.5.7. Show that stereographic projection (the map π described above)
has the equation π(P ′) = 1

1−Z (X,Y ). [Hint: The line through N , P ′, and P in
Fig. 3.12 will have the form N + t(P ′ −N). The third coordinate of points on this
line will be given by 1 + t(Z − 1). Use this to find t.]

Exercise 3.5.8. Show that stereographic projection is a one-to-one map.

Exercise 3.5.9. Show that stereographic projection is onto the complex plane.

Exercise 3.5.10. Show that the set of Möbius transformations can be defined
as the set of f(z) = az+b

cz+d with ad− bc = 1.

Exercise 3.5.11. Let f(z) = z. Show that f has the local scale preserving
property, but has the angle-preserving property only up to a switch in the sign of
the angle between tangent vectors. Such a map is called indirectly conformal.

3.6 Birkhoff’s Axiomatic System for Analytic
Geometry

In this last section of the chapter, we will consider Birkhoff’s axiomatic sys-
tem, a system that is quite different from Euclid’s original axiomatic system.
Euclid’s set of axioms is somewhat cumbersome in developing analytic ge-
ometry. One has to construct the set of real numbers and also to develop the
machinery necessary for computing distance and working with angle mea-
sure. Birkhoff’s system, on the other hand, assumes the existence of the
reals and gives four axioms for angles and distances directly.

Birkhoff’s system starts with two undefined terms (point and line) and
assumes the existence of two real-valued functions—a distance function,
d(A,B), which takes two points and returns a non-negative real number,
and an angle function, m(∠A,O,B), which takes an ordered triple of points
({A,O,B} with A 6= O and B 6= O) and returns a number between 0 and
2π.

Birkhoff’s Axioms are as follows:

The Ruler Postulate The points of any line can be put into one-to-
one correspondence with the real numbers x so that if xA corre-
sponds to A and xB corresponds to B, then |xA − xB| = d(A,B)
for all points A,B on the line.

The Euclidean Postulate One and only one line contains any two
distinct points.
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The Protractor Postulate Given any point O, the rays emanating
from O can be put into one-to-one correspondence with the set of
real numbers (mod 2π) so that if am corresponds to ray m and an
corresponds to ray n and if A,B are points (other than O) on m,n,
respectively, then m(∠AOB) = am − an (mod 2π). Furthermore,
if the point B varies continuously along a line n not containing O,
then an varies continuously also.

The SAS Similarity Postulate If in two triangles ABC and A′B′C ′,
and for some real number k > 0, we have d(A′, B′) = k d(A,B),
d(A′, C ′) = k d(A,C), and m(∠BAC) = m(∠B′A′C ′), then the
remaining angles are pair-wise equal in measure and d(B′, C ′) =
k d(B,C).

With these four axioms and the assumed structure of the real numbers,
Birkhoff was able to derive the standard set of results found in planar Eu-
clidean geometry [6].

For example, given three distinct points A, B, and C, Birkhoff defines
betweenness as follows: B is between A and C if d(A,B)+d(B,C) = d(A,C).
From this definition, Birkhoff defines a segment AB as the points A and B
along with all points between them. Birkhoff then defines rays, triangles,
and so on, and shows the standard set of results concerning betweenness in
the plane.

The protractor postulate allows us to define right angles as follows: two
rays m,n from a point O form a right angle if m(∠AOB) = ±π

2 , where A, B
are points on m, n. In this case, we say the rays are perpendicular. Parallel
lines are defined in the usual way—as lines that never meet.

Let’s see how analytic geometry can be treated as a model for Birkhoff’s
system. That is, we will see that Birkhoff’s postulates can be satisfied by
the properties of analytic geometry.

Define a point as an ordered pair (x, y) of numbers and define the distance
function as

d((x1, y1), (x2, y2)) =
√

(x1 − x2)2 + (y1 − y2)2

Note that this definition does not suppose any geometric properties of
points. All we are assuming is that points are ordered pairs of numbers.

Define a line as the set of points (x, y) satisfying an equation of the form
ax + by + c = 0, where a, b, c are real constants, uniquely given up to a
common scale factor.
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We next define vectors as ordered pairs and define the angle determined
by two vectors by

cos(θ) =
v • w
‖v‖‖w‖

where the dot product and norm of vectors is defined algebraically as before,
and the cosine function can be defined as a Taylor series, thus avoiding any
geometric interpretation. The angle determined by two rays emanating from
a point will be defined as the angle determined by two vectors along these
rays.

Does this definition of angles satisfy Birkhoff’s Protractor Postulate?
First of all, given any point O we can identify a ray from O with a direction
vector w = (x, y), with w 6= (0, 0). To create a correspondence between
angles and numbers, we will fix a particular direction given by v = (1, 0)
and measure the angle determined by w and v:

cos(θ) =
v • w
‖v‖‖w‖

=
x

‖w‖

We then define the sine function by

sin(θ) =
y

‖w‖

If we divide w by its length, we still have a vector in the same direction
as w and thus we can assume w = (x,

√
1− x2), or w = (x,−

√
1− x2) with

−1 ≤ x ≤ 1. If w = (x,
√

1− x2) we get from the above equation that
−1 ≤ cos(θ) ≤ 1, and thus 0 ≤ θ ≤ π. We can extend this correspondence
to angles between π and 2π in the usual way by identifying those angles
between π and 2π with values of w, where w = (x,−

√
1− x2).

Thus, we have created a correspondence between rays from O (and thus
angles) and real numbers between 0 and 2π. Now, to check whether the
second part of the Protractor Postulate holds, we suppose m, n are two rays
from O, with direction vectors w1 = (x1, y1) and w2 = (x2, y2). If θ1, θ2 are
the angles made by w1, w2 under the correspondence described, then

cos(θ1) =
x1

‖w1‖

cos(θ2) =
x2

‖w2‖

Also, using the definitions of sine and cosine, we can show algebraically
that

cos(θ1 − θ2) = cos(θ1) cos(θ2) + sin(θ1) sin(θ2)
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(Review the exercises at the end of section 3.3 to convince yourself that
this formula can be proved using only the dot product and cosine expression
above and the algebraic properties of sine and cosine.)

Now, by definition, if θ is the angle formed by m,n, then

cos(θ) =
w1 • w2

‖w1‖‖w2‖
=
x1x2 + y1y2

‖w1‖‖w2‖

=
x1

‖w1‖
x2

‖w2‖
+

y1

‖w1‖
y2

‖w2‖
= cos(θ1) cos(θ2) + sin(θ1) sin(θ2)

= cos(θ1 − θ2)

Thus, under the correspondence described above between rays and num-
bers, am = θ1 and an = θ2 are the “angles” assigned to m and n, and then
m(∠AOB) = an − am(mod 2π), where A, B are points on n and m.

The analytic geometry model also satisfies Birkhoff’s Euclidean Postu-
late. Let (x1, y1) and (x2, y2) be two distinct points. To find the “line”
these points are on, we need to find the constants a, b, c in the line equation
ax+ by + c = 0.

Since (x1, y1) and (x2, y2) are on this line, we have

ax1 + by1 + c = 0

ax2 + by2 + c = 0

Subtracting, we get a(x1−x2)+b(y1−y2) = 0. Since (x1, y1) and (x2, y2)
are distinct, we know that one of x1 − x2 or y1 − y2 are non-zero. Suppose
y1 − y2 6= 0. Then

b = −ax1 − x2

y1 − y2

and

c = −ax1 − by1

Since the constants need only be defined up to a constant multiple, we
can choose a = 1, and the line through the two points is now well defined
and, in fact, uniquely determined (up to the constant scale factor).

The Ruler Postulate follows from first choosing a point O = (x0, y0) on
a given line l to serve as the origin. Let (x1, y1) be a second point on l. Let
∆x = x1 − x0 and ∆y = y1 − y0. Then

a(∆x) = −b(∆y)
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If (x, y) is any other point on l, then

a(x− x0) = −b(y − y0)

If x−x0 = t(∆x), then clearly, y−y0 = t(∆y), in order for the preceding
equations to hold. Thus, we can write the line’s equation in vector form as

(x, y) = (x0, y0) + t(∆x,∆y)

For the correspondence required in the Ruler Postulate, simply associate
the point (x, y) with the value of t

√
(∆x)2 + (∆y)2. It is left as an exercise

to check that |xA − xB| = d(A,B) for all points A,B on l.
Finally, does the analytic geometry model satisfy the last postulate, the

SAS condition for similar triangles?
Consider the Law of Cosines, described earlier in this chapter. Given a

triangle ABC with side lengths a = BC, b = AC, and c = AB and angles
α = m(∠BAC), β = m(∠ABC), and γ = m(∠ACB), then

c2 = a2 + b2 − 2a b cos(γ)

It is clear that if two pairs of sides in two triangles are proportional and
if the included angles are equal, then by the Law of Cosines the third pair of
sides must have the same constant of proportionality. Then, using the Law
of Cosines again with all three sides proportional, it is clear that the other
angles must be equal.

It is left as an exercise to show that the Law of Cosines can be proven
from within the Birkhoff model.

We have thus proved that Birkhoff’s Postulates are satisfied within the
model of analytic geometry. Since Birkhoff showed that classical Euclidean
geometry can be derived from his set of postulates, we see that Euclidean
geometry can be derived from within an analytic model, just by using the
properties of ordered pairs of numbers and analytic equations of lines and
angles. Birkhoff’s system does not suffer the foundational problems of Eu-
clid’s original axiomatic system. For example, there is no need to axiomatize
the idea of “betweeness” since it can be analytically defined. However, the
system derives its power and elegance at a price—the assumption of the
existence of the real numbers. To be complete, we would have to develop
the real numbers before using Birkhoff’s system, by axiomatically creating
the reals from within another system.

Exercise 3.6.1. Finish the verification that the Ruler Postulate is satisfied by
the analytic geometry model. That is, show that |xA−xB | = d(A,B) for all points
A,B on l, where l is represented as (x, y) = (x0, y0) + t(dx, dy).
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Exercise 3.6.2. We have to take care when using a result, such as the Law of
Cosines, to prove that Birkhoff’s SAS Similarity Postulate holds for the analytic
geometry model. We have to ensure that the Law of Cosines can be proved solely
within the model itself. Derive the Law of Cosines by using the vector equation
for the cosine of an angle and by using general properties of vectors. [Hint: c2 =

‖ ~B − ~A‖2 = ‖( ~B − ~C)− ( ~A− ~C)‖2.]

Exercise 3.6.3. Using the vector definition of sine and cosine, prove that sin2(θ)+
cos2(θ) = 1.

Exercise 3.6.4. We have seen in this chapter two approaches to constructing
analytic geometry. In the first approach, we construct analytic geometry from a
basis of synthetic Euclidean geometry, building it from prior work on triangles,
parallels, perpendiculars, angles, and so on, in the style of Euclid and Hilbert.
In the second approach, we start with Birkhoff’s axioms for geometry and then
consider analytic geometry as a model for this axiom set. Which approach do you
think is better pedagogically?

Exercise 3.6.5. The invention of analytic geometry has often been described as
the “arithmetization” of geometry. What is meant by this?





Chapter 4

Constructions

Geometry is the science of correct reasoning on incorrect figures.
—George Pólya (1887–1985) (from [35, page 208])

4.1 Euclidean Constructions

The quote by Pólya is somewhat tongue-in-cheek, but contains an important
nugget of wisdom that is at the heart of how the Greeks viewed geometric
constructions. For Euclid a geometric figure drawn on paper was only an
approximate representation of the abstract, exact geometric relationship de-
scribed by the figure and established through the use of axioms, definitions,
and theorems.

When we think of drawing a geometric figure, we typically imagine using
some kind of straightedge (perhaps a ruler) to draw segments and a com-
pass to draw circles. Euclid, in his first three axioms for planar Euclidean
geometry, stipulates that there are exact, ideal versions of these two tools
that can be used to construct perfect segments and circles. Euclid is making
an abstraction of the concrete process of drawing geometric figures so that
he can provide logically rigorous proofs of geometric results.

But Euclid was paradoxically quite concrete in his notions of what con-
stituted a proof of a geometric result. It was not enough to show a figure
or result could be constructed—the actual construction had to be demon-
strated, using an ideal straightedge and compass or other constructions that
had already been proved valid.

In this section we will follow Euclid and assume the ability to construct a
segment connecting two given points and the ability to construct a circle with
a given point as center and a constructed segment as radius. From these two

147
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basic constructions, we will develop some of the more useful constructions
that appear in Euclidean geometry.

Many of these constructions are well known from high school geometry
and proofs of validity will be developed in the exercises.

Construction 4.1. (Copying an Angle) To copy the angle defined by two

rays
−−→
AB and

−→
AC to ray

−−→
DE, we

• Construct the circle at A of radius AB. This will intersect
−→
AC at point

F .

• Copy segment AB to
−−→
DE, getting segment DG.

• Copy a circle centered at B of radius BF to point G. Let H be an
intersection of this circle with the arc used in part 2. Then ∠HDG
will have the same angle measure as ∠BAC (Fig. 4.1).

A

B

F

D
EG

C

H

Fig. 4.1 Copying an Angle

Proof: The proof is left as an exercise. 2
Note in this construction the implied ability to copy a segment from one

place to another. This assumes the existence of a non-collapsing compass,
that is, a compass that perfectly holds the relative position of its dividers
as you move it from one place to another.

Euclid, in the second proposition of Book I of The Elements, proves that
one can copy the length of a given segment to another point, using only
the two axiomatic constructions and Proposition 1 (the construction of an
equilateral triangle). It can be inferred that Euclid does not assume that a
compass preserves its position as it is moved, for if he did, then there would
be no need for the second proposition.



4.1. EUCLIDEAN CONSTRUCTIONS 149

Why would Euclid make the assumption of a collapsing compass? Just
as he strove to make his set of axioms as simple and economical as possible,
so too he sought to make the ideal tools of construction as simple and free
of ambiguity as possible. Thus, if one could not guarantee that the dividers
of a compass would stay perfectly fixed when lifted from a drawing, then
Euclid did not want to assume this property for his ideal compass.

It is interesting to note, however, that Proposition 2 implies that one
can assume either a collapsing compass or a non-collapsing compass with
equivalent results. For Proposition 2 implies that a collapsing compass and
straightedge allow one to copy segment lengths from one position to another.
Because of this equivalence, we will assume compasses are non-collapsing for
the rest of this chapter.

Two quite elegant and simple constructions are those of bisecting a seg-
ment and bisecting an angle.

Construction 4.2. (Perpendicular Bisector of a Segment) To bisect seg-
ment AB we set the compass center at A and construct a circle of radius
AB. Likewise we set the compass center at B and draw a circle of radius
AB. These two circles will intersect at two points C,D. The line through
C,D will be a perpendicular bisector of AB and will intersect AB at the
midpoint M of AB (Fig. 4.2).

A B

C

D

M

Fig. 4.2 Perpendicular Bisector of a Segment

Proof: The proof is left as an exercise. 2

Construction 4.3. (Bisecting an Angle) To bisect the angle defined by rays
−−→
AB and

−→
AC:

• At A construct a circle of radius AB, intersecting
−→
AC at D.
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• At B construct a circle of radius BD and at D construct a circle of
radius BD. These will intersect at E.

• Construct ray
−→
AE. This will be the bisector of the angle (Fig. 4.3).

A

C

B

D

E

Fig. 4.3 Bisector of an Angle

Proof: The proof is left as an exercise. 2

To construct a line perpendicular to a given line l at a point A, there
are two possible constructions, depending on whether A is on l or off l.

Construction 4.4. (Perpendicular to a Line through a Point on the Line)
To construct a perpendicular to line l at a point A on l, we first set our
compass center at A and draw a circle of some positive radius. This creates
a segment BC where the circle intersects l. Then do the construction for
the perpendicular bisector (Fig. 4.4).
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A BC

D

Fig. 4.4 Perpendicular to a Line through a Point on the Line

Proof: The proof is similar to the proof of the perpendicular bisector
construction. 2

Construction 4.5. (Perpendicular to a Line through a Point Not on the
Line) To construct a perpendicular to line l at a point A that is not on l, we
first select a point B on l and set our compass center at A and draw a circle
of some radius AB. Either l will be tangent to the circle at B (in which
case AB will be perpendicular to l) or the circle will intersect l at two points
B,C. If the circle intersects at two points, construct the angle bisector to
∠BAC. This will intersect BC at right angles (Fig. 4.5).

B l

A

C

D

Fig. 4.5 Perpendicular to a Line through a Point Not on the Line
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Proof: The proof is left as an exercise. 2

We have already mentioned Euclid’s construction of an equilateral tri-
angle. We include it here for completeness.

Construction 4.6. (Equilateral Triangle) To construct an equilateral tri-
angle on a segment AB, we construct two circles, one with center A and
one with center B, with both having radius AB. Let C be an intersection of
these circles. Then ∆ABC is equilateral (Fig. 4.6).

A B

C

Fig. 4.6 Equilateral Triangle

Proof: The proof is left as an exercise. 2

For the next set of constructions, we will not include all of the helping
marks from earlier constructions but will instead just outline the major
construction steps. The proofs of the correctness of these constructions can
be found in Project 2.3 from Chapter 2.

Construction 4.7. (Circumcenter) To construct the circumcenter P of
∆ABC, we find the intersection of two perpendicular bisectors of the tri-
angle’s sides (Fig. 4.7).
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A

B

C

P

Fig. 4.7 Triangle Circumcenter

Construction 4.8. (Orthocenter) To construct the orthocenter O of ∆ABC,
we find the intersection of two altitudes of the triangle. An altitude is a per-
pendicular to a side of the triangle that passes through the opposite vertex
(Fig. 4.8).

A

B

C

O

Fig. 4.8 Triangle Orthocenter

Construction 4.9. (Incenter) To construct the incenter I of ∆ABC, we
find the intersection of two angle bisectors of the angles of the triangle
(Fig. 4.9).
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A

B

C

I

Fig. 4.9 Triangle Incenter

Construction 4.10. (Centroid) To construct the centroid Q of ∆ABC, we
find the intersection of two medians of the triangle. A median is a segment
from the midpoint of a side to the opposite vertex (Fig. 4.10).

A

B

C

Q

Fig. 4.10 Triangle Centroid

We will now look at some circle constructions. Again we will not put in
all of the helping construction marks that are based on constructions covered
earlier. The proofs of the correctness of these constructions can be found in
the section on circle geometry in Chapter 2.

Construction 4.11. (Tangent to a Circle at a Point on Circle) To construct
the tangent to a circle c at a point P on the circle, we construct the line
through the center O of the circle and P and then find the perpendicular to
this line at P (Fig. 4.11).
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O

c

P

Fig. 4.11 Tangent to a Circle at a Point on Circle

Construction 4.12. (Tangent to a Circle at a Point Not on Circle) To
construct the two tangents to a circle c, with center O, at a point P not on
the circle, we

• Construct segment OP and find the midpoint M of OP .

• Construct the circle at M of radius OM .

• Let T1 and T2 be the two intersections of this new circle with c.

• Construct two lines: one through P and T1 and the other through P
and T2. These will be tangents to c through P (Fig. 4.12).

O
c

P

M

T
2

T
1

Fig. 4.12 Tangent to a Circle at a Point Not on Circle
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We note here that all of the preceding constructions are independent of
the parallel postulate; that is, the proof of their validity does not depend on
any result derived from Euclid’s fifth postulate.

Here are three Euclidean circle constructions that do rely on the parallel
property of Euclidean geometry.

Construction 4.13. (Circle through Three Points) To construct the circle
through three non-collinear points A,B,C, we

• Construct the segments AB and BC.

• Construct the perpendicular bisectors of these segments. Let O be the
intersection of these bisectors.

• Construct the circle with center O and radius OA. This is the desired
circle (Fig. 4.13).

A
O

B
C

Fig. 4.13 Circle through Three Points

Construction 4.14. (Inversion of a Point through a Circle) To construct
the inverse of a point P inside a circle c, we

• Construct the ray
−−→
OP , where O is the center of c.

• Construct the perpendicular to this ray at P . Let T be an intersection
of this ray with the circle.

• At T, construct the tangent to the circle. The intersection P ′ of this

tangent with
−−→
OP will be the inverse point to P through c (Fig. 4.14).
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O

c

P

T

P’

Fig. 4.14 Inversion of a Point through a Circle

Construction 4.15. (Orthogonal Circles) To construct a circle orthogonal
to a circle c through two points P,Q inside c, we

• Construct the inverse point P ′ to P through c.

• Construct the circle through the three points P , P ′, and Q (Fig. 4.15).

O

c

P

P’

Q

Fig. 4.15 Orthogonal Circles

This concludes our review of some of the most basic Euclidean construc-
tions. Other basic constructions involving parallels and triangles are covered
in the exercises of this section.

Exercise 4.1.1. Prove that Construction 4.1 creates a new angle congruent to
the original angle.

Exercise 4.1.2. Prove that Construction 4.2 produces the perpendicular bisector
of a segment.
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Exercise 4.1.3. Prove that Construction 4.3 produces the angle bisector of an
angle.

Exercise 4.1.4. Prove that Construction 4.5 produces the perpendicular to a
line through a point not on the line.

Exercise 4.1.5. Prove that Construction 4.6 produces an equilateral triangle.

Exercise 4.1.6. In this exercise we will investigate a construction that will allow
us to copy a circle with a collapsing compass. Given a circle c with center O and
radius point A and another point B, we wish to construct a circle centered at B of
radius OA. It suffices to prove the result for the case where B is outside c. (Why?)
First, construct a circle centered at O of radius OB. Then construct a circle at B
of radius OB. Let C and D be the intersection points of these circles. Let E be an
intersection of the circle centered at B with the original circle c.

O

A

c

B

b

C

D

F

E

H

G

Fig. 4.16 Copying a Circle

At intersection point C, construct a circle of radius CE. This circle will intersect
the circle at B of radius OB at a point G. Show that the circle with center B and
radius point G is the desired circle. [Hint: Show that ∆CGO and ∆CEB are
congruent, and then consider ∆GBO and ∆EOB.] Why is this construction valid
for a collapsing compass?

Exercise 4.1.7. Using the perpendicular construction, show how one can con-
struct a line parallel to a given line through a point not on the line.

Exercise 4.1.8. Draw a segment AB and devise a construction of the isosceles
right triangle with AB as a base.
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Exercise 4.1.9. Show how to construct a triangle given two segments a and b and
an angle ∠ABC that will be the included angle of the triangle. To what triangle
congruence result is this construction related?

Exercise 4.1.10. Given a segment AB and a positive integer n, devise a con-
struction for dividing AB into n congruent sub-segments.

4.2 Project 6 - Euclidean Eggs

So far we have looked at constructions of fairly traditional geometric
figures—lines, circles, parallels, perpendiculars, tangents, and so on. In this
project we will look at a way of joining circular arcs together in a smooth
fashion to make interesting shapes.

The idea of joining curves together so that they look “smooth” across the
point of attachment can be traced back to at least the time of the ancient
Romans and their construction of arches and oval tracks. The fifteenth-
century artist Albrecht Dürer makes great use of this technique in his design
of alphabets for the printing press.

In his book Mathographics [12], Robert Dixon describes how to make a
variety of curves and oval shapes using a simple method of smoothly joining
circular arcs.

To see how this method works, we’ll try a little experiment.

Start Geometry Explorer and create
a segment AB. Attach a point C to
the segment and create a circle c1

with center A and radius point C,
and a circle c2 with center B and
radius point C.

A BC

c
1

c
2
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Now attach two points D and E
on circle c1 and two points F and G
on c2 as shown.

A BC

c
1

c
2

D

F

E

G

Hide the two circles and multi-
select points C, D, and E. Click on
the Arc construction tool to create
an arc passing through these three
points. Similarly, construct the arc
on C, F , and G.

A BC

D

F

E

G

Note how smoothly these two different arcs join together at C, even
though they are constructed from circles of different radii.

Exercise 4.2.1. Show that two circular arcs joined together in this fashion will
always be smooth across the join point (that is, their tangents will coincide) if the
following condition holds: a straight line drawn through the centers of the two arcs
passes through the point where they are joined. (In the preceding figure, this would

refer to
←→
AB passing through point C.)

We will use this idea to construct an oval, or more precisely an egg.

Clear the screen and create segment AB. Construct the midpoint M of
AB and construct a perpendicular to AB at M (refer to Fig. 4.17). Next
create three circles: c1 with center M and radius point A, c2 with center A
and radius point B, and c3 with center B and radius point A.
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Fig. 4.17

Next construct the intersection points I1 and I2 of the perpendicular
with c1, and then create two rays, one from B through I1, and one from A
through I1 (refer to Fig. 4.18). Construct the intersection points C and D
of these rays with circles c2 and c3. Then create a circle with center I1 and
radius point C. Can you see an egg emerging from the figure?
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c
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c
3

I
1

I
2

C D

Fig. 4.18
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To finish off the construction, construct the points I3 and I4 of the
intersection of the circle with center I1 and the perpendicular to AB (refer
to Fig. 4.19). Construct two rays: one through A and I4 and the other
though B and I4. Then construct the intersection points E and F of these
rays with c2 and c3.

A BM

c
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c
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c
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I
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C DI
3
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E F

Fig. 4.19

The four arcs {A,E,C}, {C, I3, D},
{D,F,B}, and {B, I2, A}, will de-
fine our egg. Construct these arcs
and hide all helper circles and lines.

A B

I
2

C DI
3

E F

Exercise 4.2.2. Verify that these four arcs meet smoothly across the join points,
using the smoothness definition discussed in the last exercise (coincident tangent
lines).

Exercise 4.2.3. Here is another interesting oval shape from Dixon’s book. It
is made of four circular arcs. Study Fig. 4.20 and describe the construction steps
necessary to construct this oval.
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Fig. 4.20

The ability to construct complex figures from simple curves, such as
circular arcs, is one of the most significant practical uses for geometry. Ev-
erything from the fonts used on a computer screen to the shapes of air-
frames depends on the ability to smoothly join together simple curves. In
Project 3.3 we saw how quadratic and cubic Bézier curves could be used to
model curved shapes. Interestingly enough, it is not possible to perfectly
model a circle using Bézier curves, although we can construct approxima-
tions that will fool the eye. Thus, for shapes that require the properties of
a circle (at least in small sections), we can use the joining method above to
create such shapes.

In your project report you should include a discussion of the construction
steps you used to create the preceding egg shapes and also include complete
answers to each of the exercises.

4.3 Constructibility

In the last two sections we looked at some of the basic construction tech-
niques of Euclidean geometry. Constructions were fundamental to Euclid’s
axiomatic approach to geometry, as is evident by the fact that the first two
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Propositions of Book I of Elements deal with the construction of equilateral
triangles and the transferring of segment lengths (the question of collapsing
versus non-collapsing compasses).

The notion of constructibility was also fundamental to the way Euclid
viewed numbers. To Euclid a number existed only in relation to a particular
geometric figure—the length of a constructed segment. A number was the
end result of a series of straightedge and compass constructions, starting
with a given segment that was assumed to be of unit length.

Euclid did allow the independent existence of some numbers—the posi-
tive integers. The number theory found in the Elements can be traced back
to the mystical beliefs of the Pythagoreans. Integers could be “perfect”
or “prime.” Euclid also allowed the consideration of the ratio of integers
independent of any geometric context.

However, any other number not expressible as a ratio of positive integers
(that is, irrational) could only be discussed as a purely geometric quantity—
the end product of a sequence of geometric constructions. For example, the
irrational number

√
2 is constructible, as it is possible to construct a right

triangle with two base sides of unit length, given an existing segment of unit
length. The hypotenuse of this triangle would be a segment of length

√
2.

Definition 4.1. A number α is constructible if a segment of length α can be
constructed by a finite sequence of straightedge and compass constructions,
starting with a given segment of unit length.

Given Euclid’s insistence on the construction of numbers, it is not sur-
prising that constructibility puzzles—riddles asking whether certain num-
bers could be constructed—came to be a celebrated, almost mythic, aspect
of Euclidean geometry.

Three of these puzzles have occupied the attention of mathematicians
from the time of Euclid (300 BC) until the work of Niels Henrik Abel (1802–
1829) and Evariste Galois (1811–1832) in the early 1800s:

Doubling the Cube Given an already constructed cube, construct an-
other cube with twice the volume of the given cube.

Angle Trisection Given an arbitrary constructed angle, construct an
angle that divides the given angle into three congruent parts.

Squaring the Circle Given an already constructed circle, construct a
square of area equal to the area of the circle.
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The solution of these puzzles involves a deeper understanding of how
constructibility relates to solutions of algebraic equations. The connection
with algebra comes from embedding the construction of geometric figures
within the context of analytic geometry.

As was mentioned previously, all constructions start with a segment
assumed to be of unit length. Let OI be this segment. We know by the
constructions of the first section of this chapter that we can construct a

perpendicular to the line
←→
OI at O, and thus we can construct a Cartesian

coordinate system with origin O and with x = 1 at the point I (Fig. 4.21).

O I

x-axis

y-axis

Fig. 4.21

One of the great insights of Descartes was that straightedge and com-
pass constructions were equivalent to the solution of linear and quadratic
equations.

Theorem 4.1. Let P1 = (x1, y1), P2 = (x2, y2), . . . , Pn = (xn, yn) be a
set of points that have been constructed from the initial segment OI. Then
a point Q = (α, β) can be constructed from these points if and only if the
numbers α and β can be obtained from x1, x2, . . . , xn and y1, y2, . . . ,
yn by simple arithmetic operations of +, −, ·, and ÷ and the solution of a
finite set of linear and quadratic equations.

Proof: Since straightedge and compass constructions involve the con-
struction of segments (and lines by extension) and circles, then a point in
the plane is constructible if and only if it is either the intersection of two
lines, a line and a circle, or two circles. (Or, it could be one of the two initial
points O or I.)
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From our work in Chapter 3, we know that a line through two constructed
points, say P1 and P2, has the equation

(y − b1)(a2 − a1) = (x− a1)(b2 − b1)

This can be transformed into the form

Ay +Bx+ C = 0

where A, B, and C are simple arithmetic combinations of the numbers a1,
a2, b1, and b2 of the type described in the statement of the theorem.

A circle through a constructed point, say P1, of radius equal to the length
of a constructible segment, say P1P2, will have the equation

(x− a1)2 + (y − b1)2 = ((a2 − a1)2 + (b2 − b1)2)

where ((a2 − a1)2 + (b2 − b1)2) = r2, r being the radius of the circle.

Again, this can be written as

x2 +Bx+ y2 + Cy +D = 0

where the coefficients are again simple arithmetic combinations of the x and
y coordinates of the constructed points.

If we are given two lines, say A1y + B1x + C1 = 0 and A2y + B2x +
C2 = 0, then the intersection of these two lines will be given by a simple
formula involving the addition, subtraction, multiplication, and division of
the coefficients (proved as an exercise).

If we are given a line Ay + Bx + C = 0 and a circle x2 + Dx + y2 +
Ey + F = 0, then if the lines intersect, we know from elementary algebra
that the solution will involve solving the quadratic formula for an expression
involving simple arithmetic combinations of the coefficients. However, a new
operation, the square root, will be introduced in the solution.

To find the point of intersection of two circles, say x2 + B1x + y2 +
C1y +D1 = 0 and x2 +B2x+ y2 +C2y +D2 = 0, we first subtract the two
equations yielding (B2−B1)x+ (C2−C1)y+ (D2−D1) = 0. We solve this
for x or y (depending on which terms are non-zero) and substitute into one
of the original equations to get a quadratic equation in a single variable.
The solution then follows from the quadratic formula.

Thus, we have proved that if a point can be constructed by a sequence of
straightedge and compass constructions on a given set of already constructed
points, then the coordinates of the new point can be obtained from simple
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arithmetic operations of +, −, ·, ÷, and
√

used in combination on the
coordinates of the existing points.

The converse is also true. That is, any combination of using +, −, ·, ÷,
and
√

on the coordinates of a set of already constructed points, that results
in a pair of numbers α and β, can be realized as the coordinates of a point
that arises from a sequence of straightedge and compass constructions on
the given points.

To show this, it is enough to show that if a 6= 0 and b 6= 0 are given
constructible numbers, then the numbers

a+ b, a− b, ab, a
b
,
√
a

are also constructible.

It is fairly trivial to show that the numbers a + b and a − b are con-
structible. For a+ b we lay out a segment OA of length a on the x-axis and
extend OA to a point B such that AB = b (this is possible since we can
transfer segment lengths). Then OB has length a+ b. For a− b we just lay
off a segment for b in the negative direction from A on the x-axis.

For the product of two numbers, ab, consider the following construction:

On the x-axis, lay off the length a so that OA = a. Likewise, on the
y-axis, lay off the unit length and b to get points Iy and B, with OB = b.
Construct the segment from Iy to A and construct a parallel to this line
through B, cutting the x-axis at C. Let c = OC (Fig. 4.22).

O A

Iy

B

Ca

1

b

c

Fig. 4.22 Division
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By similar triangles we have that

a

1
=
c

b

Clearly, c = ab and we have constructed the product of a and b.
The construction of the ratio of two numbers is left as an exercise, as is

the construction of the square root of a positive number. 2
Starting with a unit length segment, what kinds of numbers are con-

structible? Clearly, all non-zero integers can be constructed. Using the
construction of the ratio of two numbers, we see that all rational numbers
are constructible, a rational number being a fraction of two integers. In fact,
if we restrict our constructions to those that involve only the intersection of
lines, it is clear that the set of rational numbers contains all such constructed
numbers (if we include 0).

The set K of all constructible numbers (together with 0) forms a spe-
cial type of algebraic structure called a field. A field is a set of elements
having two operations (like + and ·) that satisfies a set of properties such
as associativity and commutativity for the operations. A field also satis-
fies the distributive property for the two operations and is closed under the
operations and their inverses.

The prime example of a field is perhaps the set of real numbers with
ordinary addition and multiplication. Given two (non-zero) real numbers, a
and b, the sum a + b is again a real number, as is the additive inverse -a,
the product ab, and the multiplicative inverse 1

a . This shows that the real
numbers are closed under each of these operations.

By Theorem 4.1 we know that the set of constructible numbers K is a
field, as this set is closed under the algebraic operations +, −, ·, and ÷.

What about the taking of square roots? How does this operation affect
the algebraic structure of a given set of constructible numbers? Let F be
the field of rational numbers. Suppose we construct the number

√
2 and

then consider all possible algebraic combinations of rational numbers with

this new number, for example,
√

2 + 1, 1+
√

2
10−
√

2
, and so on.

It turns out that all such combinations can be written in a simpler form,
as we will see next.

Definition 4.2. Let F be a field contained in the real numbers and let k
be a positive number in F . Suppose that

√
k does not belong to F . Then

the set
F (k) = {x+ y

√
k |x, y ∈ F}

is called a quadratic extension of F.
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Theorem 4.2. Let F be a field contained in the real numbers, let k be an
element of F , and suppose

√
k does not belong to F . Then the set F ′ of

all possible simple algebraic combinations (ones using +, −, ·, and ÷) of
elements of F and the number

√
k is a field and is equal to F (k).

Proof: We first note that F ′ contains F (k) by definition. Let z be an
element of F ′. Then z is obtained by algebraic operations using elements of
F and the number

√
k. If we can show that each of these operations can be

represented in F (k), then we will have shown that F (k) contains F ′ (which
implies F (k) = F ′), and we will also have shown that F (k) is a field, as it
will be closed under the basic operations and their inverses.

Clearly, any sum or difference of elements of F or
√
k can be represented

in F (k). What about products? Any product of elements in F is again in
F , as F is a field. Also, if a, b, c are in F , then a(b+ c

√
k) = ab+ ac

√
k is

an element in F (k), as is a(c
√
k).

In fact, the only algebraic operation that is not obviously represented in
F (k) is division. Suppose a and b are in F and suppose a+ b

√
k 6= 0. Then

1

a+ b
√
k

=
1

a+ b
√
k

(
a− b

√
k

a− b
√
k

)

=
a− b

√
k

a2 − b2k

which is again an element in F (k). 2
As an application of this notion of field extensions, we will consider cubic

polynomials.

Theorem 4.3. Given a cubic polynomial

p(z) = z3 + az2 + bz + c = 0

with coefficients in a field F (contained in the reals), if p(w) = 0, where w
is an element of a quadratic extension F (k) but not an element of F , then
the polynomial has another root in F .

Proof: We know that every polynomial with real coefficients can be
factored into p(z) = (z − z1)(z − z2)(z − z3) with possibly some of the zi
being complex numbers. Equivalently, we have

p(z) = z3 − (z1 + z2 + z3)z2 + (z1z2 + z1z3 + z2z3)z − z1z2z3 = 0
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The coefficients for a polynomial can only be represented one way, and
so

− (z1 + z2 + z3) = a

Now suppose the root w of p(z) is represented by z1 = x+ y
√
k, with x

and y in F . Then x − y
√
k is also a root. This can be proved by showing

that x − y
√
k acts like the complex conjugate when compared to x + y

√
k.

Then we use the fact that roots come in conjugate pairs. We can assume
that z2 = x− y

√
k. Then

− ((x+ y
√
k) + (x− y

√
k) + z3) = a

which implies that z3 = −(a+ 2x) is in F . 2

Corollary 4.4. Let F be a field contained in the reals. If a cubic polynomial
has a root w that is in a field Fn that is the result of a series of quadratic
extensions

F = F0, F1, F2, . . . , Fn

where each Fi is a quadratic extension of the previous Fi−1, then the poly-
nomial must have a root in F .

Proof: The proof of this result is just a repeated application of the
preceding theorem. 2

We are now in a position to tackle two of the classic constructibility
puzzles.

Duplication of the Cube

Given a cube constructed from a segment AB, is it possible to construct
another segment CD such that the cube on CD has volume double that of
the cube on AB?

If it is possible, then we have the algebraic relationship

(CD)3 = 2(AB)3

Or (
CD

AB

)3

= 2

This implies that if it is possible to double the original volume of the
cube, then it must be possible to construct CD and thus it must be possible
to construct the fraction CD

AB . This fraction is then a root of the cubic
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polynomial z3− 2 = 0. Thus, if we can carry out a sequence of straightedge
and compass constructions that yield CD

AB , then this construction sequence
would be mirrored in an algebraic sequence of larger and larger quadratic
extensions of the rational numbers. By Corollary 4.4, letting F be the
rationals, we would have that z3 − 2 = 0 has a root in the rationals. But
from algebra we know that the only possible rational roots of this polynomial
are 1, −1, 2, and −2. Since none of these are actually roots, then no element
in a quadratic extension can be a root, and the construction is impossible.

Trisection of an Angle

Given an arbitrary angle, is it always possible to construct an angle that is
1
3 the measure of the given angle?

Note that a solution to this problem would imply that all angles can
be trisected and, in particular, a 60 degree angle. We will show that it is
impossible to construct a 20 degree angle and thus that the trisection puzzle
has no solution.

If it is possible to construct a 20 degree angle, then it must be possible
to construct the number cos(20o), as this will be the base of a right triangle
with angle of 20 degrees and hypotenuse equal to 1.

We make use of several of the trigonometric formulas from Chapter 3 to
consider the formula for the cosine of 3θ for a given angle θ:

cos(3θ) = cos(2θ + θ)

= cos(2θ) cos(θ)− sin(2θ) sin(θ)

= (cos2(θ)− sin2(θ)) cos(θ)− 2 sin(θ) cos(θ) sin(θ)

= (2 cos2(θ)− 1) cos(θ)− 2(1− cos2(θ)) cos(θ)

= 4 cos3(θ)− 3 cos(θ)

Letting θ = 20o and using the fact that cos(60o) = 1
2 , we have

1

2
= 4 cos3(20o)− 3 cos(20o)

which is equivalent to 8 cos3(20o)− 6 cos(20o)− 1 = 0.
We conclude that if we can construct cos(20o), then it must be a root

of the polynomial 8z3 − 6z − 1 = 0. We will simplify the analysis of this
polynomial by using the observation that a construction of cos(20o) would
imply the construction of 2 cos(20o). Making the substitution x = 2z in the
polynomial 8z3 − 6z − 1, we get that 2 cos(20o) is a root of x3 − 3x− 1 = 0.
The only possible rational roots of this polynomial are 1 and −1, and neither
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are actually roots. So the number 2 cos(20o) is not constructible, and general
angle trisection is impossible.

Squaring the Circle

Given a circle of radius r, can we construct a square whose area is equal
to the area of the circle? Since the area of the circle is πr2, then we are
looking for a segment whose length is

√
πr. Since r is assumed constructible,

then if
√
πr is constructible, we would be able to divide by r and have a

construction for
√
π. Multiplying this number by itself, we would have a

construction for π.

The proof of the impossibility of the construction of π is beyond the level
of this text. While the previous two puzzles could be resolved by considering
roots of polynomials with rational coefficients, no such analysis will prove
the impossibility of squaring the circle. This is because the number π is
transcendental; that is, it is not the root of a polynomial with rational
coefficients. This was first proved by Carl Louis Ferdinand von Lindemann
(1852–1939) in 1882. An interesting historical note about Lindemann is that
David Hilbert was one of his doctoral students in Germany.

In this section we have just scratched the surface as to the connection
between constructibility and the algebraic theory of fields. For a more de-
tailed review of this connection, see Chapter 19 of Moise’s text [32] or the
excellent book by Robin Hartshorne [19].

Exercise 4.3.1. Prove that if two lines A1y + B1x + C1 = 0 and A2y + B2x +
C2 = 0 intersect, then the coordinates of the intersection point will be given by a
simple formula involving the addition, subtraction, multiplication, and division of
the coefficients of the lines.

Exercise 4.3.2. Show that the number sin(22 1
2
o) is constructible. [Hint: Use a

trigonometric formula for 45o.]

Exercise 4.3.3. Devise a construction for the ratio of two numbers.

Exercise 4.3.4. In this exercise we see how to construct square roots of positive

numbers. Let AB be a segment representing a length a (Fig. 4.23). Extend
−−→
AB

beyond B by the unit length to a point C. Let M be the midpoint of AC and
construct a circle centered at M of radius AM . Construct the perpendicular to AC
at B and let D be an intersection point of this perpendicular with the circle. Show
that BD =

√
a. [Hint: Use right triangles.]
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A B C

1a

M

D

Fig. 4.23 Square Root

Exercise 4.3.5. Devise constructions for the numbers
√

3 and
√

5 that are dif-
ferent than the one given in the previous exercise.

Exercise 4.3.6. Show that there are an infinite number of non-constructible
numbers.

Exercise 4.3.7. Show that there is at least one non-constructible number in
every interval [0, a] for a > 0.

Exercise 4.3.8. Show that every circle centered at the origin contains at least
two points which are not constructible. [Hint: Use the preceding exercise.]

Exercise 4.3.9. Show that every circle contains at least two points which are
not constructible. [Hint: Use the preceding exercise.]

Exercise 4.3.10. Galois was one of the more colorful figures in the history of
mathematics. His work on the solvability of equations revolutionized algebra. Re-
search this area and prepare a short report on the significance of Galois’s work.

4.4 Mini-Project - Origami Construction

So far we have looked at constructions where the constructing tools are
primarily a straightedge and (collapsing) compass. We have seen that a non-
collapsing compass can be substituted for a collapsing one, with equivalent
capabilities for Euclidean construction. We have also discussed the issue
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of constructibility of numbers and of certain geometric figures such as the
trisection of an angle. We showed that the trisection of a general angle
was impossible with straightedge and compass. Interestingly enough, the
trisection of a general angle is possible with a ruler (marked straightedge)
and compass. (For the proof see [19, page 260].)

The question of constructibility is thus dependent on the tool set that
one is permitted to use. Over the years, mathematicians have experimented
with using other types of tools; for example, rusty compasses (ones where
the divider length is permanently fixed).

One method of construction that has become popular in recent years is
that of paper folding, or origami. The seemingly simple practice of folding
paper can produce quite complex geometric configurations. In this project
we will investigate the geometric constructions possible in origami by setting
up a set of axioms for “perfect” paper folding. This is similar to the first few
axioms of Euclid’s geometry, where he postulates the ability to do perfect
straightedge and compass constructions.

The axioms we will use for paper folding were first formulated by Humi-
aki Huzita in 1992 [26]. Huzita postulates six axioms for paper folding:

(Axiom O1) Given two constructed
points P and Q, we can construct
(fold) a line through them.

P

Q

(Axiom O2) Given two con-
structed points P and Q, we can
fold P onto Q.

P

Q
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(Axiom O3) Given two con-
structed lines l1 and l2, we can fold
line l1 onto l2. l

1

l
2

(Axiom O4) Given a con-
structed point P and a constructed
line l, we can construct a perpen-
dicular to l passing through P .

P

l

(Axiom O5) Given two con-
structed points P and Q and a
constructed line l, then whenever
possible, the line through Q, which
reflects P onto l, can be con-
structed.

Q

P

l

(Axiom O6) Given two con-
structed points P and Q and two
constructed lines l1 and l2, then
whenever possible, a line that re-
flects P onto l1 and also reflects Q
onto l2 can be constructed.

P
Q

l1 l2

In the illustrations for the axioms, a fold line created by the axiom is
indicated by a dotted line, and the direction of the fold is indicated by a
curved arrow.

We are assuming in the statement of these axioms that a constructed line
is either one of the original four edge lines of a square piece of origami paper
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or is a line created by using one or more of the folding axioms. A constructed
point is either one of the original four vertices of the square paper or a point
created by using one or more of the folding axioms. We will also assume
that folds take lines to lines and preserve segment lengths and angles. We
will prove this fact carefully in Chapter 5, where we will see that a fold is
essentially a Euclidean reflection across the fold crease line. For now we
will take this fact as a rule of reasoning, assumed without proof—thus the
references to reflections in the axioms will be assumed without explanation
or proof.

Another rather strange property of Axioms O5 and O6 is the phrase
“whenever possible.” All of the axiomatic systems we have studied up to
this point have been quite definitive. For example, Euclid’s third postulate
states that circles are always constructible.

Before continuing on with this project, practice each of the six axiomatic
foldings using a square sheet of paper, preferably origami paper or waxed
paper.

Exercise 4.4.1. Using the six axiomatic foldings, devise a construction for the
perpendicular bisector of a segment.

Exercise 4.4.2. Devise a folding construction for the parallel to a given line
through a point not on the line.

Many of the axioms for paper folding are quite similar to the construc-
tions of Euclidean geometry. Axiom O1 is essentially equivalent to Euclid’s
first axiom on the construction of a line joining two points. Axiom O2 mim-
ics the construction of the perpendicular bisector of a segment. For the
third axiom, if the given pair of lines intersect, then the axiom gives the
angle bisector construction for the angle formed by the lines. If the lines
are parallel, the construction is slightly more complicated but still possible
(convince yourself of this fact). Axiom O4 is equivalent to the perpendicular
to a line through a point.

What straightedge and compass construction has the equivalent effect of
Axiom O5? After carrying out this construction, it must be the case that
PQ = P ′Q, where P ′ is the folding (reflection) of P onto l.. Thus, we are
looking for an intersection point of a circle, centered at Q of radius PQ,
with the line l, as depicted in Fig. 4.24.
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l

Q
P

P’P’

Fig. 4.24

It is clear that there are three possibilities: either the circle has no
intersections with the line (in which case the construction is impossible), or
there is one intersection (at a point of tangency), or there are two different
intersections. (The third case is illustrated in Fig. 4.24, with the two different
lines of reflection shown as dotted lines.)

In fact, Axiom O5 allows us to construct a parabola with focus P and
directrix l. Recall that a parabola is the set of points that are equidistant
from a given point (the focus) and a given line (the directrix).

Exercise 4.4.3. Show that Axiom O5 can be used to construct a parabola with

focus P and directrix l by referring to Fig. 4.25. In this figure
←−→
P ′R is the perpendic-

ular to l at the constructed point P ′ and R is the intersection of this perpendicular
with the line of reflection t taking P to P ′. [Hint: Use the distance-preserving
properties of a folding (reflection).]

l

Q
P

P’

t

RR

Fig. 4.25
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The creation of point R involves the solution of a quadratic equation
and thus allows for the construction of square roots. In fact, the set of
constructible numbers using Axioms O1–O5 is the same as the set of con-
structible numbers using straightedge and compass (allowing for arbitrary
large initial squares of paper). A proof of this can be found in [2].

We see, then, that almost all of the folding axioms can be carried out by
simple straightedge and compass constructions. How about the last axiom?
It turns out that the last axiom is not constructible using straightedge and
compass. In fact, using the last axiom we can actually trisect a general
angle.

Let’s see how this is done.

Let the given angle (∠A) be defined
in the lower left corner of the paper
square by line m as shown. Con-
struct two lines l1 and l2 that are
parallel to the bottom edge lb with
the property that l1 is equidistant
from l2 and lb. (What is an easy
way to construct l2 given just the
initial four lines and four points?)

l
b

m

l
2

l
1

A

Let P be the lower left corner
vertex of the square, and let Q be
the intersection of l2 with the left
edge of the square. Then carry out
the fold in Axiom O6 to place P on
l1 at P ′ and Q on m at Q′.

P l
b

Q l
2

l
1

A

P’

Q’

m
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Leaving the paper folded, fold
the paper once again along the
folded-over portion of l1. This will
create line l3. Unfold the paper.
The claim is that line l3 will make
an angle with lb of 2

3 the angle A.

l
b

m

l
2

l
1

A

P’

Q’

l
3

Exercise 4.4.4. Prove that the preceding construction actually does give an
angle that is 2

3 the angle A. [Hint: Prove that the three triangles ∆PQ′R, ∆PP ′R,
and ∆PP ′S are congruent in Fig. 4.26.]

P

m

l
b

Q l
2

l
1

P’

Q’

l
3

R

S

Fig. 4.26 Origami Trisection

Since we have constructed an angle that is 2
3 of angle A, we can easily

bisect this new angle to get the trisection of angle A. It is clear that the
new folding axiom construction (Axiom O6) cannot be equivalent to a series
of straightedge and compass constructions since we know it is impossible to
trisect a general angle with straightedge and compass alone.
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How can Axiom O6 solve the trisection problem? Since Axiom O6 is
essentially a simultaneous solution to two Axiom O5 constructions, then
what we are really looking for is a reflection line that is simultaneously
tangent to two parabolas (see the “Hint” at the end of Exercise 4.4.3). The
solution of this simultaneous tangent problem leads to a cubic equation of
the form developed in the last section when we looked at the trisection
puzzle in detail. Thus, Axiom O6 guarantees that such cubic equations are
solvable, and therefore angle trisection is possible. For complete details on
the connection between Axiom O6 and cubic polynomials, see [2].



Chapter 5

Transformational Geometry

Geometry is the study of those properties of a set which are
preserved under a group of transformations on that set.

—Felix Klein (1849–1925)

Classical Euclidean geometry, such as the material covered in Chapter
2, is primarily concerned with static properties of objects. To expand this
static geometry to a more dynamic geometry, we need to explore what it
means to transform objects.

A transformation will be some function on points in the plane. That is,
it will be some process whereby points are transformed to other points. This
process could be the simple movement of points or could be a more complex
alteration of the points.

Transformations are basic to both a practical and theoretical under-
standing of geometry. Object permanence, the idea that we can move an
object to a different position, but the object itself remains the same, is one
of the first ideas that we learn as infants.

Felix Klein, one of the great geometers of the late nineteenth century,
gave an address at Erlanger, Germany, in 1872, in which he proposed that
geometry should be defined as the study of transformations and of the objects
that transformations leave unchanged, or invariant. This view has come to
be known as the Erlanger Program.

If we apply the Erlanger Program to Euclidean geometry, what kinds of
transformations characterize this geometry? That is, what are the transfor-
mations that leave basic Euclidean figures, such as lines, segments, triangles,
and circles, invariant? Since segments are the basic building blocks of many
geometric figures, Euclidean transformations must, at least, preserve the
“size” of segments; that is, they must preserve length.

181
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5.1 Euclidean Isometries

Definition 5.1. A function f on the plane is called a Euclidean isometry
(or a Euclidean motion) if f has the property that for all points A and B the
segment AB and the transformed segment f(A)f(B) have the same length.

This simple definition has important implications.

Theorem 5.1. Let f be a Euclidean isometry. Then

(i) f is one-to-one. That is, if f(A) = f(B), then A = B.

(ii) If f(A) = A′ and f(B) = B′, then f maps all points between A
and B to points between A′ and B′. That is, f(AB) = A′B′.

(iii) f maps lines to lines.

(iv) f preserves angles.

(v) f is onto the plane. That is, for all points P ′, there is a point P
such that f(P ) = P ′.

(vi) f preserves parallel lines.

Proof: (i) Suppose f(A) = f(B). Then, f(A)f(B) = 0 and by the
definition of an isometry, AB = 0. Then, A = B and f is one-to-one.

(ii) Let C be a point between A and B and let C ′ = f(C). We need to
show that C ′ is on the line through A′, B′ and that C ′ is between A′ and
B′. Since f is one-to-one, C ′ cannot be A′ or B′. Now, AB = AC + CB.
Since f is an isometry we have that

A′B′ = A′C ′ + C ′B′

This implies that C ′ is on the line through A′, B′. For if it were not on this
line, then the triangle inequality would imply that A′B′ < A′C ′ + C ′B′.

Now either A′ is between B′ and C ′, or B′ is between A′ and C ′, or C ′

is between A′ and B′. In the first case, we would get

B′C ′ = B′A′ +A′C ′

If we subtract this from the equation above, we would get

A′B′ −B′C ′ = C ′B′ −B′A′
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and

2A′B′ − 2B′C ′ = 0

So A′B′ = B′C ′, which would contradict the fact that A′B′ < B′C ′ if A′

is between B′, C ′. Likewise, we cannot have B′ between A′, C ′, and so C ′

must be between A′, B′.

(iii) Let A,B be points on a line l. By part (ii) of this theorem, we know
that segment AB gets mapped to segment f(A)f(B). Let D be a point on

the ray
−−→
AB not on segment AB. Then B is between A,D on

−−→
AB and since

f preserves betweenness, f(B) will be between f(A) and f(D) and so will

be on the ray
−−−−−−→
f(A)f(B). Thus, we have that ray

−−→
AB gets mapped to ray

−−−−−−→
f(A)f(B) and similarly ray

−−→
BA gets mapped to ray

−−−−−−→
f(B)f(A). This implies

that the line through A,B gets mapped to the line through f(A), f(B).

(iv) Let ∠ABC be an angle with vertex B. Since f preserves length,
by SSS triangle congruence, ∆ABC and ∆f(A)f(B)f(C) will be congruent
and their angles will be congruent.

(v) We know that f is one-to-one. Thus, given P ′ we can find two points
A,B such that f(A) 6= f(B) 6= P ′. Let f(A) = A′ and f(B) = B′. There
are two cases for A′, B′, P ′: either they lie on the same line or not.

If A′, B′, P ′ are collinear, then P ′ is either on the ray
−−→
A′B′ or on the

opposite ray. Suppose P ′ is on
−−→
A′B′. Let P be a point on

−−→
AB such that

AP = A′P ′. Since AP = f(A)f(P ) = A′f(P ) and since P ′ and f(P ) are on

the same ray
−−→
A′B′, then P ′ = f(P ). If P ′ is on the opposite ray to

−−→
A′B′,

we would get a similar result.

If A′, B′, P ′ are not collinear, then consider ∠P ′A′B′. On either side of
the ray through A,B, we can find two points P,Q such that ∠P ′A′B′ ∼=
∠PAB ∼= ∠QAB (Fig. 5.1).

A

B

A’

B’

P’

P

Q

Fig. 5.1
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We can also choose these points such that AP = AQ = A′P ′. Since
f preserves betweenness (proved in statement (ii)) we know that one of
A′f(P ) or A′f(Q) will be on the same side as A′P ′. We can assume that
A′f(P ) is on this same side. Then, since f preserves angles, we have that

∠P ′A′B′ ∼= ∠f(P )A′B′ and thus
−−→
A′P ′ ∼=

−−−−→
A′f(P ). Since f preserves lengths,

we have that A′P ′ = AP = f(A)f(P ) = A′f(P ) and thus P ′ = f(P ).
(vi) Let l, n be parallel lines. Suppose that f(l), f(m) were not parallel.

Then, for some P on l and Q on m, we would have f(P ) = f(Q). But, we
know that PQ 6= 0 as l and m are parallel. As f is an isometry, we then
have that f(P )f(Q) 6= 0. Thus, it cannot be true that f(P ) = f(Q), and
f(l), f(m) must be parallel. 2

We have shown that isometries are

• length-preserving

• one-to-one

• onto

Isometries are a special type of transformation, but we have not yet
explicitly defined what we mean by a “transformation.” We have said that
a transformation is a function on points in the plane, but this definition is
too general. In the spirit of Klein’s Erlanger Program, we want to consider
“reasonable” functions that leave Euclidean figures invariant. Functions
that map lines to points, or areas to segments, are not reasonable geometric
equivalences. However, functions that are one-to-one and onto do not have
such pathological behavior. Thus, we will define transformations as follows:

Definition 5.2. A function f on the plane is a transformation of the plane
if f is a one-to-one function that is also onto the plane.

An isometry is then a length-preserving transformation. One important
property of any transformation is that it is invertible.

Definition 5.3. Let f, g be functions on a set S. We say that g is the
inverse of f if f(g(s)) = s and g(f(s)) = s for all s in S. That is, the
composition of g and f (f and g) is the identity function on S. We denote
the inverse by f−1.

It is left as an exercise to show that a function that is one-to-one and
onto must have a unique inverse. Thus, all transformations have unique
inverses.

A nice way to classify transformations (isometries) is by the nature of
their fixed points.
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Definition 5.4. Let f be a transformation. P is a fixed point of f if
f(P ) = P .

How many fixed points can an isometry have?

Theorem 5.2. If points A,B are fixed by an isometry f , then the line
through A,B is also fixed by f .

Proof: We know that f will map the line
←→
AB to the line

←−−−−−→
f(A)f(B). Since

A,B are fixed points, then
←→
AB gets mapped back to itself.

Suppose that P is between A and B. Then, since f preserves between-
ness, we know that f(P ) will be between A and B. Also

AP = f(A)f(P ) = Af(P )

This implies that P = f(P ).
A similar argument can be used in the case where P lies elsewhere on←→

AB. 2

Definition 5.5. The isometry that fixes all points in the plane will be called
the identity and will be denoted as id.

Theorem 5.3. An isometry f having three non-collinear fixed points must
be the identity.

A

B

C

P

Q

R

Fig. 5.2

Proof: Let A,B,C be the three non-collinear fixed points. From the

previous theorem we know that f will fix lines
←→
AB,

←→
AC, and

←→
BC.

Let P be a point not on one of these lines. Let Q be a point between
A,B (Fig. 5.2). Consider the line through P,Q. By Pasch’s axiom, this line
will intersect one of AC or BC at some point R. By the previous theorem,

f fixes the line
←→
QR and thus fixes P . Since P was chosen arbitrarily, then

f fixes all points in the plane and is the identity. 2
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Corollary 5.4. If two isometries f, g agree on any three non-collinear
points, then the two isometries must agree everywhere, that is, f = g.

The proof of this result is left as an exercise.
It is clear from this theorem that we can classify isometries into three

non-trivial (non-identity) types: those with two fixed points, those with one
fixed point, and those with no fixed points. In the following sections we
will study the properties of isometries with two, one, or zero fixed points.
We will make extensive use of techniques from both synthetic and analytic
geometry in our proofs and development.

It is interesting to note that the preceding results on isometries do not
depend on Euclid’s fifth postulate, the parallel postulate. They are part of
neutral geometry (or absolute geometry). We will make use of this fact in
Chapter 7, where we explore non-Euclidean geometry.

Exercise 5.1.1. Prove that every function f on a set S that is one-to-one and
onto has a unique inverse. [Hint: First, define f−1 using f and show that it is a
valid function. Then, show that f ◦ f−1 = id and f−1 ◦ f = id, where id is the
identity on S. Finally, show that the inverse is unique.]

Exercise 5.1.2. Prove that the inverse of an isometry is again an isometry. (This
implies that the set of isometries is closed under the inverse operation.)

Exercise 5.1.3. Let f, g be two invertible functions from a set S to itself. Let
h = f ◦ g; that is, h is the composition of f and g. Show that h−1 = g−1 ◦ f−1.

Exercise 5.1.4. Let f, g be two isometries. Show that the composition f ◦ g is
again an isometry. (This says the set of isometries is closed under composition.)

Exercise 5.1.5. Show that isometries map circles of radius r to circles of radius
r. That is, isometries preserve circles.

Exercise 5.1.6. Prove that the image of a triangle under an isometry is a new
triangle congruent to the original.

Exercise 5.1.7. Given an equilateral triangle ABC, show that there are exactly
six isometries that map the triangle back to itself. [Hint: Consider how the isometry
acts on the vertices of the triangle.]

Exercise 5.1.8. Prove Corollary 5.4.

Exercise 5.1.9. Consider points in the plane as ordered pairs (x, y) and consider
the function f on the plane defined by f(x, y) = (kx+ a, ky + b), where k, a, b are
real constants, and k 6= 0. Is f a transformation? Is f an isometry?

Exercise 5.1.10. Define a similarity to be a transformation on the plane that
preserves the betweenness property of points and preserves angle measure. Prove
that under a similarity, a triangle is mapped to a similar triangle.
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Exercise 5.1.11. Use the previous exercise to show that if f is a similarity, then
there is a positive constant k such that

f(A)f(B) = k AB

for all segments AB.

Exercise 5.1.12. Consider points in the plane as ordered pairs (x, y) and consider
the function f on the plane defined by f(x, y) = (kx, ky), where k is a non-zero
constant. Show that f is a similarity.

5.2 Reflections

Definition 5.6. An isometry with two different fixed points, and that is
not the identity, is called a reflection.

What can we say about a reflection? By Theorem 5.2 if A,B are the
fixed points of a reflection, then the reflection also fixes the line through
A,B. This line will turn out to be the equivalent of a “mirror” through
which the isometry reflects points.

Theorem 5.5. Let r be a reflection fixing A and B. If P is not collinear
with A,B, then the line through A and B will be a perpendicular bisector of
the segment connecting P and r(P ).

Proof: Drop a perpendicular

from P to
←→
AB, intersecting at Q.

At least one of A or B will not be
coincident withQ; supposeB is not.
Consider ∆PQB and ∆r(P )QB.
Since we know that Q and B are
fixed points of r, then PQ = r(P )Q,
BP = Br(P ), and the two trian-
gles are congruent by SSS. Since the
two congruent angles at Q make up
a straight line, ∠r(P )QB will be a

right angle and
←→
AB will be a per-

pendicular bisector of the segment
Pr(P ). 2

A

B

P

Q

r(P)

We call the line through A,B the line of reflection for r.
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Theorem 5.6. Let P, P ′ be two points. Then there is a unique reflection
taking P to P ′. The line of reflection will be the perpendicular bisector of
PP ′.

Proof: Let
←→
AB be the perpendicular bisector of PP ′ (Fig. 5.3). Define a

function r on the plane as follows: If a point C is on
←→
AB, let r(C) = C. If

C is not on this line, drop a perpendicular from C to
←→
AB intersecting at Q,

and let r(C) be the unique point on this perpendicular such that r(C) 6= C
and r(C)Q ∼= CQ.

A B

P

Q

C D

R

P’

r(C)

r(D)

Fig. 5.3

Will r be an isometry? We need to show that for all C 6= D, r(C)r(D) =

CD. Let C be a point not on
←→
AB and D a point on the same side of

←→
AB

as C. Consider Fig. 5.3. By SAS, ∆QRD ∼= ∆QR r(D). Again using SAS
congruence, we have ∆CQD ∼= ∆r(C) Q r(D). Thus, CD = r(C) r(D).

Similar arguments using congruent triangles can be used if D is on
←→
AB or

on the other side of
←→
AB as C. (The proof is left as an exercise.)

If C is a point on
←→
AB and if D is also on

←→
AB, then clearly CD =

r(C) r(D). If D is not on
←→
AB, then a simple SAS argument will show that

CD = r(C) r(D).
Thus, r is an isometry. Is the reflection r unique? Suppose there was

another reflection r′ taking P to P ′. By the previous theorem we know that
the fixed points of r′ are on the perpendicular bisector of PP ′. Since the
perpendicular bisector is unique, we have that the fixed points of r′ are on←→
AB. Thus, r and r′ have the same values on three non-collinear points P ,
P ′, and B and so r = r′. 2
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5.2.1 Mini-Project - Isometries through Reflection

In the first part of this chapter, we discussed Felix Klein’s idea of looking
at geometry as the study of figures that are invariant under sets of trans-
formations. In the case of transformations that are isometries, invariance
means that lengths and angles are preserved, and lines get mapped to lines.
Thus, isometries must not only map triangles to triangles, but must map
triangles to congruent triangles.

We can reverse this idea and ask whether, given two congruent triangles,
there is an isometry that maps one to the other.

We will start with an easy case. Clearly, if two triangles are the same,
then the identity isometry will map the triangle to itself.

Now, suppose you have two congruent triangles that share two points in
common. Let ∆ABC and ∆PQR be congruent with A = P and B = Q.

Exercise 5.2.1. Show that either the triangles are the same or that there is a
reflection that takes ∆ABC to ∆PQR.

Now suppose you have two congru-
ent triangles that share only one
point in common. Let ∆ABC ∼=
∆PQR with A = P . Let l1 be the
angle bisector of ∠BAQ and r1 the
reflection across l1.

A (=P)

B

C
Q = r1(B)

R

l 1

Exercise 5.2.2. Show that r1(B) = Q. Then, use the preceding exercise to argue
that there is a sequence of at most two reflections that will take ∆ABC to ∆PQR,
if the two triangles share one point in common.

Finally, suppose two congruent triangles share no point in common.

Exercise 5.2.3. Show that there is a sequence of at most three reflections that
will take ∆ABC to ∆PQR in this case.

We have now proved the following theorem:

Theorem 5.7. Let ∆ABC ∼= ∆PQR. Then there is an isometry composed
of at most three reflections that takes ∆ABC to ∆PQR.
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This theorem has the following amazing corollary:

Corollary 5.8. Every isometry can be written as the product of at most
three reflections.

Proof: Let f be an isometry and consider any triangle ∆ABC. Then
∆f(A) f(B) f(C) is a triangle congruent to ∆ABC and, by the preceding
theorem, there is an isometry g composed of at most three reflections taking
∆ABC to ∆f(A) f(B) f(C). Since two isometries that agree on three non-
collinear points must agree everywhere, then f must be equal to g. 2

Exercise 5.2.4. Let two triangles be defined by coordinates as follows: ∆ABC
with A = (−3, 2), B = (−3, 6), C = (−6, 2) and ∆DEF with D = (1,−4), E =
(4,−4), F = (1,−8). Verify that these two triangles are congruent and then find a
sequence of three (or fewer) reflection lines such that ∆ABC can be transformed
to ∆DEF .

We note here that the results in this project, and in the preceding section
on reflections, are neutral—they do not depend on Euclid’s fifth postulate,
the parallel postulate. We will make use of this fact in Chapter 7.

5.2.2 Reflection and Symmetry

The word symmetry is usually used to refer to objects that are in balance.
Symmetric objects have the property that parts of the object look similar
to other parts. The symmetric parts can be interchanged, thus creating
a visual balance to the entire figure. How can we use transformations to
mathematically describe symmetry?

Perhaps the simplest definition of mathematical symmetry is the one
that most dictionaries give: an arrangement of parts equally on either side
of a dividing line. While this type of symmetry is not the only one possible,
it is perhaps the most basic in that such symmetry pervades the natural
world. We will call this kind of symmetry bilateral symmetry.

Definition 5.7. A figure F in the plane is said to have a line of symmetry or
bilateral symmetry if there is a reflection r that maps the figure back to itself
having the line as the line of reflection. For example, the line l in Fig. 5.4
is a line of symmetry for ∆ABC since if we reflect the triangle across this
line, we get the exact same triangle back again.
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C

l

A

B

Fig. 5.4

Where is bilateral symmetry found in nature? Consider the insect body
types in Fig. 5.5. All exhibit bilateral symmetry. In fact, most animals,
insects, and plants have bilateral symmetry. Why is this the case? Living
creatures need bilateral symmetry for stability. Consider an animal that
needs to be mobile, that needs to move forward and backward. To move
with the least expenditure of energy, it is necessary that a body shape be
balanced from side to side so that the creature does not waste energy keeping
itself upright. Likewise, an immobile living creature, such as a tall pine
tree, needs to be bilaterally symmetric in order to keep itself in a vertical
equilibrium position.

Fig. 5.5 Insect Symmetry, Shelter Online, www.shelterpub.com

We know that a reflection will map its line of symmetry back to the
same line of symmetry. Lines perpendicular to the line of symmetry are also
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mapped back to themselves. (The proof is one of the exercises that follow.)
These lines are perhaps the simplest figures that are bilaterally symmetric.

In general, we can ask which lines are preserved under the action of an
arbitrary transformation.

Definition 5.8. Lines that are mapped back to themselves by a transfor-
mation f are called invariant lines of f .

Note that we do not require that points on the line get mapped back to
themselves, only that the line as a set of points gets mapped back to itself.
Thus, a line may be invariant under f , but the points on the line need not
be fixed by f .

In the next chapter we will use invariant lines extensively to classify
different sets of symmetries in the plane.

Exercise 5.2.5. Find examples of five objects in nature that have two or more
lines of bilateral symmetry. Draw sketches of these along with their lines of sym-
metry.

Definition 5.9. A polygon is a regular polygon if it has all sides congruent
and all interior angles congruent.

Exercise 5.2.6. Show that the angle bisectors of a regular pentagon are lines of
symmetry. Would your proof be extendable to show that the angle bisectors of any
regular polygon are lines of symmetry?

Exercise 5.2.7. Show that the perpendicular bisector of a side of a regular
pentagon is a line of symmetry. Would your proof be extendable to show that the
perpendicular bisectors of the sides of any regular polygon are lines of symmetry?

Exercise 5.2.8. Show that if a parallelogram has a diagonal as a line of symmetry,
then the parallelogram must be a rhombus (i.e., have all sides congruent).

Exercise 5.2.9. Show that if a parallelogram has a line of symmetry parallel to
a side, then the parallelogram must be a rectangle.

Exercise 5.2.10. Finish the proof of Theorem 5.6. That is, prove that the
function r defined in the proof is length-preserving for the case where C is not on←→
AB and D is either on

←→
AB or on the other side of

←→
AB.

Exercise 5.2.11. Prove that the composition of a reflection with itself is always
the identity. Thus, a reflection is its own inverse.

Exercise 5.2.12. Show that the lines invariant under a reflection rm, where m is
the line of reflection for rm, consist of the line m and all lines perpendicular to m.
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Exercise 5.2.13. Let rl and rm be two reflections with lines of reflection l and m,
respectively. Show that the composition rm ◦ rl ◦ rm = rl′ , where l′ is the reflection
of l across m. [Hint: Let A,B be distinct points on l. Show that rm(A) and rm(B)
are fixed points of rm ◦ rl ◦ rm.]

Exercise 5.2.14. Show that the product of four reflections can be written as the
product of two reflections.

Exercise 5.2.15. An object at point
O is visible in a mirror from a viewer
at point V . What path will the light
take from O to the mirror to V ? Light
always travels through a homogeneous
medium to minimize total travel dis-
tance. Consider a possible light ray
path from the object that hits the mir-
ror at P and then travels to V . Show
that the total length of this path is the
same as the path from O′ to P to V ,
where O′ is the reflection of O across
the mirror. Use this to find the shortest
path for the light ray from O to the mir-
ror to V . Describe this path in terms of
the two angles made at P by the light
ray.

O

V

P

O’

5.3 Translations

Definition 5.10. An isometry that is made up of two reflections, where the
lines of reflection are parallel, or identical, is called a translation.

What can we say about a translation?

Theorem 5.9. Let T be a translation that is not the identity. Then, for
all points A 6= B, if A, B, T (A), and T (B) form a quadrilateral, then that
quadrilateral is a parallelogram.

Proof: Let r1, r2 be the two reflections comprising T and let l1, l2 be
the two lines of reflection. Since T is not the identity, we know that l1 is
parallel to l2. If we set up a coordinate system where l1 is the x-axis, then
r1(x, y) = (x,−y).

Since l1 is parallel to l2, we can assume l2 is the line at y = −K, K 6= 0
(Fig. 5.6).
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A point (x, y) reflected across l2 must be transformed to a point at a
distance y+K below l2. Thus, the y-coordinate must be −K− (y+K) and
r2(x, y) = (x,−2K − y). Note that K is the distance between l1, l2.

Now, if A = (x, y), then A T (A) = A r2(r1(A)) will be just the difference
in the y values of A and r2(r1(A)); that is, y − (−2K − y) = 2K.

So, A T (A) = 2K and B T (B) = 2K. Since T is an isometry, we also
have that T (A) T (B) = AB 6= 0, as A 6= B. Thus, the sides of quadrilateral

A B T (B) T (A) are pair-wise congruent. Also, since
←→

A T (A) is perpendic-

ular to l1 and
←→

B T (B) is perpendicular to l1, then these two sides of the
quadrilateral are parallel. By constructing the diagonal of the quadrilateral,
and using a triangle congruence argument, we see that the other pair of sides
in the quadrilateral are also parallel, and thus the quadrilateral must be a
parallelogram. 2

From this theorem we see that for every point A in the plane, a trans-
lation T (not equal to the identity) will map A to T (A) in such a way that
the length of the segment from A to T (A) will be constant and the direc-
tion of this segment will also be constant. Thus, a translation is determined
by a vector, the vector from A to T (A) for any A. This will be called the
displacement vector of the translation.



5.3. TRANSLATIONS 195

Since the displacement vector is the vector from A to T (A), this vector is
given by T (A)−A (considering the points as vectors from the origin). Thus,
if A = (x, y), then a translation T with displacement vector v = T (A)−A =
(v1, v2) will have the coordinate equation

T (x, y) = (x, y) + (v1, v2)

On the other hand, suppose that we are given a function defined by the
coordinate equation T (x, y) = (x, y) + (v1, v2). Let l1 be a line through the
origin that is perpendicular to the vector v and l2 a line parallel to l1, but
passing through the midpoint of the segment along vector v (Fig. 5.7).

v

l
1

l
2

Fig. 5.7

Then the translation T ′ defined by successive reflection across l1 and
l2 will map the origin to the head of v and thus will have a translation
vector equal to v. The coordinate equation for T ′ will then be T ′(x, y) =
(x, y) + (v1, v2). Thus, the translation T ′ and the function T must be the
same function.

Corollary 5.10. Every translation T can be expressed in rectangular co-
ordinates as a function T (x, y) = (x, y) + (v1, v2) and, conversely, every
coordinate function of this form represents a translation.

We also have the following result that expresses the translation vector
in terms of the original lines of reflection.

Corollary 5.11. Let a translation be defined by reflection across two parallel
lines l1, l2 (in that order). Let m be a line perpendicular to both lines at A

on l1 and B on l2. Then the displacement vector is given by 2
−−→
AB.
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Proof: Set up a coordinate system with the x-axis on l1. Then, as in the
proof of the last theorem, the translation will move a point a distance of twice
the distance between the lines l1, l2. The direction will be perpendicular to

the lines. Thus, the vector will be 2
−−→
AB, as this vector has the right length

and direction. 2
How many fixed points will a translation have? If the two lines of reflec-

tion defining the translation are not coincident, then the translation always
moves points a finite distance and thus there are no fixed points. On the
other hand, if the two lines are the same, then the translation is the identity.
Thus, a non-trivial translation (one that is not the identity) has no fixed
points.

5.3.1 Translational Symmetry

When we discussed bilateral symmetry in the last section, we saw that many
objects in nature exhibited bilateral symmetry. Such objects, when reflected
across a line of symmetry, remain unchanged or invariant. Bilateral symme-
try is a property that a single, finite object can exhibit.

What can we say about an object that is invariant under translation, that
is, an object that has translational symmetry? To remain unchanged under
translation, an object must repeat its form at regular intervals, defined by
the translation vector. When we take a portion of the object and translate
it, we must overlap the exact same shape at the new position. Thus, an
object that is invariant under translation is necessarily infinite in extent.
As Hermann Weyl stated in his foundational work on symmetry:

A figure which is invariant under a translation t shows what in
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the art of ornament is called “infinite rapport,” i.e. repetition in
a regular spatial rhythm [40, page 47].

Translational symmetry, being infinite in extent, cannot be exhibited
by finite living creatures. However, we can find evidence of a limited form
of translation symmetry in some animals and plants. For example, the
millipede has leg sections that are essentially invariant under translation
(Fig. 5.9).

Fig. 5.9 Millipede, Copyright EnchantedLearning.com

Also, many plants have trunks (stems) and branching systems that are
translation invariant.

Whereas translational symmetry is hard to find in nature, it is extremely
common in human ornamentation. For example, wallpaper must have trans-
lational symmetry in the horizontal and vertical directions so that when you
hang two sections of wallpaper next to each other the seam is not notice-
able. Trim patterns called friezes, which often run horizontally along tops
of walls, also have translational invariance (Fig. 5.10).
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Fig. 5.10 Frieze Patterns

Exercise 5.3.1. Find and sketch two examples of translational symmetry in
nature.

Exercise 5.3.2. Find and sketch three examples of wallpaper or frieze patterns
that have translational invariance. Indicate on your sketch the translation vector(s)
for each pattern.

Exercise 5.3.3. Given a translation T = r1 ◦ r2 defined by two reflections r1, r2
and with displacement vector v, show that the inverse of T is the translation T−1 =
r2 ◦ r1 having displacement vector −v.

Exercise 5.3.4. Show that the composition of two translations T1 and T2 is again
a translation. Find the translation vector for T1 ◦ T2.

Exercise 5.3.5. Show that the composition of translations is a commutative
operation. That is, if T1 and T2 are translations, then T1 ◦ T2 = T2 ◦ T1.

Exercise 5.3.6. Given a reflection r across a line l and a translation T in the
same direction as l, show that r ◦ T = T ◦ r. [Hint: Choose a “nice” setting in
which to analyze r and T .] Will this result hold if T is not in the direction of l?

Exercise 5.3.7. In the section on reflections, we saw that a simple reflection
across the x-axis, which we will denote by rx, could be expressed as rx(x, y) =
(x,−y). Let r be the reflection across the line y = K. Let T be the translation
with displacement vector of v = (0,−K). Show that the function T−1 ◦ rx ◦ T is
equal to r and find the coordinate equation for r. [Hint: Show that T−1 ◦ rx ◦ T
has the right set of fixed points.]

Exercise 5.3.8. Let T be a (non-identity) translation. Show that the set of
invariant lines for T are all pair-wise parallel and that each is parallel to the dis-
placement vector of T . [Hint: Use Theorem 5.9.]
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Exercise 5.3.9. Let T be a translation with (non-zero) displacement vector par-
allel to a line l. Let m be any line perpendicular to l. Show that there is a line
n perpendicular to l such that T = rn ◦ rm. [Hint: Suppose m intersects l at P .
Choose n to be the perpendicular bisector of P T (P ). Show that rn ◦ T fixes m.]

Exercise 5.3.10. Let rl be a reflection across l and T be a translation with
displacement vector parallel to l. Show that rl ◦ T ◦ rl = T .

5.4 Rotations

Definition 5.11. An isometry that is made up of two reflections where the
lines of reflection are not parallel will be called a rotation.

To analyze rotations we will make use of the following lemma.

Lemma 5.12. If two non-coincident lines l1, l2 intersect at O, and if m is
the bisector of ∠Q1OQ2, with Q1 on l1 and Q2 on l2, then rm(l1) = l2 and
rm ◦ rl1 = rrm(l1) ◦ rm = rl2 ◦ rm.

Proof: We can assume that Q1, Q2 were chosen such that OQ1 = OQ2

(Fig 5.11). Let P be the intersection of the bisector m with Q1Q2.

O

Q
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l
1

l
2

Q
2

m

P

Fig. 5.11

Then, by SAS we know that P is the midpoint of Q1Q2 and m is the
perpendicular bisector of Q1Q2. Thus, rm(Q1) = Q2. Since rm(O) = O,
the line l1 (defined by O and Q1) must get mapped to l2 (defined by O and
Q2), or rm(l1) = l2.

For the second part of the lemma, we know by Exercise 5.2.13 that
rm ◦ rl1 ◦ rm = rrm(l1) = rl2 . Thus, rm ◦ rl1 = rl2 ◦ rm. 2

Rotations are characterized by the fact that they have a single fixed
point.
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Theorem 5.13. An isometry R 6= id is a rotation iff R has exactly one
fixed point.

Proof: Suppose R has a single fixed point, call it O (Fig. 5.12). Let A
be another point with A 6= O.

O

A

l

R(A)

m

P

Fig. 5.12

Let l be the line through O and A and let m be the bisector of ∠AOR(A)
(or the perpendicular bisector of A R(A) if the three points are collinear). If
A,O,R(A) are non-collinear, we know from the previous lemma that rm ◦R
will fix point A. If they are collinear, rm ◦ R will also fix A, as m is the
perpendicular bisector of A R(A). Since rm ◦R also fixes O, rm ◦R is either
the identity or a reflection. If it is the identity, then R = rm. But, then R
would have more than one fixed point. Thus, rm ◦ R must be a reflection
fixing O and A, and thus rm ◦R = rl and R = rm ◦ rl.

Conversely, let R = rm ◦ rl for lines l,m intersecting at O. If R had a
second fixed point, say B 6= O, then rm(B) = rl(B). Clearly, B cannot be
on m or l. But, then the segment joining B to rm(B) is perpendicular to m,
and this same segment would also be perpendicular to l, as rm(B) = rl(B).
This is impossible. 2

The next lemma describes triples of reflections about coincident lines.

Lemma 5.14. Let l,m, n be three lines intersecting at a point O. Then,
rl◦rm◦rn is a reflection about a line p passing through O. Also, rl◦rm◦rn =
rn ◦ rm ◦ rl.

Proof: Let f = rl ◦ rm ◦ rn, and let A be a point on n not equal to O
(Fig. 5.13). For A′ = f(A), either A′ 6= A or A′ = A.
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If A′ 6= A, let line p be the angle bisector of ∠AOA′. A simple triangle
argument shows that p is also the perpendicular bisector of AA′ and thus
rp maps A to A′. If A′ = A choose p = n.

In either case, rp ◦ f will fix both A and O and thus fixes n. Thus, rp ◦ f
is either equal to rn or is the identity. If rp ◦ f = rp ◦ rl ◦ rm ◦ rn = rn, then
rp ◦ rl ◦ rm = id and rp = rm ◦ rl. Since m and l intersect, then rp would
be either a rotation or the identity. Clearly, rp cannot be a rotation or the
identity, and thus rp ◦ f = id; that is, rp = f .

We conclude that f is a reflection about a line p passing through O, and
rp = f = rl ◦ rm ◦ rn.

For the second part of the theorem, we note that (rp)
−1 = (rn)−1 ◦

(rm)−1 ◦ (rl)
−1. Since reflections are their own inverses, we have rp = rn ◦

rm ◦ rl.

2

The next theorem tells us how rotations transform points through a fixed
angle.

Theorem 5.15. Let R be a rotation about a fixed point O. For any point
A 6= O, there is a unique line m passing through O such that R = rm ◦ rl,
where l is the line through O and A. Also, if m∠AOR(A) is θ degrees, then
for any point B 6= O, we have m∠BOR(B) is also θ degrees.

Proof: Let m be the angle bisector of ∠AOR(A). By the first part of
the proof of Theorem 5.13, we know that R = rm ◦ rl.
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For the second part of the theorem, we can assume B has the property
that OA ∼= OB ∼= O R(B) (Fig. 5.14).

Let t be the angle bisector of ∠R(B) OA. Then, rt(A) = R(B) =
rm(rl(B)). Thus, A = rt(rm(rl(B))) and B = rl(rm(rt(A))). By the previ-
ous lemma we also have B = rt(rm(rl(A))). Since rm(rl(A)) = R(A), then
B = rt(R(A)).

Since R(B) = rt(A) and B = rt(R(A)), then A R(A) ∼= B R(B), and by
SSS congruence ∆AOR(A) ∼= ∆BOR(B), and so ∠AOR(A) ∼= ∠BOR(B).
Thus, the two angles have the same measure. 2

From this theorem we can see that the construction of a rotation about
O of a specific angle θ requires the choice of two lines that meet at O and
make an angle of θ

2 .

We note here that the preceding theorems on rotations do not depend
on Euclid’s fifth postulate and are thus part of neutral geometry. We will
use this fact to consider non-Euclidean rotations in Chapter 7.

Definition 5.12. The point O of intersection of the reflection lines of a
rotation R is called the center of rotation. The angle φ defined by ∠AOR(A)
for A 6= O is called the angle of rotation.

Now let’s consider the coordinate form of a rotation R.

Given a point (x, y) in a coordinate system, we know that we can repre-
sent the point as (r cos(θ), r sin(θ)). A rotation of (x, y) through an angle
of φ about the origin O = (0, 0) is given by

Rotφ(x, y) = (r cos(θ + φ), r sin(θ + φ))
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From the trigonometric formulas covered in Chapter 3, we know that
the right side of this equation can be written as

(r cos(θ) cos(φ)− r sin(θ) sin(φ), r sin(θ) cos(φ) + r cos(θ) sin(φ))

Therefore,

Rotφ(x, y) = (x cos(φ)− y sin(φ), x sin(φ) + y cos(φ))

This is the coordinate form for a rotation about the origin by an angle
of φ.

We note for future reference that a rotation about a point O of 180
degrees is called a half-turn about O.

5.4.1 Rotational Symmetry

Definition 5.13. A figure is said to have rotational symmetry (or cyclic
symmetry) of angle φ if the figure is preserved under a rotation about some
center of rotation with angle φ.

Rotational symmetry is perhaps the most widespread symmetry in na-
ture.

Rotational symmetry can be found
in the very small, such as this radio-
larian illustrated by Ernst Haeckel
in his book Art Forms in Nature
[18], to the very large, as exhib-
ited by the rotationally symmetric
shapes of stars and planets.

Many flowers exhibit five-fold symmetry, the rotational symmetry of the
regular pentagon. Let’s prove that the regular pentagon has five-fold sym-
metry.

Theorem 5.16. The regular pentagon has rotational symmetry of 72 de-
grees.
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Proof: In earlier exercises it was shown that the angle bisectors of the
pentagon are lines of symmetry and the perpendicular bisectors of the sides
are also lines of symmetry. Let l1 be the angle bisector of ∠CAB and l2
be the perpendicular bisector of side AB at M in the pentagon shown in
Fig. 5.15. Then l1 and l2 must intersect. For, suppose that they were
parallel. Then ∠CAB must be a straight angle, that is, C, A, and B are
collinear, which is clearly impossible.

Let O be the intersection of l1, l2 and φ be the measure of ∠AOB. The
composition R of the reflections through l1, l2 is a rotation through an angle
of 2∠AOM = φ. We know that the pentagon is invariant under R, since it is
invariant under the component reflections. If C,D,E are the other vertices,
we have that iterated application of the rotation R on A will cycle through
these other vertices, and thus OC = OA = OD = OE, making all of the
interior triangles ∆AOB, ∆COA, and so on, congruent. Since there are five
angles at O of these triangles, then φ = 360

5 = 72. 2
In a similar fashion, we could show that the regular n-gon has rotational

symmetry of 360
n degrees.

Exercise 5.4.1. Suppose we are given a coordinate system centered at a point O.
Let Rotφ be a rotation about O of angle φ. Let C = (x, y) be a point not equal to
O and let T be the translation with vector v = (−x,−y). Show that T−1 ◦Rotφ ◦T
is a rotation about C of angle φ.

Exercise 5.4.2. Given a coordinate system centered at a point O and a line l
that does not pass through O, find an expression for reflection across l, by using
translations, rotations, and a reflection across the x-axis.
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Exercise 5.4.3. Find three examples in nature of each of the following rotational
symmetries: 90 degrees (square), 72 degrees (pentagon), and 60 degrees (hexagon).
Sketch your examples and label the symmetries of each.

Exercise 5.4.4. Show that if R is a rotation of θ 6= 0 degrees about O, and l is
a line not passing through O, then R(l) 6= l. That is, if a (non-identity) rotation
has an invariant line, it must pass through the center of rotation. [Hint: Drop a
perpendicular from O to l at A. If θ < 180 consider the triangle AOR(A). If
θ = 180 use a different argument.]

Exercise 5.4.5. Show that if a rotation R 6= id has an invariant line, then it must
be a rotation of 180 degrees. Also, the invariant lines for such a rotation are all
lines passing through the center of rotation O. [Hint: Use the preceding exercise.]

Exercise 5.4.6. Let R be a rotation about a point O and m be a line. Show
that if R(m) ‖ m, then the rotation angle for R is 180 degrees. [Hint: Suppose the
angle is less than 180 and consider ∆AOR(A) where A is a point on m.]

Exercise 5.4.7. Show, using reflections, that the inverse to a rotation about a
point of φ degrees is a rotation about the same point of −φ degrees.

Exercise 5.4.8. Show that the composition of two rotations centered at the same
point is again a rotation centered at that point.

Exercise 5.4.9. Suppose that two rotations R, R′ centered at O have the same
effect on a point A 6= O. Show that R = R′.

Exercise 5.4.10. Suppose that the composition of a rotation R 6= id with a
reflection r1 is again a reflection r2. That is, suppose that r1 ◦ R = r2. Show that
r1 and r2 must pass through the center of rotation for R.

Exercise 5.4.11. Let l be perpendicular to m at a point A on l (or m). Let
H = rl ◦ rm. Show that H is a rotation about A of 180 degrees; that is, a half-turn
about A. [Hint: Show that for all B 6= A that A is the midpoint of BH(B).]

Exercise 5.4.12. Let A,B be distinct points. Let HA,HB be half-turns about
A,B, respectively. Show that HB ◦HA is a translation in the direction of the vector
from A to B.

Exercise 5.4.13. Let f be any isometry and HA a half-turn about a point A.
Show that f ◦HA ◦f−1 is a half-turn. [Hint: Show it is a rotation and that it maps
lines through a point back to themselves.]
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5.5 Project 7 - Quilts and Transformations

Before we look at the last type of isometries, those composed of three
reflections, we will take a break to have a little fun with our current toolbox
of isometries (reflections, translations, and rotations).

One of the uniquely American craft forms is that of quilting. In making
a quilt, we start with a basic block, usually a square, made up of various
pieces of cloth. This basic block is then copied to form a set of identical
blocks that are sewn together to make a quilt.

For example, here is a quilt block
we’ll call “square-in-square” that is
made up of a piece of white cloth on
top of a black background.

If we translate this block up and
down (equivalently, sew copies of
this block together), we will get the
quilt shown here.

Note that the square-in-square
block can be built up from a sim-
pler shape, that of the triangular-
divided square found in the bottom
left corner of the square-in-square
block. The square-in-square block
is built of four copies of this basic
shape, using various reflections.
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In the first part of this project, we will see how to use Geometry Ex-
plorer’s built-in transformation capability to construct the triangular-divided
square, and then use this to construct the square-in-square and a quilt based
on this block.

We note here that when we refer to a “block” of a quilt, we are referring
to a square region of the quilt that can cover the entire quilt when repeatedly
transformed via reflections, rotations, and translations. Thus, in the quilt
shown in the middle figure in the preceding series of figures, either the
square-in-square shape, or the triangular-divided square, or the entire quilt
itself, could be considered basic quilting blocks.

Start Geometry Explorer. For this
project we will use the Transform
panel of buttons. In this panel are
several transformation buttons, as
well as three buttons labeled Mark,
Custom, and Base. These three
are pop-up menus. When you click
on them, a menu will pop up, allow-
ing you to select an option. In the
rest of this project, you will be in-
structed to use these pop-up menus
to define transformations.

Translate

Dilate Reflect

Rotate

Mark Menu Custom Menu Base Menu

Create a segment AB, select
A, and choose Center under the
Mark pop-up menu. This sets
point A to be a center of rotation.
We are going to rotate point B
90 degrees about point A. To do
this we need to define the rotation.
Choose Rotation from the Cus-
tom pop-up menu. A dialog box
will pop up. Type in “90” and hit
return. Then, rotate B by selecting
B and then clicking on the Rotate
button in the Transform panel (sec-
ond button in first row).

A B

C
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Now, set C as the center of ro-
tation and rotate point A by 90 de-
grees to point D. (You will need
to use the Mark pop-up menu as
you did before.) Then, connect the
vertices with segments to form the
square shown.

A B

C D

To construct the triangular-
divided square, we will construct
the figure shown. Multi-select
points B, A, and C, and then click
on the Filled-polygon button (third
button in third row of the Construct
panel).

A B

C D

We can finish the creation of the
square-in-square block either by re-
flection or rotation about D. Carry
out whichever transformations you
wish to get the block shown. (We
will ignore the extra lines and points
for now.)

A B

C D

E

F

To create a larger quilt from this block, we will translate the block verti-
cally and horizontally. For example, to translate horizontally, we will want

to shift the block to the right by the vector
−→
AE.
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Define this horizontal translation by
multi-selecting A and E and choos-
ing Vector from the Mark pop-
up menu. A dialog box will pop
up, asking whether this vector is de-
fined as a “polar” or “rectangular”
vector. Choose “rectangular.” To
translate the block, click and drag
the selection arrow to create a selec-
tion box around the block, and then
click on the Translate button (first
button in first row of the Transform
panel) to get the image shown.

A B

C D

E

F

We can likewise set
−→
AF as a vec-

tor and translate the previous figure
in a vertical direction multiple times
(just keep hitting the Translate but-
ton).

A B

C D

E

F
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Finally, let’s hide all the seg-
ments and points used in the con-
struction. To do this choose Hide
All (View menu).

Exercise 5.5.1. Using the same triangular-divided square and appropriate trans-
formations, construct the quilt Yankee Puzzle shown in Fig. 5.16. Feel free to use
different colors for the various shapes in the quilt. Describe the steps (i.e., sequence
of transformations) that you took to build the quilt.

Fig. 5.16 Yankee Puzzle

Exercise 5.5.2. Design your own pattern, based on triangular-divided squares
or simple squares, and use it to build a quilt. Below are a few quilts you can use
for ideas.
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Star Puzzle 
Dutch Man’s Puzzle

25-Patch Star Flower Basket

Exercise 5.5.3. Which of the four quilt patterns in the previous exercise have

• bilateral symmetry (Specify the lines of reflection.)

• rotational symmetry (Specify the rotation angle and center of rotation.)

• both rotational and bilateral symmetry

Exercise 5.5.4. Why must a quilt having two perpendicular lines of reflection
have a rotational symmetry? What is the rotation angle?

The quilt patterns in this project, and many other intriguing quilt pat-
terns, can be found in [5, pages 305–311] and also in [36].
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5.6 Glide Reflections

Now we are ready to look at the last class of isometries—those made up of
three reflections. Such isometries will turn out to be equivalent to either a
reflection or a glide reflection.

Definition 5.14. An isometry that is made up of a reflection and a trans-
lation parallel to the line of the reflection is called a glide reflection.

A glide reflection is essentially a flip across a line and then a glide (or

translate) along that line. If
−−→
AB is a vector with TAB translation by this

vector and if l is a line parallel to
−−→
AB with rl reflection across l, then the

glide reflection defined by these isometries is

Gl,AB = TAB ◦ rl
Our first theorem about glide reflections says that it doesn’t matter if

you glide and then reflect or reflect and then glide. You always end up at
the same place.

Theorem 5.17. Let l be a line and
−−→
AB a vector parallel to l.

• Gl,AB = TAB ◦ rl = rl ◦ TAB

• G−1
l,AB = TBA ◦ rl

A
B

l

P

P’

P’’

G,H

Fig. 5.17

Proof: For the first statement of the theorem, let P be a point not on
l. Let P ′ = rl(P ) and P ′′ = TAB(P ) (Fig. 5.17). Let G = TAB(rl(P ))
and H = rl(TAB(P )). We know that PP ′ is perpendicular to l. We also
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know that APP ′′B and AP ′GB will be parallelograms, by Theorem 5.9.
Thus, ∠P ′PP ′′ and ∠PP ′G are right angles, as PP ′′ and P ′G are both
parallel to l and PP ′ crosses l at right angles. The angles at P ′′ and G in
quadrilateral PP ′′GP ′ are also right angles, as translation preserves angles.
Thus, PP ′′GP ′ is a rectangle.

A similar argument will show that PP ′′HP ′ is also a rectangle and thus
G = H, or TAB(rl(P )) = rl(TAB(P )).

If P lies on l, then since translation of TAB(P ) will still lie on l, we have
that rl(TAB(P )) = TAB(P ) = TAB(rl(P )).

For the second statement we reference one of the earlier exercises of the
chapter, which said that if a function h was the composition of f and g
(h = f ◦ g), then h−1 = g−1 ◦ f−1. So

G−1
l,AB = r−1

l ◦ T
−1
AB

Since the inverse of a reflection is the reflection itself and the inverse of a
translation from A to B is the reverse translation from B to A, we get that

G−1
l,AB = rl ◦ TBA = TBA ◦ rl

2
Now we are ready to begin the classification of isometries that consist of

three reflections.

Theorem 5.18. Let l1, l2, l3 be three lines such that exactly two of them meet
at a single point. Then the composition of reflections across these three lines
(r3 ◦ r2 ◦ r1) is a glide reflection.

Proof: Let r1, r2, r3 be the reflections across l1, l2, l3. There are two cases
to consider. Either the first two lines l1, l2 intersect or they are parallel.

Suppose that l1, l2 intersect at P (Fig. 5.18). Drop a perpendicular from
P to l3 intersecting at Q.

P

l
2

l
1

l
3

Q
S

−φ

P’

S’

Fig. 5.18
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We know that the composition of r1 and r2 will be a rotation about P
of some non-zero angle, say φ degrees. Let S be the rotation of Q about P
of −φ degrees. Since r2(r1(S)) = Q and r3(Q) = Q, we have

Q = r3(r2(r1(S)))

Now, let P ′ be the reflection of P across l3. Let S′ = r3(r2(r1(Q))). We
know that S′ 6= S as S′ must be Q rotated about P by φ and then reflected

across l3 and thus must be on the other side of
←→
QP from S. Since r3 ◦ r2 ◦ r1

is an isometry and since this composition maps ∆PSQ to ∆P ′QS′, we know
that these two triangles are congruent. Thus, ∠PQS ∼= ∠P ′S′Q. But, both
triangles must also be isosceles (PS ∼= PQ). Thus, ∠PQS ∼= ∠P ′QS′. This
means that S,Q, S′ must lie on a line. Since isometries take lines to lines

then r3 ◦ r2 ◦ r1 must map
←→
QS back to itself, with a shift via the vector from

S to Q.

Let G = TSQ ◦ rSQ, where rSQ is reflection across
←→
QS and TSQ is trans-

lation from S to Q. It is left as an exercise to show that G(P ) = P ′.
Then, G and r3 ◦ r2 ◦ r1 match on three non-collinear points P, S,Q and so
G = r3 ◦ r2 ◦ r1, and thus the composition r3 ◦ r2 ◦ r1 is a glide reflection.

Now, what about the second case, where l1, l2 are parallel? Then it must
be the case that l2 and l3 intersect at a single point. Then, by the argument
above, r1 ◦ r2 ◦ r3 is a glide reflection. But, r1 ◦ r2 ◦ r3 = (r3 ◦ r2 ◦ r1)−1. We
know that the inverse of a glide reflection is again a glide reflection by the
previous theorem. Thus, ((r3 ◦r2 ◦r1)−1)−1 = r3 ◦r2 ◦r1 is a glide reflection.

2
We can now give a complete classification of isometries that consist of

three reflections.

Theorem 5.19. The composition of three different reflections is either a
reflection or a glide reflection.

Proof: There are three cases.
First, suppose that the three lines l1, l2, l3 of reflection are parallel. We

can suppose that there is a coordinate system set up so that each line is
parallel to the x-axis. Then, as was discussed in the section on reflections,
we know that the three reflections r1, r2, r3 associated with l1, l2, l3 can be
given by

r1(x, y) = (x,−y − 2K1), r2(x, y) = (x,−y − 2K2), r3(x, y) = (x,−y − 2K3)

for some non-negative constants K1,K2,K3. Then

r3(r2(r1(x, y))) = (x,−y − 2K1 + 2K2 − 2K3)
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This clearly fixes the line at y = −K1 +K2 −K3 and thus is a reflection.
Secondly, suppose that only two of the lines meet at exactly one point.

By the previous theorem we have that r3 ◦ r2 ◦ r1 is a glide reflection.
Finally, suppose that all three meet at a single point P . Then, by

Lemma 5.14 we have that r3 ◦ r2 ◦ r1 is a reflection about some line through
the common intersection point.

2

5.6.1 Glide Reflection Symmetry

Definition 5.15. A figure is said to have glide symmetry if the figure is
preserved under a glide reflection.

Where does glide symmetry appear
in nature? You may be surprised to
discover that your feet are creators
of glide symmetric patterns! For ex-
ample, if you walk in a straight line
on a sandy beach, your footprints
will create a pattern that is invari-
ant under glide reflection (footsteps
created by Preston Nichols).

Many plants also exhibit glide
symmetry in the alternating struc-
ture of leaves or branches on a stem.



216 CHAPTER 5. TRANSFORMATIONAL GEOMETRY

Exercise 5.6.1. Find examples of two objects in nature that exhibit symmetries
of a glide reflection (other than the ones we have given). Draw sketches of these
and illustrate the glide reflection for each object on your sketch.

Exercise 5.6.2. Finish the proof of Theorem 5.18; that is, show in the proof

that G(P ) = P ′. [Hint: Let P ′′ be the reflection of P across
←→
QS. Show that

∆P ′P ′′Q ∼= ∆QSP and use this to show the result.]

Exercise 5.6.3. Show that the only invariant line under a glide reflection TAB ◦rl
(with

−−→
AB 6= (0, 0)) is the line of reflection l. [Hint: If m is invariant, then it is also

invariant under the glide reflection squared.]

Exercise 5.6.4. Show that if a glide reflection has a fixed point, then it is a pure
reflection—it is composed of a reflection and a translation by the vector v = (0, 0).
[Hint: Use a coordinate argument.]

Exercise 5.6.5. Show that the composition of a glide reflection with itself is a
translation and find the translation vector in terms of the original glide reflection.

A group of symmetries is a set of Euclidean isometries that have the
following properties:

1. Given any two elements of the set, the composition of the two elements
is again a member of the set.

2. The composition of elements is an associative operation.

3. The identity is a member of the set.

4. Given any element of the set, its inverse exists and is an element of
the set.

Note: Since function composition is associative, the fourth condition is true
for all collections of isometries.

Exercise 5.6.6. Does the set of glide reflections form a group of symmetries?
Why or why not?

Exercise 5.6.7. Show that the set of all reflections does not form a group of
symmetries.

Exercise 5.6.8. Show that the set of all rotations does not form a group of
symmetries. [Hint: Use half-turns.]

Exercise 5.6.9. Show that the set of rotations about a fixed center of rotation
O does form a group of symmetries.
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Exercise 5.6.10. Show that the set of translations forms a group of symme-
tries.

Definition 5.16. An isometry is called direct (or orientation-preserving) if
it is a product of two reflections or is the identity. It is called opposite (or
orientation-reversing) if it is a reflection or a glide.

Exercise 5.6.11. Given ∆ABC, the
ordering A, B, C is called a “clockwise”
ordering of the vertices, whereas A,C,B
would be a “counterclockwise” order-
ing. Describe, by example, how direct
isometries preserve such orderings (i.e.,
map clockwise to clockwise and coun-
terclockwise to counterclockwise) and
how opposite isometries switch this or-
dering. A

B

C

Exercise 5.6.12. Show that every isometry is either direct or opposite, but not
both.

Definition 5.17. An isometry f will be called even if it can be written as
the product of an even number of reflections. An isometry will be called odd
if it can be written as the product of an odd number of isometries.

Exercise 5.6.13. Show that an isometry cannot be both even and odd. [Hint:
Use Exercise 5.2.14.]

Exercise 5.6.14. Show that an isometry is even if and only if it is direct, and
that it is odd if and only if it is indirect.

5.7 Structure and Representation of Isometries

We have now completely classified the possible isometries of the Euclidean
plane. We can classify isometries in two ways—by the number of fixed points
they have or by the number of reflections that make up isometries.

In the following table we have classified isometries by the number of fixed
points they have.
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Fixed Points Isometry

0 translation, glide reflection

1 rotation

2 reflection

3 (not collinear) identity

Table 5.1 Isometry Classification by Fixed Points

In the next table we classify an isometry by the number of reflections
that comprise the isometry.

Number of Reflections Isometry

1 reflection

2 identity, rotation, translation

3 glide reflection, reflection

Table 5.2 Isometry Classification by Reflections

We know how an individual isometry behaves, but how do isometries
work when combined together? From Exercise 5.4.8 we know that the com-
position of two rotations about the same center is again a rotation about
that center. But, what can we say about the composition of two rotations
about different centers? We know that the composition of such rotations
will again be an isometry, but what type? To answer such questions we will
need a uniform way to represent all Euclidean isometries. This will be done
through the use of matrices.

5.7.1 Matrix Form of Isometries

Recall that a rotation Rφ of a point (x, y) through an angle of φ degrees
about the origin can be written as

Rφ(x, y) = (x cos(φ)− y sin(φ), x sin(φ) + y cos(φ))

Note that this is equivalent to the matrix equation

Rφ(x, y) =

[
cos(φ) − sin(φ)
sin(φ) cos(φ)

](
x

y

)
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where
(
x
y

)
is the column vector representing the point (x, y). Thus, the ac-

tion of Rφ on points in the plane is the same as matrix multiplication (on the

left) of the vector representing the point by the matrix

[
cos(φ) − sin(φ)
sin(φ) cos(φ)

]
.

We see, then, that any rotation about the origin can be identified with a
2x2 matrix of the form above, and conversely any matrix of this form will
give rise to a rotation about the origin.

Can we find a matrix form for a translation? Let T be a translation with
vector v = (v1, v2). Then

T (x, y) = (x, y) + (v1, v2) = (x+ v1, y + v2)

Unfortunately, this cannot be written as the product of a 2x2 matrix

with
(
x
y

)
. However, consider the following matrix equation: 1 0 v1

0 1 v2

0 0 1

 x
y
1

 =

 x+ v1

y + v2

1


The vector (x, y, 1) gets mapped to the vector (x+ v1, v + v2, 1). In the

x and y coordinates, this is exactly what translation by v would produce.
But, how can we use this fact about three-dimensional vectors in planar
geometry?

Recall the discussion on models in the first chapter. If we can find a
setting where the axioms of a geometry hold, then that setting will serve as
a model for the geometry, and all theorems will hold equally well in that
model. The normal model for planar geometry is the Euclidean (x, y) plane,
which we can interpret as the plane at height 0 in three dimensions. But, the
axioms of planar geometry work just as well for the set of points at height
z = 1, that is, the set of points (x, y, 1). Whatever operation we do on points
in this new plane will be equal in effect to the corresponding operation in
the abstract Euclidean plane, as long as we ensure that the third coordinate
stays equal to 1.

For the rest of this section we will switch to this new model of planar
geometry.

Definition 5.18. A point will be a vector (x, y, 1). Distance and angle will
be defined as the standard distance and angle of the x and y components.

In our new model the third coordinate does not carry any geometric
significance. It is there just to make our representation of isometries easier.
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We will define vector addition of two points (x1, y1, 1) and (x2, y3, 1) as
(x1, y1, 1) + (x2, y3, 1) = (x1 + x2, y1 + y2, 1). With this definition, vector
addition carries the same geometric meaning as standard vector addition for
points in the (x, y) plane. Also, if A is a matrix and v1, v2 are two vectors,
then A(v1 + v2) = Av1 +Av2. This property of linearity will come in handy.

We have the following classification of “elementary” isometries.

• A rotation about the origin by an angle of φ is represented by cos(φ) − sin(φ) 0
sin(φ) cos(φ) 0

0 0 1


• A translation by a vector of v = (v1, v2) is represented by 1 0 v1

0 1 v2

0 0 1


• A reflection about the x-axis is represented by 1 0 0

0 −1 0
0 0 1


• A reflection about the y-axis is represented by −1 0 0

0 1 0
0 0 1


Any other reflection, translation, rotation, or glide reflection can be built

from these elementary isometries, as was shown in the exercises at the end
of the last few sections. Thus, any isometry is equivalent to the product of
3x3 matrices of the form above.

But, how exactly do compositions of isometries form new isometries? We
know that the composition of two translations is again a translation, that
two reflections form either a translation or rotation, and that two rotations
about the same center form another rotation about that center. What about
the composition of two rotations with different centers? Or the composition
of a rotation and translation?
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5.7.2 Compositions of Rotations and Translations

In the next two theorems, we will assume that any angle mentioned has been
normalized to lie between 0 and 360.

Theorem 5.20. Let Ra,α be rotation about point a by an angle α 6= 0. Let
Rb,β be rotation about point b 6= a by β 6= 0. Let Tv be translation by the
vector v = (v1, v2). Then

(i) Ra,α ◦ Tv = TRa,α(v) ◦Ra,α.

(ii) Ra,α ◦Rb,β is a translation iff α+ β = 0(mod 360).

(iii) Ra,α ◦ Tv (or Tv ◦Ra,α) is a rotation of angle α.

(iv) Ra,α ◦Rb,β is a rotation of angle α+ β iff α+ β 6= 0(mod 360).

Proof: For the first statement of the theorem, we can set our coordinate
system so that a is the origin. Using the matrix forms for Ra,α and Tv,
we get

Ra,α ◦ Tv =

 cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1

 1 0 v1

0 1 v2

0 0 1


=

 cos(α) − sin(α) cos(α)v1 − sin(α)v2

sin(α) cos(α) sin(α)v1 + cos(α)v2

0 0 1


The x and y components of the third column of this product are precisely

the x and y components of Ra,α(v). Let Ra,α(v) = (c, d). Then

TRa,α(v) ◦Ra,α =

 1 0 c
0 1 d
0 0 1

 cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1


=

 cos(α) − sin(α) c
sin(α) cos(α) d

0 0 1


This finishes the proof of the first part of the theorem.

For the second part of the theorem, suppose that Ra,α ◦Rb,β is a trans-
lation Tv. We can assume that b is the origin. Let Rθ represent rotation
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about the origin by θ. We know that Ra,α = Ta ◦ Rα ◦ T−a. Thus, using
statement (i), we get that

Tv = Ra,α ◦Rb,β
= Ta ◦Rα ◦ T−a ◦Rβ
= Ta ◦ TRα(−a) ◦Rα ◦Rβ
= Ta+Rα(−a) ◦Rα+β

Thus, T−a−Rα(−a) ◦Tv is a rotation (Rα+β) and must have a fixed point.
But, the only translation with a fixed point is the identity, and thus Rα+β

must be the identity, and α+ β must be a multiple of 360 degrees.
Conversely, if α+ β is a multiple of 360, then Ra,α ◦Rb,β = Ta+Rα(−a).
For the third statement of the theorem, we can assume that a is the

origin and thus Ra,α = Rα. Consider the fixed points P of Rα ◦ Tv. Using
the matrix form of these isometries, we get that if P is a fixed point, then

 cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1

 1 0 v1

0 1 v2

0 0 1

P = P =

 1 0 0
0 1 0
0 0 1

P
Set Rα(v) = (e, f). After multiplying out the left side of the previous
equation, we get cos(α) − sin(α) e

sin(α) cos(α) f
0 0 1

P =

 1 0 0
0 1 0
0 0 1

P
If we subtract the term on the right from both sides, we get cos(α)− 1 − sin(α) e

sin(α) cos(α)− 1 f
0 0 0

P = O

where O is the origin (0, 0, 0). This equation has a unique solution iff the de-
terminant of the 2x2 matrix in the upper left corner is non-zero. (Remember
that the third component is not significant.) This determinant is

(cos(α)− 1)2 + sin(α)2 = cos(α)2 − 2 cos(α) + 1 + sin(α)2 = 2(1− cos(α))

Since α is not a multiple of 360, then cos(α) 6= 1 and there is a unique
fixed point. Thus, the composition is a rotation, say Rg,γ . Then R−α ◦Rg,γ
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is a translation and by statement (ii) we have that γ + (−α) = 0(mod 360)
and thus γ = α(mod 360). A similar argument shows that Tv ◦ Rα is a
rotation of angle α.

For the fourth statement of the theorem, we know from the work above
that Ra,α ◦ Rβ = Ta+Rα(−a) ◦ Rα+β. Since α + β 6= 0(mod 360), by state-
ment (iii) of the theorem, we know that the composition on the right is a
rotation by an angle of α+ β. 2

The only compositions left to consider are those involving reflections or
glide reflections.

5.7.3 Compositions of Reflections and Glide Reflections

Theorem 5.21. Let rl be a reflection with line of symmetry l, Gm,v a glide
reflection along a line m with the vector v parallel to m, Ra,α a rotation
with center a and angle α 6= 0, and Tw translation along a non-zero vector
w. Then

(i) rl ◦Ra,α (or Ra,α ◦ rl) is a reflection iff l passes through a. If l does
not pass through a, then the composition is a glide reflection.

(ii) rl ◦ Tw (or Tw ◦ rl) is a reflection iff the vector w is perpendicular
to l. If w is not perpendicular to l, then the composition is a glide
reflection.

(iii) Gm,v ◦ Ra,α (or Ra,α ◦ Gm,v) is a reflection iff m passes through
the center of the rotation defined by Tv ◦Ra,α (or Ra,α ◦ Tv). If m
does not pass through this center, then the composition is a glide
reflection.

(iv) Gm,v ◦ Tw (or Tw ◦ Gm,v) is a reflection iff the vector v + w is
perpendicular to m. If v + w is not perpendicular to m, then the
composition is a glide reflection.

(v) rl ◦ Gm,v (or Gm,v ◦ rl) is a translation iff l is parallel to m. The
composition is a rotation otherwise.

(vi) The composition of two different glide reflections is a translation
iff the reflection lines for both are parallel. The composition is a
rotation otherwise.

Proof: For the first two statements we note that the composition of a
reflection and either a rotation or a translation will be equivalent to the
composition of three reflections, and thus must be either a reflection or
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a glide reflection. Statements (i) and (ii) then follow immediately from
Theorems 5.18 and 5.19 and their proofs.

For statement (iii) we note that Gm,v = rm ◦ Tv and so Gm,v ◦ Ra,α =
rm◦Tv◦Ra,α. The result follows from statement (iii) of the previous theorem
and statement (i) of this theorem.

For statement (iv) we note that Gm,v ◦ Tw = rm ◦ Tv ◦ Tw = rm ◦ Tv+w.
The result follows from statement (ii).

For statement (v) we note that rl ◦ Gm,v = rl ◦ rm ◦ Tv. If rl ◦ Gm,v is
a translation, say Tu, then rl ◦ rm = Tu−v and l ‖ m. Conversely, if l ‖ m,
then rl ◦rm is a translation and thus rl ◦Gm,v is a translation. If l 6‖ m, then
rl ◦ rm is a rotation and rl ◦Gm,v is also a rotation.

The last statement of the theorem follows immediately from looking at
the structure of two glide reflections and is left as an exercise. 2

We now have a complete characterization of how pairs of isometries act to
form new isometries. In principle, any complex motion involving rotations,
translations, and reflections can be broken down into a sequence of com-
positions of basic isometries. This fact is used to great effect by computer
animators.

5.7.4 Isometries in Computer Graphics

Just as we can represent a point (x, y) as a point (x, y, 1) on the plane at
height 1 in three dimensions, we can represent a point in space (x, y, z) as a
point (x, y, z, 1) at “hyper” height 1 in four dimensions. Then, translations,
rotations, and reflections in three dimensions can be represented as 4x4
matrices acting on these points.

For example, to translate a point (x, y, z) by the vector v = (a, b, c), we
use the translation matrix 

1 0 0 a
0 1 0 b
0 0 1 c
0 0 0 1


and multiply this matrix (on the left) by the vector

x
y
z
1
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To animate an object on the computer screen, we need to do two things:
represent the object in the computer and then carry out transformations on
this representation. We can represent an object as a collection of polygonal
patches that are defined by sets of vertices. To move an object we need only
move the vertices defining the object and then redraw the polygons making
up the object.

To realize movement of an object on the screen, we need to repeatedly
carry out a sequence of rotations, reflections, and translations on the points
defining the object. All of these isometries can be implemented using 4x4
matrices as described above. Thus, a computer graphics system basically
consists of point sets (objects) and sequences of 4x4 matrices (motions) that
can be applied to point sets.

One of the most popular graphics systems in use today is the OpenGL
system [33]. OpenGL uses the notion of a graphics pipeline to organize how
motions are carried out. For example, to rotate and then translate an object
using OpenGL, you would define the rotation and then the translation and
put these two 4x4 matrices into a virtual pipeline. The graphics system then
multiplies all the matrices in the pipeline together (in order) and applies
the resulting matrix to any vertices that define the object. In a very real
sense, computer graphics comes down to being able to quickly multiply 4x4
matrices, that is, to quickly compose three-dimensional transformations.

5.7.5 Summary of Isometry Compositions

We summarize the theorems on compositions of isometries in the following
table for future reference. (The table lists only non-trivial compositions;
that is, ones where l 6= m, a 6= b, v 6= w.)

◦ rl Ra,α Tv Gl,v

rm
T (l‖m)

R (l 6‖m)

r (a∈m)

G (a6∈m)

r (v⊥m)

G (v 6⊥m)

T (l‖m)

R (l 6‖m)

Rb,β
r (b∈l)
G (b 6∈l)

Rc,α+β (α+β 6=0 (mod 360))

T (α+β=0 (mod 360))
Rc,β

r (c1∈l)
G (c1 6∈l)

Tw
r (w⊥l)
G (w 6⊥l) Rc,α Tw+v

r ((w+v)⊥l)
G ((w+v)6⊥l)

Gm,w
T (l‖m)

R (l 6‖m)

r (c2∈m)

G (c2 6∈m)

r ((w+v)⊥m)

G ((w+v)6⊥m)

T (l‖m)

R (l 6‖m)

Table 5.3 Isometry Composition
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In the table, c stands for an arbitrary center of rotation, c1 is the center
of rotation for Rb,β ◦ Tv, and c2 is the center of rotation for Tw ◦Ra,α.

Exercise 5.7.1. Prove statement (vi) of Theorem 5.21. That is, show that the
composition of two different glide reflections is a translation if the reflection lines
for both are parallel and is a rotation otherwise.

An important algebraic operation on invertible functions is the idea of
the conjugate of a function by another function. Given two invertible func-
tions f, g, we construct the conjugate of g by f as f ◦ g ◦ f−1. In the next
five exercises, we look at how conjugation acts on types of isometries.

Exercise 5.7.2. Let f be an isometry and HO a half-turn about point O (rotation
by 180 degrees). Show that conjugation of HO by f , that is f ◦HO ◦ f−1, is equal
to Hf(O), a half-turn about f(O).

Exercise 5.7.3. Let f be an isometry and rm a reflection about line m. Show
that f ◦ rm ◦ f−1 = rf(m) (reflection about f(m)).

Exercise 5.7.4. Let f be an isometry and TAB a translation with vector
−−→
AB.

Show that f ◦ TAB ◦ f−1 = Tf(A)f(B) (translation with vector
−−−−−−→
f(A)f(B)).

Exercise 5.7.5. Let f be an isometry and g = rm ◦ TAB a glide reflection along

m with translation vector
−−→
AB. Show that f ◦ g ◦ f−1 = rf(m) ◦ Tf(A)f(B) (glide

reflection along f(m) with vector
−−−−−−→
f(A)f(B)).

Exercise 5.7.6. Let f be an isometry and RA,α a rotation about point A by an
angle of α. Show that f ◦RA,α ◦f−1 = Rf(A),α if f is a direct isometry (rotation or
translation) and f ◦ RA,α ◦ f−1 = Rf(A),−α if f is an indirect isometry (reflection
or glide reflection).

Exercise 5.7.7. Another model we can use for the Euclidean plane is the complex
plane, where a point (x, y) is represented by a complex number z = x + iy with
i =
√
−1. Show that a rotation of a point (x, y) about the origin by an angle φ

is equivalent to multiplication of x + iy by eiφ. [Hint: Recall that eiφ = cos(φ) +
i sin(φ).] Show that translation of (x, y) by a vector v = (v1, v2) is equivalent to
adding v = v1 + iv2 to x+ iy. Finally, show that reflection across the x-axis is the
same as complex conjugation.

Exercise 5.7.8. Let Ra,α be rotation about a of angle α and Rβ be rotation
about the origin of β. Show that the center of Ra,α ◦ Rβ is the complex number

c = a 1−eiα
1−ei(α+β) .

Exercise 5.7.9. Let Tv be translation by v and Rβ rotation about the origin by
an angle of β. Show that the center of Tv ◦Rβ is the complex number c = v

1−eiβ .
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Exercise 5.7.10. You are a computer game designer who is designing a two-
dimensional space battle on the screen. You have set up your coordinate system
so that the screen is a virtual world with visible coordinates running from −5 to 5
in the x direction and likewise in the y direction. Suppose that you want to have
your ship start at the origin, move to the position (2, 3), rotate 45 degrees there,
and then move to the position (−2, 3). Find the 3x3 matrices that will realize this
motion, and then describe the order in which you would put these matrices into a
graphics pipeline to carry out the movement.

5.8 Project 8 - Constructing Compositions

At first glance the title of this project may seem a bit strange. We
have been talking about compositions of isometries, which are essentially
compositions of functions. How can you construct the composition of two
functions? Function composition would seem to be primarily an algebraic
concept. But composition of geometric transformations should have some
geometric interpretation as well. In this project we will explore the construc-
tion of the composition of rotations and discover some beautiful geometry
along the way.

Start Geometry Explorer and create
a segment AB. Then, create two

rays
−→
AC and

−−→
BD from A and B and

construct the intersection point E
of these two rays. Create a circle
with center F and radius point G.

A B

C

D

E

F
G

The two rotations we will compose are the rotation about A by ∠EAB,
which we will denote by RA,∠EAB, and the rotation about B by ∠ABE,
denoted by RB,∠ABE . Both angles will be oriented angles. That is, ∠EAB

will be directed clockwise, moving
−→
AE to

−−→
AB. ∠ABE will also be directed

clockwise. Note that this direction is opposite to the standard orientation
used by the Geometry Explorer program.
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Multi-select points E,A,B (in that
order) and choose Angle from the
Mark pop-up menu. Select A
and choose Center from the Mark
pop-up menu. These two actions
define a rotation about A of ∠EAB.
Select the circle and click on the Ro-
tate button in the Transform panel
to rotate the circle to a new circle,
shown at right with center H.

A B

C

D

E

F
G

H

Now we will rotate the cir-
cle with center H by the rotation
RB,∠ABE . As you did above, set
∠ABE as a new angle of rotation
(using the Mark pop-up menu) and
set B as the new center of rotation.
Then, select the circle centered at
H and click on the Rotate button
to get a new circle centered at J .

A B

C
D

E

F
G

H

I

J

K

The circle at J is the result of
applying RB,∠ABE ◦RA,∠EAB to the
original circle at F . To better ana-
lyze this composition, construct the
angle bisector for ∠BAE by multi-
selecting B, A, and E (in that
order) and clicking on the Angle Bi-
sector tool in the Construct panel.
Likewise, construct the angle bisec-
tor of ∠EBA. Label these bisectors
“m” and “n.”

A B

C
D

E

F G

H

I

J

K

n

m

Exercise 5.8.1. Show that the rotations RA,∠EAB and RB,∠ABE can be written

as reflections using pairs of lines chosen from the three lines m, n, and
←→
AB.
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Find the intersection point O of m
and n and note thatO appears to be
equidistant from the original circle
at F and the twice transformed cir-
cle at J . Move pointD around, thus
changing the angles of rotation, and
observe how O always seems to have
this property. To convince ourselves
that this holds true, let’s measure
the distance from O to F and from
O to J . (To measure OF , multi-
select O and F and choose Dis-
tance (Measure menu).)

A B

C

D

E

F G

H

I

J

K

n

m

O

Dist(O,F) = 2.17

Dist(O,J) = 2.17

The distances do appear to stay
the same.

Exercise 5.8.2. From what you have discovered so far, prove that the point
O is fixed under the composite isometry RB,∠ABE ◦ RA,∠EAB and prove that the
composite must be a rotation. [Hint: Use the results from the previous exercise.]

We conclude that RB,∠ABE ◦RA,∠EAB = RO,γ , for some angle γ.

Exercise 5.8.3. Use the results of the last two exercises to show that γ =
(∠EAB + ∠ABE)(mod 360). [Hint: Use ∆AOB and take care that angle ori-
entation is calculated correctly.]

We have shown that the composition of two rotations about different
centers is again a rotation, with new rotation angle the sum of the compo-
nent angles of rotation (mod 360). This was also shown in the last section,
but that proof was algebraic in nature. Here we have shown that the compo-
sition can be completely described by the construction of a certain triangle,
namely ∆AOB. Transformational geometry has this interesting two-sided
nature in that one can almost always explain a result either by algebraic
manipulation or by geometric construction. This dual nature is what gives
transformational geometry its great utility and power.

For what rotations will the preceding construction be valid? Clearly,
we can construct the triangle only if ∠EAB

2 + ∠ABE
2 < 180 as this en-

sures that the triangle is well defined. But, this is equivalent to (∠EAB +
∠ABE)(mod 360) < 360 and again we have confirmation of the condition
from the last section for two rotations to create a new rotation.
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What happens if (∠EAB + ∠ABE)(mod 360) = 360 (or 0)?

Clear the screen and create AB and−→
AC at some angle as shown. Create
a circle centered at some point D.

A B

C
D

Define a rotation through ∠CAB,
with center at A, and rotate the cir-
cle, yielding a new circle at F .

A B

C

D

F

Now, we will rotate the circle
at F through an angle β such that
∠CAB+β is a multiple of 360. The
simplest way to do this is merely
to reverse the angle just defined.
Multi-select points B, A, and C and
define a rotation through ∠BAC
with center at A. (Note that the
two angles of rotation together must
be 360.) Rotate the circle at F to
get a new circle at H.

A B

C

D

F

H
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Move the original circle at D
about the screen and note that the
twice transformed circle at H is al-
ways the same distance and direc-
tion from the original circle. That
is, the circle at H seems to be a
translation of the circle at D.

A B

C

D
F

H

We proved in the last section that this composition must be a translation
if the angles of rotation added to 360. But can we give a more geometric
argument for this?

Undo your construction back to the
original angle and bisector. Place a
point L on the bisector to ∠BAC
and extend AB to M . Then, rotate
point M about B by an angle equal
to ∠BAL, yielding point N . Con-

struct ray
−−→
BN .

A B

C

M

L N

Exercise 5.8.4. Show that the original rotation about A can be written in terms
of the reflections rAL, rAB and that the rotation about B can be written in terms of
rBM , rBN . Use this to prove geometrically that the composition of the two rotations
about A and B is a translation by twice the vector between AL and BN .

For the project report, provide detailed analysis of the constructions
used in this project and complete answers to the exercises.





Chapter 6

Symmetry

Tyger, Tyger, burning bright,
In the forests of the night;
What immortal hand or eye,
Could frame thy fearful symmetry?

—“The Tyger” by William Blake

In Chapter 1 we saw how our axiomatic and abstract understanding of
geometry had its origins with the Greeks’ desire for perfection of reasoning.
This goal of the “ideal” permeated all aspects of Greek culture, as evidenced
by their love of the golden ratio—the perfect harmony of proportion. West-
ern cultures have embraced this love of harmony and balance, as evidenced
by a focus on symmetry in art, music, architecture, and design.

In the preceding chapter, isometries were used to define several types of
symmetry. Symmetry is a common property of both natural and man-made
objects.

In general, given a geometric figure F , we will call a transformation f
a symmetry of F if f maps F back to itself. That is, f(F ) = F . We say
that F is invariant (or unchanged) under f . Note that this does not mean
that every point of F remains unchanged, only that the total set of points
making up F is unchanged.

Given a figure such as a flower, or snail shell, or triangle, the set of all
symmetries of that figure is not just a random collection of functions. The
set of symmetries of an object has a very nice algebraic structure.

Theorem 6.1. The set of symmetries of a figure F forms a group.

233
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Proof: Recall that a group is a set of elements satisfying four properties
(refer to the discussion preceding Exercise 1.4.6). For a set of functions,
these properties would be:

1. Given any two functions in the set, the composition of the two func-
tions is again in the set.

2. The composition of functions is an associative operation.

3. The identity function is a member of the set.

4. Given any function in the set, its inverse exists and is an element of
the set.

To prove that the set S of symmetries of F forms a group, we need to verify
that S has all four of these properties. Since the composition of isometries
is associative, the second condition is automatically true.

The third condition is true since the identity is clearly a symmetry of
any figure.

Let f, g be two symmetries of F . Since f(F ) = F and g(F ) = F , then
g(f(F )) = g(F ) = F and g ◦ f is a symmetry of F , and the first condition
holds.

Since a symmetry f is a transformation, then it must have an inverse
f−1. Since f(F ) = F , then F = f−1(F ) and the inverse is a symmetry. 2

Why is it important that the symmetries of a figure form a group?
Groups are a fundamental concept in abstract algebra and would seem to
have little relation to geometry. In fact, there is a very deep connection
between algebra and geometry. As M. A. Armstrong states in the preface
to Groups and Symmetry, “groups measure symmetry” [3]. Groups reveal
to us the algebraic structure of the symmetries of an object, whether those
symmetries are the geometric transformations of a pentagon, or the per-
mutations of the letters in a word, or the configurations of a molecule. By
studying this algebraic structure, we can gain deeper insight into the geom-
etry of the figures under consideration.

To completely delve into this beautiful connection between algebra and
geometry would take us far afield of this brief survey of geometry. We will,
however, try to classify some special types of symmetries that often appear
in art and nature, symmetries which are also isometries. In the following
sections, we will assume that the symmetries under study are Euclidean
isometries—reflections, translations, rotations, and glide reflections.
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6.1 Finite Plane Symmetry Groups

We will first look at those symmetry groups of an object that are finite, that
is, those groups of symmetries that have a finite number of elements. What
can be said about symmetries in a finite group? Suppose that f is a sym-
metry in a finite symmetry group and consider the repeated compositions
of f with itself, f, f2 = f ◦ f, f3, . . . This set cannot contain all different
elements, as then the group would be infinite. Thus, for some i 6= j, we
have f i = f j and f i ◦ f−j = id, where f−j = (f−1)j and id is the identity
function. We can assume that i > j.

Definition 6.1. We say that a symmetry f has finite order in a symmetry
group G if for some positive integer n, we have fn = id.

We then have the following:

Lemma 6.2. All of the symmetries in a finite symmetry group are of finite
order.

What are the symmetries of finite order? Consider a translation given
by T (x, y) = (x + v1, y + v2), with (v1, v2) 6= (0, 0). Clearly, Tn(x, y) =
(x + nv1, y + nv2), and thus Tn(x, y) = (x, y) iff (v1, v2) = (0, 0). So, the
only translations of finite order are the identity translations. Similarly, we
can show that a non-trivial glide reflection must have infinite order.

Thus, the symmetries of finite order consist solely of reflections and
rotations. But, which reflections and rotations?

Before we answer that question, let’s consider the symmetry group of a
simple geometric figure, an equilateral triangle. Which rotations and reflec-
tions will preserve the triangle?

A rotation R by 120 degrees clock-
wise about the centroid of the tri-
angle will map the triangle back to
itself, permuting the labels on the
vertices. R2 will be a rotation of 240
degrees and will also leave the trian-
gle invariant. The rotation R3 will
yield the identity isometry. The ef-
fects of applying R, R2, and R3 are
shown at right, with R(∆ABC) the
right-most triangle and R2(∆ABC)
the left-most triangle.

A B

C

C A

B

CB

A
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What about reflections? If we
construct the perpendicular bisec-
tor for a side of the triangle, then
that bisector will pass through the
opposite vertex. Reflection across
the bisector will just interchange
the other two vertices and thus will
preserve the triangle. There are
three such reflections.

B A

C

A C

B

BC

A

Are there any other possible isometries? To answer this question, let’s
consider the effect of an isometry on the labels A,B,C of the original tri-
angle. An isometry must preserve the configuration of the triangle, so it
must move the labels of the vertices around, leaving the shape of the trian-
gle unchanged. How many labelings of the triangle are there? Pick one of
the vertices to label. We have three possible labels for that vertex. After
labeling this vertex, pick another to label. There are two possible labels
for that vertex, leaving just one choice for the last vertex. Thus, there is a
maximum of six labelings for the triangle, and therefore a maximum of six
isometries. Since we have exhibited six different isometries (three rotations
and three reflections), these must form the complete symmetry group for
the triangle.

Let’s note several interesting things about this symmetry group. First,
the rotations by themselves form a group, G = {id = R3, R120 = R,R240 =
R2}, and all the rotations in this group have the same center. Second,
the reflections all have lines of symmetry passing through the center of the
rotations, and there are exactly as many reflections as rotations. We will
now show that these properties are shared by all finite symmetry groups.

Theorem 6.3. Let R1, R2 be two rotations in a finite symmetry group G.
Then R1, R2 must have the same center of rotation.

Proof: Let a, b be the centers of rotation for R1, R2. Suppose that a 6= b.
Then we know that R1 ◦ R2 is either a rotation or translation (see Table
5.3 in Chapter 5). Clearly, it cannot be a non-identity translation, as a
finite symmetry group has no non-trivial translations. If R1 ◦R2 = id, then
R1 = R−1

2 and both have the same center.

Let α, β be the angles of rotation for R1, R2. Then we know that

R1 ◦R2 = Ra,α ◦Rb,β = Rc,α+β
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for some point c 6= a or b. Now R−1
2 = Rb,−β is also in G and so Rb,−β ◦

Rc,α+β = Rd,α is in G for some point d.

We claim that d 6= a. For if d = a, then

Rb,−β ◦Rc,α+β = Ra,α

Or, equivalently,

Rb,−β ◦Ra,α ◦Rb,β = Ra,α

Then

Ra,α ◦Rb,β = Rb,β ◦Ra,α

Applying both sides to the point b, we get

Ra,α(b) = Rb,β ◦Ra,α(b)

Thus, Ra,α(b) would be a fixed point of Rb,β. But, the only fixed point
of a rotation is its center, and so Ra,α(b) = b. But, this implies that a = b,
which is a contradiction.

Since d 6= a, then Rd,α ◦ Ra,−α is in G, but this composition is a trans-
lation.

Thus, it must be that both rotations have the same center. 2

Theorem 6.4. Among all rotations in a finite symmetry group G, let Ra,α
be the one with smallest positive angle α. Then α divides 360, and if Ra,β
is another rotation in G, then β = nα for some integer n. That is, all
rotations are multiples of some minimal angle.

Proof: Since Ra,α is of finite order, then Rna,α = Ra,nα = id for some
n. Thus, nα = 360k for some integer k. If nα 6= 360, then let i be the
largest integer such that iα < 360. Then 0 < 360 − iα < α. But, then
Ra,360 ◦Ra,−iα = Ra,360−iα must be in G, which would mean that there was
a smaller rotation angle than α in G. Thus, nα = 360.

Now suppose Ra,β is another rotation in G, different from Ra,α. We
know that α < β. Let j be the largest integer such that jα < β. Then,
0 < β − jα < α. Therefore, β − jα will be a rotation angle in G smaller
than α and again we get a contradiction. 2

We conclude that all rotations in a finite symmetry group are generated
from a particular rotation having the smallest angle. Groups generated from
a single element are called cyclic groups.
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Definition 6.2. A group G is called cyclic if all of its members can be
written as compositions of a single member with itself. That is, G =
{id, f, f2, f3, . . .}.

Corollary 6.5. The set of rotations in a finite group form a cyclic group.

Now, let’s consider how rotations and reflections interact in a finite sym-
metry group.

Theorem 6.6. If a finite symmetry group G contains a rotation and a
reflection, then the line of symmetry for the reflection must pass through the
center of the rotation.

Proof: Let rl and Ra,α be the reflection and rotation. We know that
the composition of these is either a reflection or glide reflection. Since G
cannot contain glide reflections, then rl ◦Ra,α is a reflection, say rm. Then
rl ◦ rm = Ra,α and l,m must pass through a. 2

Theorem 6.7. Let G be a finite symmetry group with n rotations (counting
the identity as a rotation). If G has at least one reflection, say rl, then it has
exactly n reflections, which can be represented as rl ◦Ra,iα, i = 0, . . . , n− 1,
where Ra,α generates the rotations of G.

Proof: Consider the set rl ◦Ra,iα, with i = 0, . . . , n − 1. Clearly, all of
the elements of this set are reflections. Also, no two elements of this set can
be equivalent. Finally, all reflections in G are represented in this set, since
if rm is in G, then rl ◦ rm is a rotation and so must be some Ra,iα. It follows
that rm = rl ◦Ra,iα. 2

Definition 6.3. A finite symmetry group generated by a rotation and a
reflection is called a dihedral group. If the group has n distinct rotations it
will be denoted by Dn.

A finite symmetry group is thus either a cyclic group or a dihedral group.
This result has been known historically as Leonardo’s Theorem in honor
of Leonardo Da Vinci (1452–1519). According to Hermann Weyl in his
book Symmetry [40, page 66], Leonardo was perhaps the first person to
systematically study the symmetries of a figure in his architectural design
of central buildings with symmetric attachments.

Exercise 6.1.1. Find three examples in nature that have different finite symme-
try groups. Sketch these and give the specific elements in their symmetry groups.

Exercise 6.1.2. Find the symmetry group for a square.
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Exercise 6.1.3. Find the symmetry group for a regular pentagon.

Exercise 6.1.4. Show that the symmetry group for a regular n-gon must be
finite.

Exercise 6.1.5. Show that the symmetry group for a regular n-gon must be the
dihedral group Dn.

Exercise 6.1.6. Show that the dihedral group Dn can be generated by two
reflections, that is, any element of the group can be expressed as a product of
terms involving only these two reflections.

Exercise 6.1.7. Show that the number of symmetries of a regular n-gon is equal
to the product of the number of symmetries fixing a side of the n-gon times the
number of sides to which that particular side can be switched.

Exercise 6.1.8. Find a formula for the number of symmetries of a regular poly-
hedron by generalizing the result of the last exercise. Use this to find the number
of symmetries for a regular tetrahedron (four faces and four vertices) and a cube.

6.2 Frieze Groups

Planar symmetry groups that are infinite must necessarily contain trans-
lations and/or glide reflections. In this section we will consider symmetry
groups having translations in just one direction.

Definition 6.4. A frieze group G is a planar symmetry group with all
translations in the same direction. Also, there exists a translation Tv in G
such that v is of minimal (non-zero) length among all translations of G.

It turns out that all translations in a frieze group G will be generated
from a single translation T ∈ G, which we will call the fundamental trans-
lation for G.

Lemma 6.8. Let G be a frieze group. Then there exists a translation T in
G such that if T ′ is any (non-identity) translation in G, then T ′ = Tn for
some non-zero integer n.

Proof: The definition of frieze groups guarantees that there is a trans-
lation T in G, with translation vector v of minimal length. We claim that
T is the fundamental translation of G. For if T ′ is any other (non-identity)
translation in G, with translation vector v′, then v′ ‖ v and so v′ = nv for
some (non-zero) real number n.

If n is not an integer, let k be the nearest integer to n. Then T−k =
(T−1)k must be in G and since T−k ◦ T ′ = T−k ◦ Tn = Tn−k, then Tn−k is
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in G. But Tn−k has translation vector of length | (n− k) | ‖v‖, which is less
than the length of v, as | (n− k) |< 1.

Thus, n is an integer and all translations are integer powers of T . 2
A frieze pattern is a pattern that is invariant under a frieze group. Such

a pattern is generally composed of repetitions of a single pattern, or motif,
in a horizontal direction as in Fig. 6.1.

Fig. 6.1

Frieze groups have translations generated by a single translation T . By
Exercise 5.3.8, frieze groups have invariant lines that are all pair-wise par-
allel, and also each is parallel to the translation vector of T . What else can
be said of the invariant lines of a frieze group?

Theorem 6.9. Let G be a frieze group with fundamental translation T . If l
is invariant under T , then S(l) is parallel (or equal) to l for all symmetries
S in G.

Proof: Consider the conjugation of T by S: S◦T ◦S−1. By Exercise 5.7.4,
we know that S ◦ T ◦ S−1 is a translation and so S ◦ T ◦ S−1 = T k for some
positive integer k. In particular, S ◦ T = T k ◦ S.

Let v be the translation vector for T . Then since S ◦ T = T k ◦ S, the
direction of the line through S(P ) and S(T (P )) will be the same as that of
the line through S(P ) and T k(S(P )). This direction is given by the vector
kv. Also, the direction for the line through P and T (P ) is given by the

vector v. Thus, for any point P , we have either S(
←−−−→
P T (P )) ‖

←−−−→
P T (P ), or

these two lines are coincident.
For a line l invariant under T , let P be a point on l. Using the results

of the last paragraph, we see that S(l) ‖ l or S(l) = l. 2

Definition 6.5. If the frieze group G has exactly one line invariant under
all the elements of G, we call that line the midline for G (or any pattern
invariant under G).

Theorem 6.10. For a frieze group G, the only symmetries possible in G
are those generated by the fundamental translation T , a unique reflection
about a midline m, reflections perpendicular to m, half-turns (180-degree
rotations) about points on m, and glide reflections along m.
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Proof: Suppose G has a reflection rl. If m is an invariant line for G,
then rl(m) = m. By Exercise 5.2.12, we have l = m or l ⊥ m.

If l = m, then m is the only line that is invariant under rl and so is
the only line invariant under all elements of G. Thus, if G has a reflection
parallel to one of the invariant lines of G, then G has exactly one invariant
line, the midline, and has exactly one reflection parallel to this line.

If G has a rotation R and m is an invariant line, then R(m) = m. By
Exercises 5.4.4 and 5.4.5 in section 5.4, R is a rotation of 180 degrees about
a point on m, and among all parallel invariant lines of G, there is only one
that is invariant under R. This will be the midline of G. Thus, any rotation
in G is a half-turn about a point on the midline for G.

If G has a glide reflection g = rl ◦T ′ (with T ′ 6= id), then since g2 = T ′2,
which is a translation, T ′2 = T k for some positive integer k. If m is an
invariant line for G, then g(m) = m. Since g(m) = rl(T

k(m)) = rl(m), then
rl(m) = m and so l = m or l ⊥ m. If l ⊥ m, then l is perpendicular to the
translation vector for T ′, and g = rl ◦ T ′ is a reflection by Theorem 5.21.
This contradicts our assumption that g is a glide reflection. Thus, l = m
and if G has a glide reflection, it must be along the midline, which is the
unique invariant line for rl.

Finally, we have to show that if G has a reflection rm (or glide reflection
g = rm ◦ T k) about a line m that is invariant under all elements of G, and
also has a half-turn HO about a point O on another invariant line m′ for
G, then m = m′. This is immediate, since m must be invariant under all
elements of G, in particular HO(m) = m. But, HO has a unique invariant
line and so m = m′. 2

We conclude that a frieze group G has a unique invariant line, the mid-
line, if any of the following conditions are satisfied:

1. G contains a reflection parallel to an invariant line of the fundamental
translation.

2. G contains a half-turn.

3. G contains a glide reflection.

The non-translational isometries in a frieze group can all be generated
using the fundamental translation, as follows.

Theorem 6.11. Let G be a frieze group. Then

(i) All half-turns in G are generated by a single half-turn in G and
powers (repeated compositions) of T .
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(ii) All perpendicular reflections are generated from a single perpendic-
ular reflection in G and powers of T .

(iii) All glide reflections are generated by a single reflection (or glide
reflection) in G that is parallel to the direction of translation, to-
gether with powers of T . Also, if v is the translation vector for T ,
then a glide reflection must have a glide vector equal to kv or half
of kv for some positive integer k.

Proof: For statement (i), let HA, HB be two half-turns in G. Then by
Exercise 5.4.12, we know that HB ◦HA is a translation, thus HB ◦HA = T k

for some positive integer k. Since H−1
A = HA, then HB = T k ◦HA.

The proofs of statements (ii) and (iii) are left as exercises. 2
Thus, all frieze groups (of non-trivial translational symmetry) are gen-

erated by a translation τ = Tv and one or more of the following isometries:
rm (reflection across the midline m), ru (with u perpendicular to m), H
(half-turn rotation about O on m), and γ (glide reflection along m with
glide vector equal to v

2 ). We omit the case of glides with glide vector v as
these can be generated by τ and rm.

In principle, this would give us a total of 24 possible frieze groups, each
frieze group generated by τ and a subset of the four isometries rm, ru, H,
and γ. However, many of these combinations will generate the same group.
For example, we can choose u such that H ◦ γ = ru and ru ◦ γ = H, and so
the group generated by τ, γ,H must be the same as the group generated by
τ, γ, ru.

It turns out that there are only seven different frieze groups. We will
list them by their generators. For example, the group listed as < τ, rm >
is the group generated by all possible compositions of these two isometries
(compositions such as τ3, r5

m, r2
m ◦ τ ◦ r4

m, etc.).

1. < τ >

2. < τ, rm >

3. < τ, ru >

4. < τ, γ >=< γ >

5. < τ,H >

6. < τ, rm, H >

7. < τ, γ,H >=< γ,H >
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(For a complete proof of this result see [31, page 392] or [38, page 190].)

Exercise 6.2.1. Show that the groups generated by τ, γ,H and γ,H are the
same. [Hint: To show two sets equivalent, show that each can be a subset of the
other.]

Exercise 6.2.2. Show that the groups generated by τ, rm, H and τ, ru, H are the
same, assuming we choose ru so that it intersects m at the center of H.

Exercise 6.2.3. Prove statement (ii) of Theorem 6.11. [Hint: Consider the
composition of reflections.]

Exercise 6.2.4. Prove statement (iii) of Theorem 6.11.

Exercise 6.2.5. Show that if a frieze group has glide reflections, then the group
must have a glide reflection g with glide vector of v or v

2 , where v is the translation
vector for the group.

Exercise 6.2.6. Show that if HA and HB are two half-turns of a frieze group G,
then AB = kv or AB = kv + v

2 , where v is the translation vector for T and k is a
positive integer. [Hint: Consider the action of HB ◦HA on A.]

Exercise 6.2.7. Show that if ru and rv are two reflections of a frieze group G that
are perpendicular to the translation vector v of T , then AB = kv or AB = kv+ v

2 ,
where A, B are the intersection points of u, v, with an invariant line of G and k is
a positive integer. [Hint: Consider the action of rv ◦ ru on A.]

Definition 6.6. A subgroup K of a group G is a non-empty subset of ele-
ments of G that is itself a group.

Exercise 6.2.8. Show that all elements of < T, ru > are either translations or
reflections perpendicular to m. Use this to show that none of < T, rm >, < T,H >,
or < T, γ > are subgroups of < T, ru >. [Hint: Use Table 5.3.]

Exercise 6.2.9. Show that all elements of < T,H > are either translations or
half-turns. Use this to show that none of < T, rm >, < T, ru >, or < T, γ > are
subgroups of < T,H >.

Exercise 6.2.10. Show that all elements of < T, γ > are either translations
or glide reflections (with glide vector of kv + v

2 ). Use this to show that none of
< T, rm >, < T, ru >, or < T,H > are subgroups of < T, γ >.

Exercise 6.2.11. Show that all elements of < T, rm > are either translations,
or rm, or glide reflections (with glide vector of kv). Use this to show that none of
< T, γ >, < T, ru >, or < T,H > are subgroups of < T, rm >.

Exercise 6.2.12. Draw a diagram showing which of the seven frieze groups are
subgroups of the others. [Hint: Use the preceding exercises.]
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Exercise 6.2.13. In the figure below, there are seven frieze patterns, one for
each of the seven frieze groups. Match each pattern to the frieze group that is its
symmetry group.

(a) (b)

(c) (d)

(e) (f)

(g)

Exercise 6.2.14. Design two frieze patterns having different frieze groups and
list the group for each of your patterns.

6.3 Wallpaper Groups

A second type of infinite planar symmetry group is a generalization of frieze
groups into two dimensions.

Definition 6.7. A wallpaper group is a planar symmetry group containing
translations in two different directions, that is, translations with non-parallel
translation vectors. Also, there exists a translation Tv in G such that v is
of minimal (non-zero) length among all translations of G.

The condition on minimal length translations will ensure that all rota-
tions in G are of finite order.

Theorem 6.12. Let G be a group having a translation Tv such that v has
least length among all translation vectors in G. Then all rotations of G must
have finite order.
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Proof: Suppose G contains a rotation Ra,α of infinite order. Then for all
integers k > 0, we have that Rka,α 6= id, and thus kα (mod 360) 6= 0.

Consider the set of numbers S = {kα (mod 360)}. Since S is an infinite
set, then α cannot be rational, and if we split the interval from [0, 360] into
n equal sub-intervals of length δ = 360

n , then one of these sub-intervals must
have an infinite number of elements of S. Suppose the interval [iδ, (i+ 1)δ]
has an infinite number of elements of S. In particular, the interval has
two elements k1α (mod 360) and k2α (mod 360), with neither value equal
to an endpoint of the interval, and k1α (mod 360) < k2α (mod 360). Then
(k2 − k1)α (mod 360) will be an element of S in the interval [0, δ].

Thus, we can assume that for any δ close to 0, we can find a k such that
kα (mod 360) < δ. So if a symmetry group G contains a rotation Ra,α of
infinite order, then it must have rotations of arbitrarily small angle Ra,δ.

We know that Tv has translation vector v of smallest length among all
possible translation vectors in G. Consider Ra,δ ◦ Tv ◦ Ra,−δ. This must be
an element of G. It is left as an exercise to show that Ra,δ ◦Tv ◦Ra,−δ is the
translation TRa,δ(v). Then the translation TRa,δ(v) ◦T−v = TRa,δ(v)−v must be
in G. However, for δ arbitrarily small, the length of the vector Ra,δ(v)− v,
which is the translation vector for TRa,δ(v)−v, will be arbitrarily small, which
contradicts the hypothesis of the theorem. 2

Definition 6.8. A discrete symmetry group is one that has translations of
minimal (non-zero) length.

Thus, frieze groups and wallpaper groups are by definition discrete groups
of planar symmetries.

A wallpaper pattern is a pattern
that is invariant under a wallpaper
group. Such a pattern is generally
composed of repetitions of a single
pattern, or motif, in two different
directions, as shown at right.
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Wallpaper groups are certainly not trivial to classify. However, we can
make a few important observations as to their structure.

First of all, every wallpaper group generates a lattice in the plane.

Definition 6.9. A lattice L spanned by two vectors v, w in the plane is the
set of all integer combinations of v and w. That is, L = {sv + tw|s, t ∈ Z},
where Z is the set of integers.

Theorem 6.13. Let T be the set of all translations of a wallpaper group
G. Then, the set of all translations of the origin by elements of T forms a
lattice that is spanned by v and w, where v is a vector of minimal length in
T and w is a vector of minimal length in a different direction from v.

Proof: First, we note that all translations in T must be generated by
integer combinations of v and w. For suppose Tz was a translation with
z not an integer combination of v and w. The two vectors v, w define a
parallelogram in the plane and the set of all integer combinations of v, w
will divide up the plane into congruent parallelograms.

Let P = Tz(O) = Tz. Then P must
lie in one of these parallelograms.
Let Q be the corner of the parallel-
ogram containing P that is closest
to P . Then the vector P−Q cannot
be congruent to any of the edges of
the parallelogram, since if it were,
then P−Q = Tz(O)−Ts1v+t1w(0) =
Ts2v+t2w(0), and z would be an in-
teger combination of v and w.

Qv

w P

P - Q

Also, the length of P −Q must be less than the length of w.

To prove this we connect the mid-
points of the sides of the paral-
lelogram, yielding four congruent
sub-parallelograms. The length of
P −Q must be less than the maxi-
mum distance between points in one
of these sub-parallelograms, which
occurs between opposite vertices.
(The proof is left as an exercise.)

Cv

w

Q

P
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By the triangle inequality, the length of one side of a triangle is less than the
sum of the lengths of the other sides. Thus, the distance between opposite
vertices of one of the sub-parallelograms must be less than ‖v‖

2 + ‖w|
2 <

2‖w‖2 = ‖w‖, and so the length of P −Q is also less than ‖w‖.
Now, if P is inside the parallelogram, or on any side other than that

parallel to v, we would get a translation vector that is smaller than w and
non-parallel with v, which contradicts the choice of w. Thus, P − Q must
lie along a side parallel to v. However, this contradicts the choice of v.

So, all translations have the form Tz = Tsv+tw with s, t integers, and the
proof is complete. 2

What kinds of lattices are possible for a wallpaper group? In the paral-
lelogram spanned by v and w, we have that v−w and v+w are the diagonals.
By replacing w by −w we could switch the order of these diagonals, which
means we can assume ‖v − w‖ ≤ ‖v + w‖. Also, neither of these diagonals
can be smaller than w because of how w is defined. Thus, we know that

‖v‖ ≤ ‖w‖

And

‖w‖ ≤ ‖v − w‖

And

‖v − w‖ ≤ ‖v + w‖

Thus, ‖v‖ ≤ ‖w‖ ≤ ‖v − w‖ ≤ ‖v + w‖. Therefore, there are eight
possible lattices:

1. Oblique
‖v‖ < ‖w‖ < ‖v − w‖ < ‖v + w‖.
The lattice is made of skew paral-
lelograms.

v

w
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2. Rectangular
‖v‖ < ‖w‖ < ‖v−w‖ = ‖v+w‖. If
the diagonals of the parallelogram
are congruent, then the parallelo-
gram must be a (non-square) rect-
angle.

v

w

3. Centered Rectangular
‖v‖ < ‖w‖ = ‖v − w‖ < ‖v + w‖.
If ‖w‖ = ‖v − w‖, then these sides
form an isosceles triangle and the
head of w will be the center of a
rectangle built on every other row
of the lattice, as shown.

v

w

4. Rhombal
‖v‖ = ‖w‖ < ‖v − w‖ < ‖v + w‖.
Again, we get an isosceles triangle,
this time with sides being v and
w. This case is essentially the same
as the centered rectangle, with the
rectangular sides built on the vec-
tors v−w and v+w, and the center
of the rectangle at a lattice point.

v

w

5. ‖v‖ < ‖w‖ = ‖v−w‖ = ‖v+
w‖. This is not a possible configura-
tion for a lattice. Since ‖v − w‖2 =
(v−w)•(v−w) = v•v−2v•w+w•w,
and ‖v+w‖2 = v•v+2v•w+w•w,
then we would have that v • w = 0.
Then, ‖w‖ = ‖v − w‖ would imply
that ‖v‖ = 0, which is impossible.
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6. Square
‖v‖ = ‖w‖ < ‖v − w‖ = ‖v + w‖.

v

w

7. Hexagonal
‖v‖ = ‖w‖ = ‖v − w‖ < ‖v + w‖.

v

w

8. ‖v‖ = ‖w‖ = ‖v − w‖ =
‖v+w‖. This is not a possible con-
figuration for a lattice.

Thus, from eight possible lattice types, we see that there are really only
five different lattices possible for a wallpaper group.

Theorem 6.14. If L is a lattice in the plane, then it is either oblique, rectan-
gular, centered rectangular (which includes rhombal), square, or hexagonal.

Just as in the case of frieze groups, the possible rotational symmetries
of a wallpaper group are restricted to specific values.

Theorem 6.15. The rotations in a wallpaper group G must map elements
of the lattice of the group back to the lattice. Furthermore, angles of rotation
in a wallpaper group can only be 60, 90, 120, or 180 degrees.

Proof: Let sv + tw be a point in the lattice. Then Tsv+tw is in G. Let
Ra,α be a rotation in G. Consider Ra,α ◦ Tsv+tw ◦ Ra,−α. In Exercise 5.7.6,
we showed that this composition is the same as TRa,α(sv+tw). Since the
composition of elements in G must yield an element of G, then TRa,α(sv+tw)

is in G, and if O is the origin, then TRa,α(sv+tw)(O) = Ra,α(sv+ tw) is in the
lattice. Thus, the rotation maps points of the lattice to other points of the
lattice. Also, since there are only a finite number of lattice points to which
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the rotation can map a given lattice point, then the order of the rotation
must be finite.

Let v be the minimal length translation vector among all translations
and let P be a point in the lattice. Consider Ra,α(P ) (labeled “R(P )” in
Fig. 6.2).

a

v

R(v)

R(P)

P

Fig. 6.2

The vector P − Ra,α(P ) will be a translation vector in G (difference of
two lattice vectors must be a translation vector). If the rotation angle α is
less than 60 degrees, then this vector will have shorter length than v. This
is impossible due to how v was chosen. The only possible rotation angles
are then angles α with 60 ≤ α < 360. (We will ignore the trivial case of
rotation by 360.)

In our discussion of finite symmetry groups, we proved that if a rotation
has finite order, then the angle of rotation must evenly divide 360. Then
the only possible angles for a wallpaper rotation are 60 = 360

6 , 72 = 360
5 ,

90 = 360
4 , 120 = 360

3 , and 180 = 360
2 .

Rotations by 60 and 120 are possible in hexagonal lattices. Rotations
by 90 and 180 degrees are possible in square and rectangular lattices. It is
left as an exercise to show that rotations of 72 degrees are impossible. 2

This theorem has become known as the “Crystallographic Restriction.”
Many crystals have the property that if you slice them along a plane, the
atoms of the crystal along that plane form a wallpaper pattern. Thus,
the possible crystals having wallpaper symmetry is “restricted” to those
generated by wallpaper groups.

How many wallpaper groups are there? It turns out that there are ex-
actly 17 wallpaper groups. A careful proof of this result can be carried
out by examining the five lattice types we have discussed and finding the
symmetry groups that preserve each type. For details see [3, Chapter 26].
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The 17 groups have traditionally been listed with a special notation
consisting of the symbols p, c, m, and g, and the integers 1, 2, 3, 4, and 6.
This is the crystallographic notation adopted by the International Union of
Crystallography (IUC) in 1952.

In the IUC system the letter p stands for primitive. A lattice is generated
from a polygonal cell that is translated to form the complete lattice. In
the case of oblique, rectangular, square, and hexagonal lattices, the cell is
precisely the original parallelogram formed by the vectors v and w and is, in
this sense, a “primitive” cell. In the case of the centered-rectangle lattice,
the cell is a rectangle, together with its center point, with the rectangle
larger than the original parallelogram and not primitive. Thus, lattice types
can be divided into two classes: primitive ones designated by the letter p
and non-primitive ones designated by the letter c.

Other symmetries for a general wallpaper group will include reflections,
rotations, and glide reflections. The letter m is used to symbolize a reflection
and g symbolizes a glide reflection. The numbers 1, 2, 3, 4, and 6 are used to
represent the orders of rotation for a group (e.g., 3 would signify a rotation
of 360

3 = 120).

In the IUC system, a wallpaper group is designated by a string of letters
and numbers. First, there is the letter p (for oblique, rectangular, square,
or hexagonal lattices) or c (for centered-rectangular lattices). Then a set of
non-translational generators for the group will be listed. These generators
include reflections, glide reflections, and/or rotations. The two fundamental
translations are not listed, but are understood to also be generators for the
group.

For example, “p1” would symbolize
the simplest wallpaper group, where
the lattice is oblique and there are
no non-translational symmetries.
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What would “p2mm” symbol-
ize? The lattice is primitive; there
is a rotational symmetry of 180 de-
grees; and there are two reflection
symmetries. Since the reflections
are listed separately, neither can be
generated from the other by com-
bining with the fundamental trans-
lations. Thus, the reflection lines
of symmetry cannot be parallel and
the two reflections will generate a
rotation, which must be of 180 de-
grees. The two reflection lines will
then be in perpendicular directions
and the lattice must be rectangular,
centered-rectangular, or square. In
fact, the lattice must be rectangu-
lar. (The proof is left as an exer-
cise.)

In Appendix E there is a complete listing of all 17 wallpaper groups.

Exercise 6.3.1. Sketch the lattices spanned by the following pairs of vectors,
and specify which of the five types of lattices each pair will generate.

(a) ~v = (2, 0), ~w = (2, 4)

(b) ~v = (1,
√

3), ~w = (1,−
√

3)

(c) ~v = (−1, 1), ~w = (1, 1)

Exercise 6.3.2. Show that the transformation f(x, y) = (−x, y + 1) is a glide
reflection and that a symmetry group generated by f and the translation T (x, y) =
(x+ 1, y + 1) must be a wallpaper group. Which lattice type will this group have?

Exercise 6.3.3. Show that the symmetry group generated by the glide f , defined
in the previous exercise, and the translation T (x, y) = (x, y + 1) will not be a
wallpaper group.

Exercise 6.3.4. Let G be a wallpaper group, and let H be the subset of all
symmetries fixing a point of the lattice for G. If H is a subgroup of G of order 4
and all elements of H are of order 2, show that H must be the group generated by
a half-turn and two reflections about perpendicular lines.

Exercise 6.3.5. With the same assumptions about G and H as in the preceding
exercise, show that the lattice for G must be rectangular, centered-rectangular, or
square.
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Exercise 6.3.6. Show that the lattice for the wallpaper group p2mm must be
rectangular. [Hint: Use the previous two exercises.]

Exercise 6.3.7. For the wallpaper group p2mm, with mm representing gener-
ating reflections along the two translation vectors, prove there are also reflections
along lines through the midpoints of the lattice segments, and find formulas for
these reflections in terms of the generators of p2mm.

Exercise 6.3.8. Show that the wallpaper group p2mm, with mm representing
generating reflections along the two translation vectors, is the same group as pm’m’,
where m’m’ represents two reflections through midpoints of the translation vectors.
[Hint: Use the preceding exercise.]

Exercise 6.3.9. Show that a wallpa-
per pattern with translation symmetry
given by two perpendicular vectors v,
w, and wallpaper group p2mm, can be
generated by applying the symmetries
of the group to the shaded area of the
rectangle spanned by v and w shown.
Thus, this area can be thought of as a
generating area for the pattern. [Hint:
Use the previous exercise.]

w

v

Exercise 6.3.10. (This problem assumes familiarity with the process of finding
the matrix representation of a transformation with respect to a basis.) Let L be a
lattice spanned by vectors ~v and ~w. Let RA,α be an element of a wallpaper group G
for L. By Theorem 6.12, RA,α has finite order, say n. Using the idea of conjugation,
show that RO,α is also in G. The matrix for RO,α, in the standard basis, is then[

cos( 360
n ) − sin( 360

n )

sin( 360
n ) cos( 360

n )

]
Show that the matrix for RO,α with respect to the basis {~v, ~w} will have integer
entries. Then, use the fact that the trace of a matrix is invariant under change of
bases to give an alternate proof of the second part of Theorem 6.15.

Exercise 6.3.11. Show that in a parallelogram, the maximum distance between
any two points on or inside the parallelogram occurs between opposite vertices of
the parallelogram. [Hint: Let A = lv + mw and B = sv + tw be two points in
the parallelogram. Show that these are farthest apart when s, t, l, and m are all 0
or 1.]

Exercise 6.3.12. Show that a wallpaper group cannot have rotations of 72 de-
grees about a point. [Hint: Use an argument similar to that used in Theorem 6.15
and consider the angle between the vector −v and a double rotation of v by Ra,72.]

Exercise 6.3.13. Sketch a planar pattern that has a symmetry group that is not
discrete. (Blank or completely filled sheets of paper are not allowed.)
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6.4 Tiling the Plane

A long time ago, I chanced upon this domain [of regular division
of the plane] in one of my wanderings; I saw a high wall and as I
had a premonition of an enigma, something that might be hidden
behind the wall, I climbed over with some difficulty. However,
on the other side I landed in a wilderness and had to cut my way
through with great effort until—by a circuitous route—I came
to the open gate, the open gate of mathematics.

—Maurits Cornelis (M. C.) Escher (1898–1972)

6.4.1 Escher

Much of the renewed interest in geometric design and analysis in the modern
era can be traced to the artistic creations of M. C. Escher. While he did
not prove new theorems in geometry, he did use geometric insights to create
fascinating periodic designs like the design in Fig. 6.3.

A beautiful book that describes Escher’s artwork and the mathemat-
ics that underlies it is M. C. Escher: Visions of Symmetry [37], by Doris
Schattschneider.

One of Escher’s favorite themes was that of a tessellation of the plane
by geometric shapes. A tessellation or tiling is a covering of the plane by
repeated copies of a shape such that there are no gaps left uncovered and
the copied shapes never overlap. In Fig. 6.3 we see the beginnings of a
tessellation of the plane by a three-sided shape.

A tessellation is produced by repeating a basic figure, or set of figures,
throughout the plane. Repetitions of the basic tile(s) are carried out by
isometries of the plane. Thus, every tiling has associated with it a group of
symmetries that map the tiling back to itself. For example, in Fig. 6.3 we
see that this tiling is invariant under a rotation of 60 degrees and, thus, it
must have a symmetry group equal to one of the two wallpaper groups p6
or p6m (see Appendix E). Since the tiling is not invariant under a reflection,
then it must have a symmetry group of p6.

Escher received inspiration for his tiling designs from two sources: the in-
tricate designs of Arab artists and the work of mathematicians on classifying
planar symmetry groups.
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Fig. 6.3 A Tiling in the Spirit of Escher

At the age of 24, Escher made his first visit to the Alhambra, a fourteenth
century palace in Grenada, Spain. He found almost every wall, floor, and
ceiling surface covered with abstract geometric tilings. In Fig. 6.4 we see
several sketches Escher made of the Alhambra tilings during a return trip
to Spain in 1936.

Fig. 6.4 Escher’s Alhambra Sketches
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Note that the pattern in the lower-left corner of Fig. 6.4 is essentially
the same as the pattern in Fig. 6.3. (All Escher images displayed in this
section are copyright (c) Cordon Art B.V., The Netherlands. M.C. Escher
(TM) is a Trademark of Cordon Art B.V.)

The wide variety of tiling patterns and tile shapes exhibited at the Al-
hambra inspired Escher to investigate the different ways that one could tile
the plane in a systematic fashion. Escher found the answer to this ques-
tion through the work of the mathematician George Pólya. Pólya, in a
1924 article in the journal Zeitschrift für Kristallographie, gave a complete
classification of the discrete symmetry patterns of the plane, with patterns
repeated in two directions, namely, the wallpaper patterns. All 17 patterns
were exhibited in the Alhambra tilings. This mathematical revelation was
the “open gate” through which Escher was able to carefully design and pro-
duce his famous and imaginative tilings, such as the one in Fig. 6.5.

Fig. 6.5 An Escher Tiling

6.4.2 Regular Tessellations of the Plane

The simplest tessellations of the plane are made with a single tile that has
the shape of a regular polygon. A regular polygon has the property that all
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sides have the same length and all interior angles created by adjacent sides
are congruent. We will call a regular polygon with n sides a regular n-gon.

A regular 3-gon is an equilateral triangle, a regular 4-gon is a square,
and so on. Which regular polygons tile the plane?

Let’s consider the simplest n-gon tile, the equilateral triangle.

In the figure at the right, we have
a tiling by equilateral triangles in
which all triangles meet at common
vertices.

In the new tiling at the right,
we have shifted the top row of tri-
angles a bit. This configuration will
still lead to a tiling of the plane,
although triangles no longer share
common vertices.

Definition 6.10. We will call a tessellation regular if it is made from copies
of a single regular n-gon with all n-gons meeting at common vertices.

The second triangular tiling above is not a regular tiling. How many
regular tilings are there? Clearly, the example above shows that there is
a regular tiling with triangles. We can easily create a regular tiling with
squares. The triangle tiling also shows that regular hexagonal tilings are
possible. In fact, these three are the only regular tilings.
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It is not hard to see why this is
the case. At a common vertex of
a regular tiling, suppose that there
are k regular n-gons meeting at the
vertex. Then, an angle of 360 de-
grees will be split into k parts by
the edges coming out of this ver-
tex. Thus, the interior angle of the
n-gon must be 360

k . On the other
hand, suppose we take a regular n-
gon, find its central point and draw
edges from this point to the ver-
tices of the n-gon. In the example
at the right, we have done this for
the regular hexagon. The point la-
beled “A” is the central point of the
hexagon.

A B

C

For a regular n-gon, this triangulation will yield n isosceles triangles,
each with angle sum of 180 degrees. If we add up the sum of the angles in
all of the triangles in the figure, we get a total angle sum of 180n.

On the other hand, if we add up only those triangle angles defined at
the central point, then the sum of these will have to be 360. For each of
our isosceles triangles, the other two angles at the base of the triangle will
be congruent (the angles at B and C in the hexagon example). Let’s call
these angles α. Then, equating the total triangle sum of 180n with the sum
of the angles at the center and the sum of the base angles of each isosceles
triangle, we get

180n = 360 + 2nα

and thus,

2α = 180− 360

n

Now, 2α is also the interior angle of each n-gon meeting at a vertex of
a regular tessellation. We know that this interior angle must be 360

k , for k
n-gons meeting at a vertex of the tessellation. Thus, we have that

360

k
= 180− 360

n
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If we divide both sides by 180 and multiply by nk, we get

nk − 2k − 2n = 0

If we add 4 to both sides, we can factor this as

(n− 2)(k − 2) = 4

There are only three integer possibilities for n and k, namely 6, 4, and 3.
These three possibilities directly correspond to the three regular tessellations
with equilateral triangles, squares, and regular hexagons.

6.5 Project 9 - Constructing Tessellations

Escher modeled many of his tilings after those he saw at the Alhambra.
In this project we will look at how to create one of these Moorish tilings, find
its symmetry group, and construct other tilings with a specified symmetry
group.

The tiling that we will construct is based on the dart-like shape found
in the tiling at the lower right in Fig. 6.4.

Start Geometry Explorer and create
a segment AB in the Canvas. At-
tach a point C to the segment by
creating a point on top of AB.

A BC

To construct a square on CB,
first select C and choose Center
from the Mark pop-up menu in the
Transform panel. Define a custom
rotation of 90 degrees (choose Ro-
tation from the Custom pop-up
menu). Then select point B and hit
the Rotate button in the Transform
panel to get point D.

A BC

D
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Set point D as a new center of
rotation and rotate point C 90 de-
grees to get point E. Connect seg-
ments as shown. A BC

D E

To make the point of our dart,
create a ray from point C vertically
through point D and attach a point
F to this ray.

A BC

D E

F

Next, hide the ray, hide CD,
and connect segments as shown.

A BC

D E

F

This completes the construction
of half of the dart. Multi-select
points A, B, E, D, and F and
hit the Filled-Polygon button (third
button in last row of Construct
panel) to color our half-dart. Se-
lect segment AF and choose Mir-
ror from the Mark pop-up menu.
Select the half-dart by clicking in-
side the filled area and click on the
Reflect button to reflect it across
AF to get the entire dart.

A BC

D E

F
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Select point E and set it as a
center of rotation. Select the en-
tire dart by clicking and dragging
to enclose the dart in a selection
box. Then, rotate the dart three
times (hit the Rotate button three
times). In the figure at the right,
we have changed the color of each
component dart so that we can see
the pieces better. Also, we have
rescaled the Canvas, since the im-
age grew too large. (To rescale the
Canvas, choose Rescale Geome-
try in Canvas (View menu).

A BC

D E

F

To make this a valid tiling
(no gaps), we move point F (the
“point” of the dart) to a position
where it directly matches the base
of the dart to its right, as shown in
the figure.

A BC

D E

F

Q

P

We have now constructed a basic “tile” that can be translated to com-
pletely cover the plane. The points labeled “P” and “Q” will be used to
define a translation vector for our 4-dart region.

To translate this basic tile we multi-select P and Q and set these as
a rectangular vector of translation (choose Vector from the Mark pop-up
menu). Then we select the whole 4-dart region and hit the Translate button.
Fig. 6.6 shows this two-tile configuration. It is clear that the 4-dart region
will tile the plane if we continue to translate it vertically and horizontally.
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A BC

D E

F

Q

P

Fig. 6.6

Exercise 6.5.1. Determine the symmetry group for this figure. [Hint: It must
be one of the 17 wallpaper groups. Why? Use Fig. 6.4 for a more complete tiling
picture.]

Exercise 6.5.2. Choose one of the wallpaper groups and construct a tiling (other
than a regular tiling) with this symmetry group. You can do this on the computer
or by using paper cutouts if you wish.

For the project report give a thorough answer to the first question, illus-
trating all symmetries on the dart tiling. For the second exercise, describe
your chosen symmetry group, illustrate the basic lattice cell for this group,
and describe the steps you took to construct your tiling.



Chapter 7

Non-Euclidean Geometry

I have discovered such wonderful things that I was amazed . . .
out of nothing I have created a strange new universe.

—János Bolyai (1802–1860), from a letter to his father, 1823

7.1 Background and History

Euclid’s development of planar geometry was based on five postulates (or
axioms):

1. Between any two distinct points, a segment can be constructed.

2. Segments can be extended indefinitely.

3. Given a point and a distance, a circle can be constructed with the
point as center and the distance as radius.

4. All right angles are congruent.

5. Given two lines in the plane, if a third line l crosses the given lines
such that the two interior angles on one side of l are less than two right
angles, then the two lines if continued indefinitely will meet on that
side of l where the angles are less than two right angles.

Postulates 1–4 seem very intuitive and self-evident. To construct geo-
metric figures, one needs to construct segments, extend them, and construct
circles. Also, geometry should be uniform so that angles do not change as
objects are moved about.

263
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The fifth postulate, the so-called parallel postulate, seems overly complex
for an axiom. It is not at all self-evident or obvious and reads more like a
theorem.

In fact, many mathematicians tried to find simpler postulates, ones that
were more intuitively believable, to replace Euclid’s fifth, with the hope that
the fifth postulate could then be proved from the first four postulates and
the new postulate.

We have already considered one of these substitutes, Playfair’s Postulate:

Given a line and a point not on the line, it is possible to construct
exactly one line through the given point parallel to the line.

This postulate is certainly simpler to state and easier to understand
when compared to Euclid’s fifth postulate. However, in Chapter 2 we saw
that Playfair’s Postulate is logically equivalent to Euclid’s fifth postulate,
and so replacing Euclid’s fifth postulate with Playfair’s Postulate does not
really simplify Euclid’s axiomatic system.

Other mathematicians attempted to prove Euclid’s fifth postulate as a
theorem solely on the basis of the first four postulates. One popular method
of proof was to assume the logical opposite of Euclid’s fifth postulate (or
Playfair’s Postulate). If one could show the logical opposite to be false, or
if one could obtain a contradiction to a known result by using the opposite,
then Euclid’s fifth postulate would be true as a theorem based on the first
four postulates.

Giovanni Girolamo Saccheri (1667–1773) and Johann Lambert (1728–
1777) both used this method of attack to prove Euclid’s fifth postulate.
Saccheri’s work focused on quadrilaterals whose base angles are right angles
and whose base-adjacent sides are congruent. In Euclidean geometry, such
quadrilaterals must be rectangles, that is, the top (or summit) angles must
be right angles. The proof of this result depends on Euclid’s fifth postulate.
Saccheri supposed that the top angles were either greater than or less than
a right angle. He was able to show that the hypothesis of the obtuse angle
resulted in a contradiction to theorems based on the first four Euclidean
postulates. However, he was unable to derive any contradictions using the
hypothesis of the acute angle. Lambert, likewise, studied the hypothesis of
the acute angle. In fact, Lambert spent a good fraction of his life working
on the problem of the parallel postulate. Even though both men discov-
ered many important results of what has become known as non-Euclidean
geometry, geometry based on a negation of Euclid’s fifth postulate, neither
could accept the possibility of non-Euclidean geometry. Saccheri eventually
resorted to simply asserting that such a geometry was impossible:
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The hypothesis of the acute angle is absolutely false, because [it
is] repugnant to the nature of the straight line! [17, page 125]

In the 1800s several mathematicians experimented with negating Play-
fair’s Postulate, assuming that a non-Euclidean fifth postulate could be con-
sistent with the other four. This was a revolutionary idea in the history of
mathematics. János Bolyai (1802–1860), Carl Friedrich Gauss (1777–1855),
and Nikolai Lobachevsky (1792–1856) explored an axiomatic geometry based
on the first four Euclidean postulates plus the following postulate:

Given a line and a point not on the line, it is possible to construct
more than one line through the given point parallel to the line.

This postulate has become known as the Bolyai-Lobachevskian Postulate.
Felix Klein, who was instrumental in classifying non-Euclidean geometries
based on a surface with a particular conic section, called this the hyperbolic
postulate. A geometry constructed from the first four Euclidean postulates,
plus the Bolyai-Lobachevskian Postulate, is known as Bolyai-Lobachevskian
geometry, or hyperbolic geometry.

Gauss, one of the greatest mathematicians of all time, was perhaps the
first to believe that hyperbolic geometry could be consistent. Harold Wolfe
in Non-Euclidean Geometry describes how Gauss wrote a letter to a friend
about his work.

The theorems of this geometry appear to be paradoxical and, to
the uninitiated, absurd; but calm, steady reflection reveals that
they contain nothing at all impossible. For example, the three
angles of a triangle become as small as one wishes, if only the
sides are taken large enough; yet the area of the triangle can
never exceed a definite limit, regardless of how great the sides
are taken, nor indeed can it ever reach it. All my efforts to
discover a contradiction, an inconsistency, in this Non-Euclidean
Geometry have been without success. [41, page 47]

In fact Gauss, Bolyai, and Lobachevsky developed the basic results of hy-
perbolic geometry at approximately the same time, though Gauss developed
his results before the other two, but refused to publish them.

What these three mathematicians constructed was a set of theorems
based on the first four Euclidean postulates plus the hyperbolic postulate.
This did not mean, however, that they showed hyperbolic geometry to be
a consistent system. There was still the possibility that one of the three
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just missed finding a theorem in hyperbolic geometry that would lead to a
contradiction of a result based on the first four Euclidean postulates.

The consistency of hyperbolic geometry was demonstrated by Eugenio
Beltrami (1835–1900), Felix Klein (1849–1925), and Henri Poincaré (1854–
1912) in the late 1800s to early 1900s. They created models of hyperbolic
geometry inside Euclidean geometry, with perhaps strange definitions of
points, lines, circles, and angles, but models nonetheless. In each of their
models, they showed that Euclid’s first four postulates were true and that
the hyperbolic postulate was true as well. Since each model was created
within Euclidean geometry, if hyperbolic geometry had an internal contra-
dictory statement, then that statement, when translated into its Euclidean
environment, would be an internal contradiction in Euclidean geometry!
Thus, if one believed Euclidean geometry was consistent, then hyperbolic
geometry was equally as consistent.

In the next section we will introduce two models of hyperbolic geometry,
the Poincaré model and the Klein model. Then, in the following sections of
the chapter, we will look at results that are true in any model satisfying the
five axioms of hyperbolic geometry.

7.2 Models of Hyperbolic Geometry

7.2.1 Poincaré Model

In the Poincaré model for 2-dimensional hyperbolic geometry, a point is
defined to be any point interior to the unit disk. That is, any point P =
(x, y), with x2 + y2 < 1. The collection of all such points will be called the
Poincaré disk.

Definition 7.1. A hyperbolic line (or Poincaré line) is a Euclidean arc, or
Euclidean line segment, within the Poincaré disk that meets the boundary
circle at right angles.
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At right are two “lines” in the
Poincaré model.

P

Q

P

Q

To verify that this actually is a model for hyperbolic geometry, we need
to show that Euclid’s first four postulates, plus the hyperbolic postulate,
are satisfied in this model.

We will start with the first two postulates of Euclid—that unique seg-
ments can always be constructed through two points and that segments can
always be extended. By segments we will mean subsets of the Poincaré lines
as defined thus far.

Given two points P and Q, suppose they lie on a diameter of the bound-
ary circle in the Poincaré disk. Then, as shown in the figure above, we can
construct the Euclidean segment PQ along the diameter. Since this diame-
ter meets the boundary circle at right angles, then PQ will lie on a Poincaré
(hyperbolic) line and so will be a hyperbolic segment.

Now suppose that P and Q do not lie on a diameter. Then by the work
we did on orthogonal circles at the end of Chapter 2, there is a unique
circle through P and Q that meets the boundary circle at right angles. We
find this circle by constructing the inverse point P ′ to P with respect to
the boundary circle. The circle through P , P ′, and Q will then meet the
boundary circle at right angles. We conclude that if P and Q do not lie on
a diameter, then we can find a hyperbolic segment through P and Q.

To verify Euclid’s second postulate, that lines (hyperbolic) can always
be extended, we first note that the points of our geometry are not allowed
to be on the boundary circle, by the definition of the Poincaré model. This
allows us to extend any hyperbolic segment.
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For example, let X be an inter-
section point (Euclidean point) of
the Poincaré line through two hy-
perbolic points P and Q with the
boundary circle. Then, since P can-
not be on the boundary, the dis-
tance along the circle arc from P
to X will always be positive, and
thus we can find another point Y
between these two points with Y Q
extending PQ.

P

Q

X

Y

Hyperbolic Distance

To define circles for the third postulate, we need a notion of distance. Since
the boundary of the Poincaré disk is not reachable in hyperbolic geometry,
we want a definition of distance such that the distance goes to infinity as we
approach the boundary of the Poincaré disk.

In the figure at the right, we have
two points P and Q in the Poincaré
disk. There is a unique hyper-
bolic line (Euclidean arc RPQS) on
which P and Q lie that meets the
boundary of the disk at points R
and S.

P Q

R S

Definition 7.2. The hyperbolic distance from P to Q is

dP (P,Q) =

∣∣∣∣ln(
(PS)

(PR)

(QR)

(QS)
)

∣∣∣∣ (7.1)
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where R and S are the points where the hyperbolic line through P and Q
meets the boundary circle, PS is the Euclidean distance between P and S,
and likewise for PR, QR, and QS.

This function satsifies the critical defining properties of a distance func-
tion. It is non-negative and equal to zero only when P = Q. It is additive
along lines, and it satisfies the triangle inequality (for triangles constructed
of hyperbolic segments). These properties will be proved in detail in the last
section of this chapter.

One thing that is clear from looking at the form of the distance function
is that as P or Q approach the points on the boundary (R or S), the fraction
inside the log function goes to ∞ or 0, and thus the distance function itself
goes to infinity.

We can now define hyperbolic circles.

Definition 7.3. A hyperbolic circle c of radius r centered at a point O in
the Poincaré disk is the set of points in the Poincaré disk whose hyperbolic
distance to O is r.

Here are some hyperbolic circles
with their associated hyperbolic
centers.

We must now verify that circles always exist. To construct the circle of
radius r at O, we note that through any line passing through O, we can find
points that are r units away (measured in the hyperbolic distance function).
This is because no matter how close O might be to the boundary points R
or S, we can always find points between O and those boundary points whose
distance to O will grow without bound.

For the fourth postulate, we will define angles just as they are defined in
Euclidean geometry. We use the Euclidean tangent lines to Poincaré lines
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(i.e., Euclidean arcs) in the Poincaré model to determine angles. That is,
the angle determined by two hyperbolic lines will be the angle made by
their Euclidean tangents. Since angles inherit their Euclidean meaning, the
fourth postulate is automatically true.

For the fifth postulate (the hyper-
bolic postulate), consider a line l
and a point P not on l as shown
at right.

l

P

X

Y

Let X and Y be the intersection points of l with the boundary cir-
cle. Then by Theorem 2.38 we know that there are two circular arcs, one
through P and X and one through P and Y , that are orthogonal to the
circle boundary. Also, neither of these can intersect l at a point inside the
boundary circle. For, suppose that the arc through P and X intersected l
at a point Q inside the circle. Then Q and X would be on l and also on the
arc through P and X. By the uniqueness part of Theorem 2.38, these two
arcs must be coincident. But, this is impossible as P was assumed not to
lie on l. Thus, the two arcs through P will be two hyperbolic lines that do
not intersect l inside the boundary circle and by definition are parallel lines
to l.

We see that all of the first four Euclidean postulates hold in this geom-
etry and the hyperbolic parallel postulate holds as well. We conclude that
this strange geometry in the Poincaré disk is just as logically consistent as
Euclidean geometry. If there were contradictory results about lines, circles,
and points in this new geometry, they would have to be equally contradictory
in the Euclidean context in which this geometry is embedded.

We note here that there is really nothing special about using the unit
disk in the Poincaré model. We could just as well have used any circle in the
plane and defined lines as diameters or circular arcs that meet the boundary
circle at right angles.
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7.2.2 Mini-Project - The Klein Model

The Poincaré model preserves the Euclidean notion of angle, but at the
expense of defining lines in a fairly strange manner. Is there a model of
hyperbolic geometry, built within Euclidean geometry, that preserves both
the Euclidean definition of lines and the Euclidean notion of angle? Unfor-
tunately, this is impossible. If we had such a model, and ∆ABC was any
triangle, then the angle sum of the triangle would be 180 degrees, which is a
property that is equivalent to the parallel postulate of Euclidean geometry
[Exercise 2.1.8 in Chapter 2].

A natural question to ask is whether it is possible to find a model of
hyperbolic geometry, built within Euclidean geometry, that preserves just
the Euclidean notion of lines.

In this project we will investigate a model first put forward by Felix
Klein, where hyperbolic lines are segments of Euclidean lines. Klein’s model
starts out with the same set of points we used for the Poincaré model, the
set of points inside the unit disk.

However, lines will be defined differently. A hyperbolic line (or Klein
line) in this model will be any chord of the boundary circle (minus its points
on the boundary circle).

Here is a collection of Klein lines.

Exercise 7.2.1. Show that Euclid’s first two postulates are satisfied in this model.

In order to verify Euclid’s third postulate, we will need to define a dis-
tance function.
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Definition 7.4. The hyperbolic distance from P to Q in the Klein model is

dK(P,Q) =
1

2

∣∣∣∣ln(
(PS)

(PR)

(QR)

(QS)
)

∣∣∣∣ (7.2)

where R and S are the points where the hyperbolic line (chord of the circle)
through P and Q meets the boundary circle.

Note the similarity of this definition to the definition of distance in the
Poincaré model. We will show at the end of this chapter that the Klein and
Poincaré models are isomorphic. That is, there is a one-to-one map between
the models that preserves lines and angles and also preserves the distance
functions.

Just as we did in the Poincaré model, we now define a circle as the set
of points a given (hyperbolic) distance from a center point.

Exercise 7.2.2. Show that Euclid’s third postulate is satisifed with this definition
of circles. [Hint: Use the continuity of the logarithm function, as well as the fact
that the logarithm is an unbounded function.]

Euclid’s fourth postulate deals with right angles. Let’s skip this postulate
for now and consider the hyperbolic postulate. It is clear that given a line
and a point not on the line, there are many parallels (non-intersecting lines)
to the given line through the point. Draw some pictures on a piece of paper
to convince yourself of this fact.

Now, let’s return to the question of angles and, in particular, right angles.
What we need is a notion of perpendicularity of lines meeting at a point.
Let’s start with the simplest case, where one of the lines, say l, is a diameter
of the Klein disk. Suppose we define another line m to be (hyperbolically)
perpendicular to l at a point P if it is perpendicular to l in the Euclidean
sense.
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Shown here are several Klein lines
perpendicular to the Klein line l,
which is a diameter of the bound-
ary circle.

O

l

It is clear that we cannot extend this definition to non-diameter chords
directly. If we did so, then right angles would have the same meaning in
the Klein model as they do in the Euclidean plane, which would mean that
parallels would have to satisfy the Euclidean parallel postulate.

The best we can hope for is an extension of some property of perpen-
diculars to a diameter. If we consider the extended plane, with the point at
infinity attached, then all the perpendicular lines to the diameter l in the
figure above meet at the point at infinity. The point at infinity is the inverse
point to the origin O, with respect to the unit circle (as was discussed at the
end of Chapter 2). Also, O has a unique position on l—it is the Euclidean
midpoint of the chord defining l.

If we move l to a new position, say to line l′, so that l′ is no longer a
diameter, then it makes sense that the perpendiculars to l would also move
to new perpendiculars to l′, but in such a way that they still intersected at
the inverse point of the midpoint of the chord for l′. This inverse point is
called the pole of the chord.

Definition 7.5. The pole of chord AB in a circle c is the inverse point of
the midpoint of AB with respect to the circle.

From our work in Chapter 2, we know that the pole of chord AB is also
the intersection of the tangents at A and B to the circle.
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Here we see a Klein line with Eu-
clidean midpoint M and tangents
at A and B (which are not actually
points in the Klein model) meeting
at pole P . Notice that the three
chords (m1, m2, and m3) inside
the circle have the property that,
when extended, they pass through
the pole. It makes sense to extend
our definition of perpendicularity to
state that these three chords will
be perpendicular (in the hyperbolic
sense) to the given line (AB) at the
points of intersection.

O

m1

m2

m3

B

A

P

M

Definition 7.6. A line m is perpendicular to a line l (in the Klein model)
if the Euclidean line for m passes through the pole P of l.

Exercise 7.2.3. Use this definition of perpendicularity to sketch some perpen-
dicular lines in the Klein model. Then, use this definition to show that the common
perpendicular to two parallel Klein lines exists in most cases. That is, show that
there is a Klein line that meets two given parallel Klein lines at right angles, except
in one special case of parallels. Describe this special case.

Given a Klein line l (defined by
chord AB) and a point P not on l,
there are two chords BC and AD,
both passing through P and par-
allel to l (only intersections are on
the boundary). These two parallels
possess the interesting property of
dividing the set of all lines through
P into two subsets: those that inter-
sect l and those that are parallel to
l. These special parallels (AD and
BC) will be called limiting parallels
to l at P . (A precise definition of
this property will come later.)

B

A

l

P

C

D
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From P drop a perpendicular to
l at Q as shown. Consider the hy-
perbolic angle ∠QPT , where T is a
point on the hyperbolic ray from P
to B. This angle will be called the
angle of parallelism for l at P . B

A

l

P

C
D

Q

Pole(AB)

T

Exercise 7.2.4. Considering the figure above, explain why the angle made by
QPT (the angle of parallelism) cannot be a right angle. Then use this result, and
the fact that AD and BC are limiting parallels, to show that the angle of parallelism
cannot be greater than a right angle.

7.3 Basic Results in Hyperbolic Geometry

We will now look at some basic results concerning lines, triangles, circles,
and the like, that hold in all models of hyperbolic geometry.

Just as we use diagrams to aid in understanding the proofs of results in
Euclidean geometry, we will use the Poincaré model (or the Klein model)
to draw diagrams to aid in understanding hyperbolic geometry. However,
we must be careful. Too much reliance on figures and diagrams can lead to
hidden assumptions. We must be careful to argue solely from the postulates
or from theorems based on the postulates.

One aid in our study of hyperbolic geometry will be the fact that all
results in Euclidean geometry that do not depend on the parallel postu-
late (those of neutral geometry) can be assumed in hyperbolic geometry
immediately. For example, we can assume that results about congruence of
triangles, such as SAS, will hold in hyperbolic geometry. In fact, we can
assume the first 28 propositions in Book I of Euclid (see Appendix A).

Also, we can assume results on isometries, including reflections and ro-
tations, found in sections 5.1, 5.2, and 5.4, as they do not depend on the
parallel postulate. These results will hold in hyperbolic geometry, assuming
that we have a distance function that is well defined. We also assume basic
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properties of betweenness and continuity of distance and angle. We saw
earlier that these assumptions must be added to Euclid’s axiomatic system
to ensure completeness of that system, so it is reasonable to assume these
properties in hyperbolic geometry as well.

We will start our study with the main area in which hyperbolic geometry
distinguishes itself from Euclidean geometry—the area of parallels.

7.3.1 Parallels in Hyperbolic Geometry

As we saw in the Klein model in the last project, if we have a hyperbolic line
l and a point P not on l, there are always two parallel lines m,n through P
with special properties. This is true in any model of hyperbolic geometry.

Theorem 7.1. (Fundamental Theorem of Parallels in Hyperbolic Geometry)
Given a hyperbolic line l and a point P not on l, there are exactly two parallel
lines m,n through P that have the following properties:

1. Every line through P lying within the angle made by one of the parallels
m,n and the perpendicular from P to l must intersect l while all other
lines through P are parallel to l.

2. m,n make equal acute angles with the perpendicular from P to l.

Proof: Drop a perpendicular to l through P , intersecting l at Q.

Consider all angles with side PQ.
The set of these angles will be
divided into those angles ∠QPA
where

−→
PA intersects l and those

where it does not. By continuity of
angle measure, there must be an an-
gle that separates the angles where−→
PA intersects l from those where it
does not. Let ∠QPC be this angle.

A
Bl

P

Q

C
D

Let
−−→
PD be the reflection of

−−→
PC across

←→
PQ. Since reflections preserve

parallelism, we have that
−−→
PD must separate intersecting lines from parallels.

Also, reflections preserve angle, so ∠QPD must be congruent to ∠QPC.
This finishes the proof of part (1) of the theorem.

We now show that both angles are less than 90 degrees. It suffices to
show that neither can be a right angle. Suppose that ∠QPC is a right
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angle. Then by the preceding paragraph, we know that ∠QPD must be a
right angle. Points C,P,D are then collinear and make up one parallel to
l through P by Euclid’s Proposition 27, which does not depend on Euclid’s
fifth postulate. By the hyperbolic parallel postulate, there must be another
line m′ through P parallel to l. But, m′ has to lie within one of the two
right angles ∠QPC or ∠QPD, which would be a contradiction to what was
just proved about angles ∠QPC and ∠QPD separating intersecting and
non-intersecting lines. 2

Definition 7.7. The two special parallels defined in the previous theorem
are called limiting parallels (also called asymptotic parallels or sensed paral-
lels) to l through P . These will be lines through P that separate intersecting
and non-intersecting lines to l. There will be a right and a left limiting par-
allel to l through P . Other lines through P that do not intersect l will
be called ultraparallels (or divergent parallels) to l. The angle made by a
limiting parallel with the perpendicular from P to l is called the angle of
parallelism at P.

The properties of limiting parallels have no counterpart in Euclidean
geometry and thus it is hard to develop an intuition for them. In the project
on the Klein model, we saw how to construct limiting parallels to a given
Klein line. It may be helpful to review that construction to have a concrete
mental picture of how limiting parallels work in hyperbolic geometry.

In the next few theorems, we will review some of the basic results on
limiting parallels. We will prove these results in a synthetic fashion, inde-
pendent of any model. The proofs will focus on the case of right-limiting
parallels. The proofs for left-limiting parallels follow by symmetry of the
arguments used.

Theorem 7.2. Let
←−→
PP ′ be the right-limiting parallel to a line l through P .

Then
←−→
PP ′ is also the right-limiting parallel to l through P ′.

Proof: There are two cases to consider.

In the first case point P ′ is to the right of P on
←−→
PP ′ (Fig. 7.1). Drop

perpendiculars from P and P ′ to l at Q and Q′. Then by Euclid’s Prop. 27,←−→
P ′Q′ ‖

←→
PQ, and we know that all points on

←−→
P ′Q′ will be on the same side

of
←→
PQ.

Let R be a point to the right of P ′ on
←−→
PP ′. We need to show that every

ray
−−→
P ′S lying within ∠Q′P ′R will intersect l.
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Since S is interior to ∠QPR, we know that ray
−→
PS will intersect l at

some point T .
−→
PS will also intersect P ′Q at a point U , since this ray cannot

intersect either of the other two sides of triangle ∆PQP ′.

Now, consider ∆QUT .
−−→
P ′S intersects side UT and does not intersect

side QU (S and U must be on opposite sides of P ′Q′). Thus,
−−→
P ′S must

intersect side QT and thus intersects l.

l

P

P’

Q Q’

RS

T

U

Fig. 7.1

In the second case, point P ′ is to the left of P on
←−→
PP ′. A similar proof

can be given in this case. 2
Note that in this proof we are using the fact that a line intersecting a

triangle at a side must intersect one of the other sides. This fact is known as
Pasch’s axiom and is independent of Euclid’s original set of five postulates.
Since we normally assume this axiom in Euclidean geometry, and it does not
depend on any parallel properties, we will likewise assume it in hyperbolic
geometry.

The next theorem tells us that the property of being a limiting parallel
is a symmetric property. That is, we can talk of a pair of lines being limiting
parallels to each other without any ambiguity.

Theorem 7.3. If line m is a right-limiting parallel to l, then l is conversely
a right-limiting parallel to m.

Proof: Let m =
←→
PD be the right-limiting parallel to l through P . Drop

a perpendicular from P to l at Q (Fig. 7.2). Also, drop a perpendicular from
Q to m at R. We know that R must be to the right of P , since if it were
to the left, then we would get a contradiction to the exterior angle theorem
for ∆QRP . Let B be a point on l that is on the same side of PQ as D. To
show that l is limiting parallel to m, we need to show that any ray interior
to ∠BQR must intersect m.
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Let
−−→
QE be interior to ∠BQR. We will show that

−−→
QE must intersect m.

Drop a perpendicular from P to
←→
QE at F . By an exterior angle theorem

argument, we know that F will lie on the same side of Q on
←→
QE as E.

Bl

P
m

Q

R

E
F

D

Fig. 7.2

Also, since in ∆PQF the greater side lies opposite the greater angle, we
know that PQ > PF .

Now, we can use the rotation results from Chapter 5 to rotate PF ,
←→
PD,

and
←→
FE about P by the angle θ = ∠FPQ, as shown in Fig. 7.3. Since

PQ > PF , F will rotate to a point F ′ on PQ and
←→
FE will rotate to a line←−→

F ′E′ that is ultraparallel to l, because of the right angles at Q and F ′. Also,
←→
PD will rotate to a line

←−→
PD′ that is interior to ∠QPR and so will intersect

l at some point G.

Bl

P
m

Q

R

F’ E’
D

D’

G

H

Fig. 7.3
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Since
←−→
F ′E′ intersects ∆PQG and does not intersect QG, it must intersect

PG at some point H. Rotating
←−→
F ′E′ and

←−→
PD′ about P by −θ shows that−−→

QE will intersect m at the rotated value of H. 2
The next theorem tells us that the property of being a limiting parallel is

a transitive property. That is, if l is limiting parallel to m and m is limiting
parallel to n, then l is limiting parallel to n.

Theorem 7.4. If two lines are limiting parallel (in the same direction) to
a third line, then they must be limiting parallel to each other.

Proof: There are two cases to consider.

In the first case suppose
←→
AB and←→

CD are both right-limiting paral-

lel to
←→
EF with points A and C

on opposite sides of
←→
EF . Then,

AC will intersect
←→
EF at some point

G. Let
−−→
CH be any ray interior to

∠ACD. Then, since
←→
CD is right-

limiting parallel to
←→
EF , we have

that
−−→
CH will intersect

←→
EF at some

point J .

A
B

E

F

C

D

G

H

J

K

Connect A and J . Since limiting parallelism is symmetric and
←→
AB is

right-limiting parallel to
←→
EF , then

←→
EF is right-limiting parallel to

←→
AB and

is limiting parallel at all points, including J . Thus,
−→
CJ will intersect

←→
AB at

some point K.

Since
←→
AB and

←→
CD do not intersect (they are on opposite sides of

←→
EF ),

and for all rays
−−→
CH interior to ∠ACD we have that

−−→
CH intersects

←→
AB, then←→

CD is right-limiting parallel to
←→
AB.

For the second case we assume that←→
AB and

←→
CD are both on the same

side of
←→
EF . Suppose that

←→
AB and←→

CD are not right-limiting parallel
to each other. Without loss of gen-
erality, we may assume that C and

E are on opposite sides of
←→
AB. Let←→

CG be the right-limiting parallel to←→
AB.

E
F

A

B

C

D

G
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By the first part of this proof,
←→
CG and

←→
EF must be right-limiting par-

allel. But,
←→
CD is already the right-limiting parallel to

←→
EF at C, and thus

G must be on
←→
CD and

←→
CD is right-limiting parallel to

←→
AB. 2

7.3.2 Omega Points and Triangles

In the previous section we saw that given a line l and a point P not on l,
there were two special lines called the right- and left-limiting parallels to l
through P . These separated the set of lines through P that intersect l from
those that did not intersect l.

In the Poincaré and Klein models, these limiting parallels actually meet
at points on the boundary circle. While these boundary points are not ac-
tually valid points in the geometry, it is still useful to consider the boundary
points as representing the special relationship that limiting parallels have
with the given line.

We will call these special points omega points, or ideal points. Thus, a
given line will have in addition to its set of “ordinary” points a special pair
of omega points. All limiting parallels to the given line will pass through
these omega points.

Definition 7.8. Given a line l, the right [left] omega point to l represents
the set of all right- [left-] limiting parallels to l. We say two lines intersect
at an omega point if one is right- [left-] limiting parallel to the other. If Ω is
an omega point of l and P is an ordinary point, then by the line through P
and Ω we will mean the line through P that is right [left-] limiting parallel
to l.

Definition 7.9. Given two omega

lines
←→
PΩ and

←→
QΩ, the omega trian-

gle defined by P , Q, and Ω is the set
of points on PQ and the two rays

defined by the limiting parallels
←→
PΩ

and
←→
QΩ.

Q

P

Ω
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It is interesting to note that these omega triangles, while not true trian-
gles, still share many important properties of ordinary triangles.

Theorem 7.5. (Pasch’s Axiom for Omega Triangles, Part I) If a line passes
through a vertex P or Q of an omega triangle PQΩ and passes through an
interior point of the triangle, then it must intersect the opposite side. If a
line passes through Ω, and an interior point, it must intersect side PQ.

Proof: The proof of the first part of the theorem is a direct consequence

of the fact that
←→
PΩ and

←→
QΩ are limiting parallels and will be left as an

exercise.

For the proof of the second part, suppose that a line passes through Ω
and through a point X within the omega triangle.

By passing through Ω we mean that
the line through X is a limiting par-

allel to
←→
PΩ (or

←→
QΩ). By the first

part of this proof, we know that
←→
PX

will intersect
←→
QΩ at some point Y .

By Pasch’s axiom, we know that the

line
←→
XΩ will intersect side PQ of

∆PQY .
Q

P

X

Y

2

Theorem 7.6. (Pasch’s Axiom for Omega Triangles, Part II) If a line
intersects one of the sides of an omega triangle PQΩ but does not pass
through a vertex, then it will intersect exactly one of the other two sides.

Proof: The proof of this theorem is left as a series of exercises below. 2

Theorem 7.7. (Exterior Angle Theorem for Omega Triangles) The exterior
angles of an omega triangle PQΩ made by extending PQ are greater than
their respective opposite interior angles.

Proof: Extend PQ to R. It suffices to show that ∠RQΩ is greater than
∠QPΩ.
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We can find a point X on the right
side of PQ such that ∠RQX ∼=
∠QPΩ. Suppose

−−→
QX intersected←→

PΩ at S. Then ∠RQX would be an
exterior angle to ∆PQS and would
equal the opposite interior angle in
this triangle, which contradicts the
exterior angle theorem for ordinary
triangles.

Q

Ω

P

R

X

S

Could QX lie on
←→
QΩ? Suppose it does.

Let M be the midpoint of PQ and

drop a perpendicular from M to
←→
QΩ

at N . Now, on the line
←→
PΩ, we can

find a point L, on the other side of
QP from N , with QN ∼= PL. If

QX lies on
←→
QΩ, then ∠NQM ∼=

∠LPM (both are supplementary to
congruent angles). Thus, by SAS,
∆NQM and ∆LPM are congru-
ent and ∠MLP is a right angle.
Since the angles at M are congru-
ent, L,M , and N lie on a line.
But, this would imply that LN is

perpendicular to both
←→
PΩ and

←→
QΩ

and that the angle of parallelism is
90 degrees, which is impossible.

Q

Ω

P

R

X

M

N

L

Thus, ∠RQX is less than angle ∠RQΩ and since ∠RQX ∼= ∠QPΩ, we
are finished with the proof. 2

Theorem 7.8. (Omega Triangle Congruence) If PQ and P ′Q′ are con-
gruent and ∠PQΩ is congruent to ∠P ′Q′Ω′, then ∠QPΩ is congruent to
∠Q′P ′Ω′ (Fig. 7.4).

Proof: Suppose one of the angles is greater, say ∠QPΩ. We can find

R interior to ∠QPΩ such that ∠QPR ∼= ∠Q′P ′Ω′. Then
−→
PR will intersect

←→
QΩ at some point S. On

←−→
Q′Ω′ we can find S′ with QS ∼= Q′S′. Triangles

∆PQS and ∆P ′Q′S′ are then congruent by SAS and ∠Q′P ′S′ ∼= ∠QPS.
Also, ∠QPS ∼= ∠Q′P ′Ω′. Thus, ∠Q′P ′S′ ∼= ∠Q′P ′Ω′, which is impossible.
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Q

P

Ω’

Q’ S’

P’

Ω

R

S

Fig. 7.4

2

Exercise 7.3.1. Illustrate Theorem 7.3 in the Klein model and explain why it
must be true using the properties of that model.

Exercise 7.3.2. Illustrate Theorem 7.4 in the Klein model and explain why it
must be true using the properties of that model.

Exercise 7.3.3. Let l be a hyperbolic line and let rl be reflection across that line.
Use the parallelism properties of reflections to show that rl maps limiting parallels
of l to other limiting parallels of l. Use this to show that rl fixes omega points of l.

Exercise 7.3.4. Show that the omega points of a hyperbolic line l are the only
omega points fixed by reflection across l. [Hint: If a reflection rl fixes an omega
point of a line l′ 6= l, show that rl must fix l′ and get a contradiction.]

Exercise 7.3.5. Show that if a rotation R fixes an omega point, then it must be
the identity rotation. [Hint: Use the preceding exercise.]

Exercise 7.3.6. Show that for an omega triangle PQΩ, the sum of the angles
∠PQΩ and ∠QPΩ is always less than 180 degrees.
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Exercise 7.3.7. Show that if a line intersects an omega triangle PQΩ at one of
the vertices P or Q, then it must intersect the opposite side.

Exercise 7.3.8. (Partial Proof of Theorem 7.6)

Suppose a line intersects side
←→
PΩ of an

omega triangle PQΩ but does not pass
through a vertex. Let R be the point of
intersection and connect R to Q. Use
Pasch’s axiom and Theorem 7.5 to show
that a line through R that does not pass
through P or Q must intersect PQ or←→
QΩ.

Q

P

R

Ω

Exercise 7.3.9. (Partial Proof of Theorem 7.6)

Suppose a line intersects side PQ of
an omega triangle PQΩ but does not
pass through a vertex. Let R be the
point of intersection. We can find the

limiting parallel
←→
RΩ. Show that a line

through R must intersect either
←→
PΩ or←→

QΩ. [Hint: Use Theorem 7.5.]
Q

P

Ω

R

Exercise 7.3.10. In this exercise we will prove Angle-Angle Congruence for
omega triangles. Suppose PQΩ and P ′Q′Ω′ are two omega triangles with ∠PQΩ ∼=
∠P ′Q′Ω′ and ∠QPΩ ∼= ∠Q′P ′Ω′. Show that PQ ∼= P ′Q′. [Hint: Suppose the
segments are not congruent. See if you can derive a contradiction to Exercise 7.3.6.]

Exercise 7.3.11. Let PQ be a seg-
ment of length h. Let l be a perpendic-

ular to PQ at Q and
←→
PR the limiting

parallel to l at P . Define the angle of
parallelism to be a(h) = ∠QPR, where
the angle is measured in degrees. Use
a theorem on omega triangles to show
this definition is well defined, that it
depends only on h.

l

P

Q

R
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Exercise 7.3.12. Show that if h < h′, then a(h) > a(h′). That is, the function
a(h) is order-reversing.

Exercise 7.3.13. Show that a(h) is a one-to-one function on the set of positive
real numbers h.

Exercise 7.3.14. In Euclidean and hyperbolic geometry, angles are said to be
absolute. One can construct a particular right angle and from there all other angles.
In Euclidean geometry, however, length is not absolute. One must choose a segment
to be of unit length, and then other lengths can be measured. Measures of length
are thus arbitrary in Euclidean geometry. Assuming that it is always possible to
carry out the construction described in the definition of a(h), use the preceding
exercise to show that length is absolute in hyperbolic geometry.

7.4 Project 10 - The Saccheri Quadrilateral

Girolamo Saccheri was a Jesuit priest who, like Gauss and others men-
tioned at the beginning of this chapter, tried to negate Playfair’s Postulate
and find a contradiction to known results based on the first four Euclidean
postulates. His goal in this work was not to study hyperbolic geometry, but
rather to prove Euclid’s fifth postulate as a theorem. Just before he died
in 1733, he published Euclides ab Omni Naevo Vindicatus (“Euclid Freed
of Every Flaw”), in which he summarized his work on negating the parallel
postulate by the “hypothesis of the acute angle.”

Saccheri’s idea was to study quadrilaterals whose base angles are right
angles and whose base-adjacent sides are congruent. Of course, in Euclidean
geometry, such quadrilaterals must be rectangles; that is, the top (or sum-
mit) angles must be right angles. Saccheri negated the parallel postulate
by assuming the summit angles were less than 90 degrees. This was the
“hypothesis of the acute angle.” Saccheri’s attempt to prove the parallel
postulate ultimately failed because he could not find a contradiction to the
acute angle hypothesis.

To see why Saccheri was unable to find a contradiction, let’s consider his
quadrilaterals in hyperbolic geometry.
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Start Geometry Explorer and create
a segment AB on the screen. This
will be the base of our quadrilateral.

A B

Multi-select AB and A and click
on the Perpendicular button in the
Construct panel to construct the
perpendicular to AB at A. Like-
wise, construct the perpendicular to
AB at B.

A B

Now, attach a point C along the
perpendicular at B as shown. To
attach a point to a line, create a
point on top of the line. This will
cause the point to move only along
the line.

A B

C
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Now, hide the perpendicular
line at B and create segment BC.
To hide the line, select it and choose
Hide Object (View menu).

A B

C

Multi-select point A and seg-
ment BC and click on the Circle
constructor tool in the Construct
panel, yielding a circle centered at
A of hyperbolic radius the hyperbolic
length of BC. Multi-select the cir-
cle and the perpendicular at A and
click the Intersection button (Con-
struct panel) to find their intersec-
tion. A B

C

The upper intersection point,
D, is all we need, so hide the circle,
the perpendicular, and the lower in-
tersection point. Then, connect A
to D and D to C to finish the con-
struction of a Saccheri Quadrilat-
eral.

A B

CD
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At this point we can use our Saccheri Quadrilateral to study many fas-
cinating properties in hyperbolic geometry. Let’s look at a couple.

Measure the two angles at D and C
in the quadrilateral. For this con-
figuration they are equal and less
than 90 degrees, which is what they
would be in Euclidean geometry. It
appears that Saccheri’s acute angle
hypothesis holds in hyperbolic ge-
ometry, at least for this one case.
Move points A and B and check the
summit angles.

A B

CD

Angle(A,D,C) = 42.94 degrees
Angle(D,C,B) = 42.94 degrees

It appears that this result holds
for all configurations of our Sac-
cheri Quadrilateral (except perhaps
when orientations switch, because
our intersection point switches from
above the rectangle to below it and
the angles become greater than 180
degrees). In fact, this is a theorem
in hyperbolic geometry. The sum-
mit angles of a Saccheri Quadrilat-
eral are always equal and less than
90 degrees (i.e., are acute).

A

B
C

D

Angle(A,D,C) = 56.21 degrees
Angle(D,C,B) = 56.21 degrees

Saccheri could find no contradiction in assuming that the summit an-
gles of this quadrilateral were acute because in hyperbolic geometry (which
can be modeled within Euclidean geometry), the summit angles are always
acute. If he had been able to find a contradiction, then that would also be
a contradiction in Euclidean geometry. However, Saccheri could not believe
what his own work was telling him. As mentioned at the beginning of this
chapter, he found the hypothesis of the acute angle “repugnant to the nature
of the straight line.”
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Exercise 7.4.1. Prove that the summit angles of a Saccheri Quadrilateral are
always congruent. [Hint: Start by showing the diagonals are congruent.]

Exercise 7.4.2. Fill in the “Why?”
parts of the following proof that the
summit angles of a Saccheri Quad are
always acute. Refer to the figure at
right.

A B

Ω

CD

E

At C we can construct the right-limiting parallel
←→
CΩ to AB. At D we can also

construct the right-limiting parallel
←→
DΩ to AB. These two limiting parallels will

also be limiting parallel to each other. (Why?)
←→
DC must be an ultraparallel (non-intersecting line) to

←→
AB. (Why?) [Hint:

Construct midpoints to AB and CD and use triangles to show that the two lines
share a common perpendicular.]

Thus, the right-limiting parallels through D and C, respectively, must lie within

the angles ∠ADC and ∠BCE, where E is a point on
−−→
DC to the right of C. Now

∠ADΩ and ∠BCΩ are equal in measure. (Why?)
Furthermore, in omega triangle CDΩ, ∠ECΩ must be greater than interior

angle ∠CDΩ. (Why?)
Finally, this proves that ∠ADC and ∠BCD are both less than 90 degrees.

(Why?)

For your report give a careful and complete summary of your work done
on this project.

7.5 Lambert Quadrilaterals and Triangles

7.5.1 Lambert Quadrilaterals

In the last section we defined a Saccheri Quadrilateral as a quadrilateral
ABCD, where the base angles ∠BAD and ∠CBA are right angles and the
side lengths AD and BC are congruent (Fig. 7.5).
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A B

D C

E

F

Fig. 7.5

Let E and F be the midpoints of the base and summit of a Saccheri
quadrilateral. By the results of the last section, we know that ∆ADF and
∆BCF are congruent by SAS and thus AF ∼= BF . Thus, ∆AEF and
∆BEF are congruent by SSS and the angle at E must be a right angle. A
similar argument will show that ∠DFE and ∠CFE are also right angles.
Thus,

Theorem 7.9. The segment joining the midpoints of the base and summit
of a Saccheri quadrilateral makes right angles with the base and summit.

If we look at the two quadrilaterals AEFD and BEFC, they both share
the property of having three right angles.

Definition 7.10. A Lambert Quadrilateral is a quadrilateral having three
right angles.

The midpoint construction just described gives a natural way to associate
a Lambert quadrilateral with a given Saccheri quadrilateral. We can also
create a Saccheri quadrilateral from a given Lambert quadrilateral.

Theorem 7.10. Let ABCD be a Lambert quadrilateral with right angles
at A, B, and C. If we extend AB and CD, we can find points E and F
such that AB ∼= AE and CD ∼= CF (Fig. 7.6). Then EBDF is a Saccheri
quadrilateral.

A

B

C

D

E

F

Fig. 7.6

Proof: The proof is left as an exercise. 2
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Corollary 7.11. In a Lambert Quadrilateral the fourth angle (the one not
specified to be a right angle) must be acute.

Proof: By the preceding theorem, we can embed a given Lambert quadri-
lateral in a Saccheri quadrilateral and we know the summit angles of a Sac-
cheri quadrilateral are acute. 2

Corollary 7.12. Rectangles do not exist in hyperbolic geometry.

Proof: This is an immediate consequence of the preceding corollary. 2

Here is another interesting fact concerning Lambert Quads.

Theorem 7.13. In a Lambert quadrilateral the sides adjoining the acute
angle are greater than the opposite sides.

Proof: Given a Lambert quadrilateral ABDC with right angles at A,
B, and C, suppose that DB < AC (Fig. 7.7). Then there is a point E on
the line through B,D with D between B and E such that BE ∼= AC. It
follows that ABEC is a Saccheri quadrilateral, and ∠ACE ∼= ∠BEC, and
both angles are acute.

A B

C
D

E

Fig. 7.7

However, since A and E are on opposite sides of
←→
CD (A and B are on the

same side and B and E are on opposite sides), then CD lies within ∠ACE
and thus ∠ACE contains ∠ACD. So, ∠ACE must be greater than a right
angle. This contradicts the fact that ∠ACE must be acute.

Thus, DB ≥ AC. IfDB = AC, then we would have a Saccheri quadrilat-
eral ABDC and the summit angles would be congruent, which is impossible.
We must have, then, that DB > AC. A similar argument shows CD > AB.
2
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7.5.2 Triangles in Hyperbolic Geometry

Here are two basic (but still amazing) facts about triangles in hyperbolic
geometry.

Theorem 7.14. The angle sum for any hyperbolic right triangle is always
less than 180 degrees.

Proof: Let ∆ABC be a right triangle with a right angle at A. Let D be
the midpoint of BC (Fig. 7.8).

A C

B

D

E

F

G

Fig. 7.8

Drop a perpendicular from D to
←→
AC intersecting at E. Then E must lie

between A and C. For by Pasch’s Axiom we know that the perpendicular
must pass through one of the two sides AB or AC. Clearly, it cannot pass
through A, B, or C. Suppose it passed through AB at X. Then ∆XEA
would have two right angles, contradicting the absolute geometry result that
the sum of two angles in a triangle must be less than two right angles (Euclid,
Book I, Prop. 17).

Now, we can find a point F such that ∠DCE is congruent to ∠DBF .

On
−−→
BF we can find a point G such that BG ∼= EC. By SAS we have that

∆ECD ∼= ∆GBD. Thus, E,D, and G are collinear and ∠DGB is a right
angle.

Quadrilateral ABGE is thus a Lambert Quadrilateral and ∠ABG must
be acute. Since ∠DCE is congruent to ∠DBF , then m∠DCE+m∠ABD =
m∠DBF + m∠ABD < 90. Thus, the sum of the angles in ∆ABC is less
than two right angles. 2

Theorem 7.15. The angle sum for any hyperbolic triangle is less than 180
degrees.



294 CHAPTER 7. NON-EUCLIDEAN GEOMETRY

A

B C

D

Fig. 7.9

Proof: Let ABC be a triangle (Fig. 7.9). We have proved the result if
one of the angles is right. Thus, suppose none of the three angles are right
angles. Then two must be acute, as otherwise we would have the sum of
two angles being greater than or equal to 180 degrees.

Let the angles at B and C be acute. Drop a perpendicular from A down

to
←→
BC, intersecting at D. Then D is between B and C. (If it intersected

elsewhere on the line, we could construct a triangle with two angles more
than 180 degrees.)

Now, ∆ABC can be looked at as two right triangles ∆ABD and ∆ADC.
Using the previous result, we know that the sum of the angles in ∆ABD
is less than 180, as is the sum of the angles in ∆ADC. So the sum of the
angles in the two triangles together is less than 360. But clearly, this sum
is the same as the sum of the angles in ∆ABC plus the two right angles at
D. Thus, the sum of the angles in ∆ABC is less than 360− 180 = 180. 2

Definition 7.11. Given ∆ABC we call the difference between 180 degrees
and the angle sum of ∆ABC the defect of ∆ABC.

Corollary 7.16. The sum of the angles of any quadrilateral is less than 360
degrees.

Proof: The proof is left as an exercise. 2

Definition 7.12. Given quadrilateral ABCD the defect is equal to 360
degrees minus the sum of the angles in the quadrilateral.

Theorem 7.17. Given ∆ABC let line l intersect sides AB and AC at
points D and E, respectively. Then the defect of ∆ABC is equal to the sum
of the defects of ∆AED and quadrilateral EDBC.
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Fig. 7.10

Proof: If l intersects at any of A, B, or C, the result is clear. Suppose
that D and E are interior to AB and AC. Label all interior angles as shown
in Fig. 7.10. Then

defect(∆ABC) = 180− (∠1 + ∠4 + ∠5)

And,

defect(∆ADE) + defect(DECB) = 180− (∠1 + ∠2 + ∠7)

+ 360− (∠3 + ∠4 + ∠5 + ∠6)

Since ∠2 + ∠3 = 180 and ∠6 + ∠7 = 180, the result follows. 2
We can use this result to prove one of the most amazing facts about

triangles in hyperbolic geometry—similar triangles are congruent!

Theorem 7.18. (AAA Congruence) If two triangles have corresponding
angles congruent, then the triangles are congruent (Fig. 7.11).

A

B C

D

E

F

E’
F’

Fig. 7.11
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Proof: Let ∆ABC and ∆DEF be given with ∠ABC ∼= ∠DEF ,
∠BCA ∼= ∠EFD, and ∠CAB ∼= ∠FDE.

If any pair of sides between the two is congruent, then by ASA the
triangles would be congruent.

So, either a pair of sides in ∆ABC is larger than the corresponding
pair in ∆DEF or is smaller than the corresponding pair. Without loss of
generality we can assume AB and AC are larger than DE and DF .

Then we can find points E′ and F ′ on AB and AC so that AE′ ∼= DE
and AF ′ ∼= DF . By SAS, ∆AE′F ′ ∼= ∆DEF , and the two triangles have
the same defect.

But, since ∆DEF and ∆ABC have the same defect, we have that
∆AE′F ′ and ∆ABC have the same defect. From the previous theorem,
the defect of quadrilateral E′F ′CB is then zero, which is impossible.

Thus, all pairs of sides are congruent. 2

Exercise 7.5.1. Prove Theorem 7.10.

Exercise 7.5.2. Prove Corollary 7.16.

Exercise 7.5.3. Prove that the summit is always larger than the base in a Sac-
cheri Quadrilateral.

Exercise 7.5.4. Show that two Saccheri Quadrilaterals with congruent summits
and congruent summit angles must be congruent quadrilaterals; that is, the bases
must be congruent and the sides must be congruent. [Hint: Suppose they were not
congruent. Show that you can then construct a rectangle using the quadrilateral
with the longer sides.]

Exercise 7.5.5. Let l and m inter-
sect at O at an acute angle. Let A,B 6=
O be points on l and drop perpendic-
ulars to m from A and B, intersecting
m at A′, B′. If OA < OB, show that
AA′ < BB′.

O

m

A

lB

A’ B’

nC

[Hint: Argue that the perpendicular to AA′ at A must intersect BB′ and use
Lambert Quadrilateral results.]

Exercise 7.5.6. Show that parallel lines cannot be everywhere equidistant in
hyperbolic geometry. [Hint: Suppose l,m are two parallel lines and that at points
A,B,C on l, the distance to m (measured along a perpendicular to m) is the same.
Derive a contradiction using Saccheri Quadrilaterals.]

Exercise 7.5.7. Let l be a line and m a limiting parallel to l through a point P .
Show that the perpendicular distance from P to l decreases as you move P along m
in the direction of the omega point of l. [Hint: Use the angle of parallelism results
from Exercises 7.3.11 and 7.3.12.]
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Exercise 7.5.8. Show that if l and m are limiting parallel, then they cannot
have a common perpendicular.

Exercise 7.5.9. Show that two hyperbolic lines cannot have more than one
common perpendicular.

Exercise 7.5.10. In the Poincaré model, show that two parallel lines that are
not limiting parallel must have a common perpendicular. [Hint: Argue that you
can assume one line is the x-axis, and then show that you can find the point on
the other line (using Euclidean circle geometry) to form a common perpendicular.]
Note: This result is true for any model of hyperbolic geometry. For the proof, see
[17, page 158].

Exercise 7.5.11. Prove that two Saccheri Quadrilaterals with equal bases and
equal summit angles must be congruent. [Hint: Suppose they were not congruent.
Show that you can then construct a quadrilateral having angle sum equal to 360.]

Exercise 7.5.12. Given ∆ABC let l be a cevian line (a line through a vertex
and an opposite side). The cevian line divides the triangle into two sub-triangles.
Show that the defect of ∆ABC is equal to the sum of the defects of the component
sub-triangles. (This result suggests that the defect works much like the concept of
area for a hyperbolic triangle.)

Exercise 7.5.13. Is it possible to construct scale models of a figure in hyperbolic
geometry? Briefly explain your answer.

7.6 Area in Hyperbolic Geometry

In Chapter 2 we saw that areas in Euclidean geometry were defined in terms
of figures that were equivalent. Two figures are equivalent if the figures can
be split up (or subdivided) into a finite number of pieces so that pairs of
corresponding pieces are congruent. By using the notion of equivalence, we
were able to base all Euclidean area calculations on the simple figure of a
rectangle.

In hyperbolic geometry this is unfortunately not possible, as rectangles
do not exist! Thus, we need to be a bit more careful in building up a notion
of area. We will start with some defining axioms of how area works.

Area Axiom I If A,B,C are distinct and not collinear, then the area
of triangle ABC is positive.

Area Axiom II The area of equivalent sets must be the same.

Area Axiom III The area of the union of disjoint sets is the sum of
the separate areas.
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These are reasonable axioms for area in hyperbolic geometry. Note that
Axiom II automatically implies that the area of congruent sets is the same.

Since area is axiomatically based on triangles, we will need the following
result.

Theorem 7.19. Two triangles ABC and A′B′C ′ that have two sides con-
gruent, and the same defect, are equivalent and thus have the same area.

A

B CD

EFH

I

G

Fig. 7.12

Proof: Suppose that BC ∼= B′C ′. Let D, E, and F be the midpoints of
sides BC, AC, and AB, as shown in Fig. 7.12. Construct the line through
F and E and drop perpendiculars to this line from A, B, and C meeting
the line at G, H, and I, respectively.

Now, right triangles ∆BHF and ∆AGF will be congruent by AAS.
Similarly, ∆AGE and ∆CIE will be congruent. Thus, BH ∼= AG ∼= CI and
BHIC is a Saccheri Quadrilateral. Also, it is clear that this quadrilateral is
equivalent to the original triangle ∆ABC (move appropriate pieces around).

Now, it might be the case that the positions of G, H, and I are switched,
as shown in Fig. 7.13. However, one can easily check that in all configura-
tions, BHIC is a Saccheri Quadrilateral (with summit BC) that is equiva-
lent to ∆ABC.
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A

B CD

E

F
H

I

G

Fig. 7.13

Consider the summit angles of BHIC. The sum of these two summit
angles must equal the angle sum of ∆ABC, and thus the summit angles are
each half of the angle sum of ∆ABC.

Similarly, we can construct a Saccheri Quadrilateral for ∆A′B′C ′ that is
equivalent to ∆A′B′C ′ and with summit B′C ′.

Since BC ∼= B′C
′

and the summit angles for both quadrilaterals are
congruent (equal defects implies equal angle sums), then by Exercise 7.5.4
we know that the two quadrilaterals are congruent. Thus, the triangles are
equivalent. 2

We can prove an even more general result.

Theorem 7.20. Any two triangles with the same defect are equivalent and
thus have the same area.

Proof: If one side of ∆ABC is congruent to a side of ∆A′B′C ′, then we
can use the previous theorem to show the result. So, suppose no side of one
matches a side of the other. We can assume side A′C ′ is greater than AC
(Fig. 7.14). As in the last theorem, let E,F be midpoints of AC and AB.
Construct the perpendiculars from B and C to the line through E and F ,
and construct the Saccheri Quadrilateral BHIC.

B

A

C

A’

C’

B’

E F
I

H

E’’

A’’

J

Fig. 7.14
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Since A′C ′ > AC, we can find a point E′′ on
←→
EF such that the length

of CE′′ is half that of A′C ′ and E′′ 6= E. Extend CE′′ to a point A′′ such
that A′′C ∼= A′C ′.

Clearly,
←→
EF cuts A′′C at its midpoint E′′. It is left as an exercise to

show that
←→
EF cuts A′′B at its midpoint, point J . Then, as in the previous

theorem, ∆A′′BC will be equivalent to the Saccheri Quadrilateral BHIC
and thus also equivalent to ∆ABC. Since triangles ∆A′′BC and ∆A′B′C ′

share a congruent side, they must be equivalent, and hence the original two
triangles are equivalent. 2

We have shown that any two triangles having the same defect can be
split into pieces that can be made congruent. Is the converse also true?
Suppose we have two equivalent triangles. That is, the two triangles can
be subdivided into sub-triangles with corresponding pairs congruent. Then
for each pair, the defect will be the same. Also, if a set of sub-triangles
forms a polygonal shape, it is easy to see that the defect of the polygon is
equal to the sum of the defects of the triangles of which it is comprised.
Thus, the defects of the original triangles will be the sum of the defects of
all sub-triangles, which match pair-wise. We summarize this as follows.

Theorem 7.21. Any two triangles that are equivalent (and thus have the
same area) must have the same defect.

Our conclusion from this exploration of hyperbolic area is that the defect
and area share exactly the same properties. This tells us that the area must
be a function of the defect. Since the area and defect are both linear func-
tions in terms of triangle subdivisions, the area should be a linear function
of the defect, and it must be positive. Therefore, area = k2defect + c, for
some constants k and c. But, the area of the empty set must be zero, and
thus area = k2defect. We can fix k by choosing some triangle to have unit
area. We summarize this discussion in the following theorem.

Theorem 7.22. If we have defined an area function for hyperbolic geometry
satisfying Axioms I–III, then there is a positive constant k such that for any
triangle ∆ABC, we have

area(∆ABC) = k2 defect(∆ABC)

Note that our discussion does not give a complete proof of this result,
only an argument for the reasonableness of the theorem. For a complete,
rigorous proof see [32, pages 351–352].

Since the defect measures how much the angle sum of a triangle is below
180 and the lowest the angle sum can be is zero, we have the following
corollary.
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Corollary 7.23. In hyperbolic geometry the area of a triangle is at most
180k2 (or πk2, if we use radian measure for angles).

Exercise 7.6.1. Show that in Theorem 7.20
←→
EF cuts A′′B at its midpoint J .

[Hint: Suppose that the intersection of
←→
EF with A′′B is not the midpoint. Connect

E′′ to the midpoint of A′′B; construct a second Saccheri quadrilateral; and then
show that you can use the perpendicular bisector of BC to construct a triangle
with more than 180 degrees.]

Exercise 7.6.2. Show that there is no finite triangle in hyperbolic geometry that
achieves the maximum area bound.

Exercise 7.6.3. It is possible that our universe is hyperbolic in its geometry.
Could you use the measurements of triangle areas on earth to determine if the
universe were hyperbolic? Why or why not?

7.7 Project 11 - Tiling the Hyperbolic Plane

In Euclidean geometry there are just three different regular tessella-
tions of the Euclidean plane—the ones generated by equilateral triangles,
by squares, and by regular hexagons. How many regular tilings are there in
hyperbolic geometry?

We can argue in a similar fashion as we did in the Euclidean tilings of
Chapter 6. If we have k hyperbolic regular n-gons meeting at a common
vertex of a tiling, then the interior angles of the n-gons would be 360

k . Also,
we can find a central point and triangulate each n-gon. The triangles in the
triangulation will consist of isosceles triangles with base angles of α = 360

2k .
The total angle sum of all the triangles in the triangulation will be less than
180n. At the same time, this angle sum can be split into the angles around
the center point (which add to 360) plus the base angles of the isosceles
triangles (which add to 2nα). Thus, we get that

360 + 2nα < 180n

Or,

2α < 180− 360

n

Since the angle formed by adjacent edges of the n-gon is 2α = 360
k , we get
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360

k
< 180− 360

n

Dividing both sides by 360 and then rearranging, we get

1

n
+

1

k
<

1

2

If there is a regular tessellation by n-gons meeting k at a vertex in
hyperbolic geometry, then 1

n + 1
k <

1
2 . On the other hand, if this inequality

is true, then a tiling with n-gons meeting k at a vertex must exist. Thus,
this inequality completely characterizes regular hyperbolic tilings. We will
call a regular hyperbolic tessellation of n-gons meeting k at a vertex a (n,k)
tiling.

As an example, let’s see how to generate a (5, 4) tiling. In a (5,4) tiling,
we have regular pentagons meeting four at a vertex. How do we construct
regular pentagons of this kind? First of all, it is clear that the interior angle
of the pentagon must be 90 degrees (360

4 ). If we take such a pentagon and
triangulate it via triangles constructed to a central point, the angles about
the central point will be 72 degrees and the base angles of the isosceles
triangles will be 45 degrees (half the interior angle). Thus, to build the
pentagon we need to construct a hyperbolic triangle with angles of 72, 45,
and 45.

In Euclidean geometry, there are an infinite number of triangles that
have a specified set of three angles, and these triangles are all similar to
each other. In hyperbolic geometry, two triangles with congruent pairs of
angles must be congruent themselves!

Thus, we know that a hyperbolic triangle with angles of 72, 45, and 45
degrees must be unique. Geometry Explorer has a built-in tool for building
hyperbolic triangles with specified angles.

To build the interior triangle for our
pentagon, we will first need a point
at the origin. Geometry Explorer
has a special menu in the hyperbolic
main window titled Misc. We will
use two options under this menu—
one to create a point at the origin
and the other to assist in creating a
72,45,45 triangle.
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Choose Point At Origin (Misc
menu) to create a point at the origin
in the Poincaré plane.

A

To create our triangle, we will
first create the base segment of a
triangle with angles of 72, 45, and
45. Select the point at the origin
and choose Base Pt of Triangle
with Angles...(Misc menu). A di-
alog box will pop up as shown. Note
how the angles α, β, and γ are des-
ignated. In our example we want
α = 72 and the other two angles to
be 45. Type these values in and hit
“Okay.”

In the Canvas, a new point
will be created that corresponds to
point B in the dialog box just dis-
cussed. Create a line through points
A and B as shown.

A B
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To find the third point of our
triangle, we need to rotate line←→
AB about point A by an angle of

72 degrees and rotate
←→
AB about

B by an angle of −45 degrees.
Carry out these two rotations and
then multi-select the two rotated
lines and construct the intersection
point, point C.

A B

C

Now, hide the three lines and
any extraneous line points. Let’s
measure the three angles just to ver-
ify that we have the triangle we
want.

A B

C

Angle(B,A,C) = 72.00 degrees
Angle(A,C,B) = 45.00 degrees
Angle(C,B,A) = 45.00 degrees

Looks good. Next, hide the an-
gle measurements and connect C
and B with a segment. Then, se-
lect A as a center of rotation and de-
fine a custom rotation of 72 degrees.
Rotate segment BC four times to
get a regular pentagon.

A B

C
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Finally, select point C as a cen-
ter of rotation and define a new cus-
tom rotation of 90 degrees. Then,
rotate the pentagon three times,
yielding four pentagons meeting at
right angles!

A B

C

If we continue to rotate the pen-
tagon about exterior points in this
figure, we see that a tiling of the
hyperbolic plane is indeed possible
with regular pentagons meeting at
right angles.

A B

C

However, if we move the point
at the origin, we see that the tiling
breaks up in a quite nasty way.
Why is this the case? The problem
here is that by translating the origin
point, we have created compound
translations and rotations for other
parts of the figure. In hyperbolic
geometry compositions of transla-
tions are not necessarily transla-
tions again as they are in Euclidean
geometry.

A
B

C
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Exercise 7.7.1. In elliptic geometry the sum of the angles in a triangle is more
than 180 degrees. Show that it is possible to have a (3, 3) tiling in Elliptic geometry.

Exercise 7.7.2. There are only three regular tilings (up to scaling) in Eu-
clidean planar geometry. How many regular tilings are there in hyperbolic (two-
dimensional) geometry?

Exercise 7.7.3. Describe and illustrate the steps you would take to construct a
(6,5) tiling in the Poincaré Plane.

For your report give a careful and complete summary of your work done
in this project.

7.8 Models and Isomorphism

The two models of hyperbolic geometry covered so far in this chapter, the
Poincaré model and the Klein model, are very similar. In fact, there is a
conformal map taking one to the other that maps lines to lines, angles to
angles, and the distance function of one model to the distance function of
the other. The existence of such a function implies that the two models are
isomorphic—they have identical geometric properties.

We will construct a one-to-one map from the Klein model to the Poincaré
model as follows.

First, construct the sphere of radius 1 given by x2+y2+z2 = 1. Consider
the unit disk (x2 + y2 = 1) within this sphere to be the Klein disk.

Let N be the north pole of the
sphere and let P be a point on the
Klein line l as shown. Project P
orthogonally downward to the bot-
tom of the sphere, yielding point
Q. Then, stereographically project
from N , using the line from N to Q,
yielding point P ′ in the unit disk.

N

l

P

Q

P’



7.8. MODELS AND ISOMORPHISM 307

Define a function F from the Klein disk to the Poincaré disk by F (P ) =
P ′, where P is a point in the Klein disk and P ′ is the unique point defined
by the construction above. Since projection is one-to-one from the disk onto
the lower hemisphere, and since stereographic projection is also one-to-one
and onto from the lower hemisphere back to the unit disk, then the map F
is a one-to-one, onto function from the Klein disk to the Poincaré disk.

The inverse to F , which we will denote by F ′, is the map that takes
P ′ to P . That is, it projects P ′ onto the sphere and then projects this
spherical point up to the disk, to point P . From our work in Chapter 3 on
stereographic projection, we know that the equation for F ′ will be

F ′(x, y) = (
2x

1 + x2 + y2
,

2y

1 + x2 + y2
)

How do the maps F and F ′ act on lines in their respective domains?

Let l be a Klein line. Projecting
l orthogonally downward will result
in a circular arc c on the sphere
that meets the unit circle (equa-
tor) at right angles. Since stereo-
graphic projection preserves angles
and maps circles to circles, stereo-
graphic projection of c back to the
unit disk will result in a circular arc
that meets the unit circle at right
angles—a Poincaré line.

N

l

P

c

P’

l’

We see, then, that F maps Klein lines to Poincaré lines, and it preserves
the ideal points of such lines, as the points where such lines meet the unit
circle are not moved by F . Thus, F preserves the notions of point and line
between the two models.

What about the notion of angle? Let’s review the construction of a
perpendicular in the Klein model. Recall that the pole of chord AB in a
circle c is the inverse point of the midpoint of AB with respect to the circle.
We defined a Klein line m to be perpendicular to a Klein line l based on
whether l was a diameter of the Klein disk. If it is a diameter, then m is
perpendicular to l if it is perpendicular to l in the Euclidean sense. If l is not
a diameter, then m is perpendicular to l if the Euclidean line for m passes
through the pole P of l.
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Here are two lines l = AB and m
that are perpendicular in the Klein
model.

A

B

l

m

Pole(l)

Since the pole of chord AB is also the intersection of the tangents at
A and B to the circle, we see that the pole of AB will also be the center
of the circle passing through A and B that is orthogonal to the unit circle.
That is,

Lemma 7.24. The pole of the Klein line l = AB will be the center of the
orthogonal circle defining the Poincaré line F (l).

We can now prove that F preserves orthogonality between the models.

Theorem 7.25. Two Klein lines l and m are perpendicular if and only if
the corresponding Poincaré lines F (l) and F (m) are perpendicular.

Proof: There are three cases to consider. First, suppose l and m are both
diameters. Then, F (l) and F (m) are both diameters, and perpendicularity
has the same (Euclidean) definition in both models.

Second, suppose l is a diameter and m is not and suppose that l and m
are perpendicular. Then, the diameter l bisects chord m and thus passes
through the pole of m. Now, F (l) = l and since the center of F (m) is the
pole of l, F (l) must pass through the center of F (m). This implies that l
is orthogonal to the tangent line to F (m) at the point where it intersects
l = F (l) (Fig. 7.15), and so F (l) is orthogonal to F (m). Reversing this
argument shows that if F (l) and F (m) are orthogonal, then so are l and m.
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m

l

F(m)

Pole(m)

Fig. 7.15

Last, suppose both l and m are not diameters of the unit circle. Then,
l passes through the pole of m and vice versa. Also, these poles are the
centers of F (l) and F (m) (Fig. 7.16).

Suppose F (m) is perpendicular to F (l) (in the Poincaré sense). Let P
and Q be the points where F (m) meets the unit circle. Let c be the circle on
which F (l) lies and c′ be the circle on which F (m) lies. By Corollary 2.40,
we know that inversion of c′, and the unit circle, through c will switch P and
Q. This is due to the fact that both c′ and the unit circle are orthogonal to
c, and so both will be mapped to themselves by inversion in c. Thus, P and
Q are inverse points with respect to c, and the line through P and Q must
go through the center of c (the pole of l). Then, m is perpendicular to l in
the Klein sense.

Q

P

c’

l

Pole(l)

m

F(l)

c

Pole(m)

F(m)

Fig. 7.16
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Conversely, if m is perpendicular to l in the Klein sense, then the (Eu-
clidean) line for m intersects the pole of l (the center of circle c). Since
the unit circle and c are orthogonal, the unit circle is mapped to itself by
inversion in c. But, the inverse to P is the unique point that lies on the ray
through the center of c and P (and on the unit circle) that gets mapped
to another point on the unit circle. Thus, the inverse to P must be Q,
and by Theorem 2.39 we have that c′ is orthogonal to c, and the lines are
perpendicular in the Poincaré sense. 2

Since F preserves the definition of right angles between the Poincaré and
Klein models, this gives us a natural way to define all angles in the Klein
model: we will define the measure of a Klein angle to be the value of the
Poincaré angle it corresponds to.

Definition 7.13. Given three points A′, B′, C ′ in the Klein disk, the mea-
sure of the Klein angle defined by these points is the value of ∠ABC in the
Poincaré model, where F (A′) = A, F (B′) = B, and F (C ′) = C.

With this definition, F is a one-to-one map from the Klein model to the
Poincaré model that preserves points and lines. F will be an isomorphism
between these models if we can show that F preserves the distance functions
of the models.

To show this, we will borrow a couple of results from the next chapter
on isometries in hyperbolic geometry. Just as there are Euclidean isometries
that will take any Euclidean line to the x-axis, so there are transformations in
the Klein and Poincaré models that preseve the Klein and Poincaré distance
functions and that map any line in these models to the diameter of the unit
disk.

If we assume this property of the two models, then to show F preserves
the distance functions of the models, it is enough to show that F preserves
distances for hyperbolic lines that lie along the x-axis in the unit circle.
Equivalently, we can show the inverse map F ′ preserves distances along
such lines.

Theorem 7.26. Let P = (x1, 0) and Q = (x2, 0) be two points in the
Poincaré disk. Then

dP (P,Q) = dK(F ′(P ), F ′(Q))

Proof: By definition of dP we have

dP (P,Q) =

∣∣∣∣ln(
1 + x1

1− x1

1− x2

1 + x2
)

∣∣∣∣
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Also, since stereographic projection maps any diameter of the unit circle
to itself, we have

dK(F ′(P ), F ′(Q)) =
1

2

∣∣∣∣ln(
1 + u1

1− u1

1− u2

1 + u2
)

∣∣∣∣
where F ′(P ) = (u1, 0) and F ′(Q) = (u2, 0).

We know that F ′(x, 0) = ( 2x
1+x2

, 0). So,

1± u1 = 1± 2x1

1 + x2
1

=
(1± x1)2

1 + x2
1

and similarly for u2.
Thus, we get

dK(F ′(P ), F ′(Q)) =
1

2

∣∣∣∣∣∣ln(

(1+x1)2

1+x21
(1−x1)2

1+x21

(1−x2)2

1+x22
(1+x2)2

1+x22

)

∣∣∣∣∣∣
=

1

2

∣∣∣∣ln((
1 + x1

1− x1

1− x2

1 + x2
)2)

∣∣∣∣
=

1

2
2

∣∣∣∣ln(
1 + x1

1− x1

1− x2

1 + x2
)

∣∣∣∣
=

∣∣∣∣ln(
1 + x1

1− x1

1− x2

1 + x2
)

∣∣∣∣
= dP (P,Q)

2
We conclude that the map F is an isomorphism of the Klein and Poincaré

models. That is, any geometric property valid in one of these models must
be valid in the other model and vice versa.





Chapter 8

Non-Euclidean
Transformations

Though the text of your article on ‘Crystal Symmetry and Its
Generalizations’ is much too learned for a simple, self-made pat-
tern man like me, some of the text-illustrations and especially
Figure 7, page 11, gave me quite a shock . . .

If you could give me a simple explanation how to construct the
following circles, whose centres approach gradually from the out-
side till they reach the limit, I should be immensely pleased and
very thankful to you! Are there other systems besides this one
to reach a circle limit?

Nevertheless I used your model for a large woodcut (of which I
executed only a sector of 120 degrees in wood, which I printed 3
times). I am sending you a copy of it.

—M. C. Escher (1898–1972), from a letter to H. S. M. Coxeter,
as reported in [10]

The illustration that gave Escher “quite a shock” was a drawing that
Coxeter had produced of a regular tiling of the Poincaré disk by triangles.
This tiling inspired Escher to create his “Circle Limit I” woodcut. A version
of this image created by Doug Dunham is shown in Fig. 8.1, with a few of
the basic triangle tiles outlined in bold arcs. For more on Dunham’s work
on Escher-like hyperbolic tilings, see [13].

313
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Fig. 8.1 Dunham’s Version of Circle Limit I

The tiling illustrated in this figure is a regular tiling—all triangles used
to build the tiling are congruent via hyperbolic transformations; that is, one-
to-one and onto functions of the Poincaré disk to itself that preserve the
Poincaré distance function.

In Chapter 5 we saw that the group of distance-preserving functions of
the Euclidean plane consisted of Euclidean reflections, rotations, transla-
tions, and glide reflections. Such isometries not only preserved lengths of
segments, but preserved angles as well. We also saw that the set of all Eu-
clidean isometries formed an algebraic structure called a group. Before we
study the nature of hyperbolic isometries, we will look at an alternate way
to represent Euclidean isometries that will be useful in defining hyperbolic
isometries.

Each element of the group of Euclidean isometries can be represented
by a complex function. For example, the function f(z) = z + (v1 + iv2)
represents translation by the vector v = (v1, v2), and g(z) = eiφz represents
a rotation about the origin by an angle φ. Rotations about other points
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in the plane, say rotation about a by an angle of φ, can be defined by a
sequence of isometries: first, translation by the vector −a, then rotation by
φ about the origin, and then translation by the vector a. Thus, the desired
rotation can be represented as h(z) = (eiφ(z − a)) + a = eiφz + (a− eiφa).

Any translation or rotation can be represented as a complex function of
the form

f(z) = eiφz + b (8.1)

with b complex and φ real. These are the orientation-preserving isometries
of the Euclidean plane. The set of all such functions, which are sometimes
called rigid motions of the plane, forms a group called the Euclidean group.

What are the analogous orientation- and distance-preserving functions in
hyperbolic geometry? In particular, what are the orientation- and distance-
preserving functions in the Poincaré model? Since all rigid Euclidean isome-
tries can be realized as certain one-to-one and onto complex functions, a
good place to look for hyperbolic transformations might be in the entire
class of one-to-one and onto complex functions.

But, which functions should we consider? Since we are concentrating
on the Poincaré model, we need to find one-to-one and onto orientation-
preserving functions that preserve the Euclidean notion of angle, but do
not preserve Euclidean length. In section 3.5, we studied functions that
preserved angles and preserved the scale of Euclidean lengths locally. Such
functions were called conformal maps. Euclidean rigid motions such as ro-
tations and translations preserve angles and length globally and so comprise
a subset of all conformal maps.

If we consider the entire set of conformal maps of the plane onto itself,
then by Theorem 3.17 such maps must have the form f(z) = az + b, where
a 6= 0 and b is a complex constant. Since a = |a|eiφ, then f is the com-
position of a translation, a rotation, and a scaling by |a|. Thus, f maps
figures to similar figures. The set of all such maps forms a group called
the group of similitudes or similarity transformations of the plane. If b = 0
(f(z) = az, a 6= 0), we call f a dilation of the plane. Most similarity transfor-
mations cannot be isometries of the Poincaré model since most similarities
(like translations and scalings) do not fix the boundary circle of the Poincaré
disk.

Clearly, we must expand our set of possible transformations. One way
to do this is to consider the set of all one-to-one and onto conformal maps
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of the extended complex plane to itself. In Theorem 3.18 we saw that these
maps have the form

f(z) =
az + b

cz + d
, ad− bc 6= 0 (8.2)

8.1 Möbius Transformations

Definition 8.1. A Möbius transformation is a function on the extended
complex plane defined by equation 8.2. The set of Möbius transformations
forms a group called the Möbius group.

Every Möbius transformation is composed of simpler transformations.

Theorem 8.1. Let T be a Möbius transformation. Then T is the composi-
tion of translations, dilations, and inversion (g(z) = 1

z ).

Proof: If c = 0, then f(z) = a
dz + b

d , which is the composition of a
translation with a dilation.

If c 6= 0, then f(z) = a
c −

ad−bc
c2

1
z+ d

c

. Thus, f is the composition of a

translation (by d
c ), an inversion, a dilation (by −ad−bc

c2
), and a translation

(by a
c ). 2

Note that the Möbius group includes the group of Euclidean rigid mo-
tions (a = 1, c = 0, d = 1), and the group of similarities (a 6= 0, c = 0, d = 1)
as subgroups. Also note that we could define Möbius transformations as
those transformations of the form in equation 8.2 with ad − bc = 1, by
dividing the numerator by an appropriate factor.

Within the group of Möbius transformations, can we find a subgroup that
will serve as the group of orientation-preserving isometries for the Poincaré
model? We shall see that there is indeed such a sub-group. Before we can
prove this, we need to develop a toolkit of basic results concerning Möbius
transformations.

8.1.1 Fixed Points and the Cross Ratio

How many fixed points can a Möbius transformation f have? Suppose
f(z) = z. Then

z =
az + b

cz + d

So, cz2 + (d− a)z − b = 0. This equation has at most two roots. Thus,
we have
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Lemma 8.2. If a Möbius transformation f has three or more fixed points,
then f = id, where id is the identity Möbius transformation.

We saw in Chapter 5 that an isometry is uniquely defined by its effect
on three non-collinear points. For Möbius transformations we can relax the
condition on collinearity.

Theorem 8.3. Given any three distinct complex numbers z1, z2, z3, there is
a unique Möbius transformation f that maps these three values to a specified
set of three distinct complex numbers w1, w2, w3.

Proof: Let g1(z) = z−z2
z−z3

z1−z3
z1−z2 . Then g1 is a Möbius transformation (the

proof is an exercise) and g1 maps z1 to 1, z2 to 0, and z3 to the point at
infinity.

Let g2(w) = w−w2
w−w3

w1−w3
w1−w2

. We see that g2 is a Möbius transformation
mapping w1 to 1, w2 to 0, and w3 to ∞.

Then f = g−1
2 ◦ g1 will map z1 to w1, z2 to w2, and z3 to w3.

Is f unique? Suppose f ′ also mapped z1 to w1, z2 to w2, and z3 to w3.
Then f−1 ◦ f ′ has three fixed points, and so f−1 ◦ f ′ = id and f ′ = f . 2

Corollary 8.4. If two Möbius transformations f , g agree on three distinct
points, then f = g.

Proof: This is an immediate consequence of the preceding theorem. 2
The functions g1 and g2 used in the proof of Theorem 8.3 are called cross

ratios.

Definition 8.2. The cross ratio of four complex numbers z0, z1, z2, and z3

is denoted by (z0, z1, z2, z3) and is the value of

z0 − z2

z0 − z3

z1 − z3

z1 − z2

The cross ratio is an important invariant of the Möbius group.

Theorem 8.5. If z1, z2, and z3 are distinct points and f is a Möbius
transformation, then (z, z1, z2, z3) = (f(z), f(z1), f(z2), f(z3)) for any z.

Proof: Let g(z) = (z, z1, z2, z3). Then g ◦ f−1 will map f(z1) to 1, f(z2)
to 0, and f(z3) to ∞. But, h(z) = (z, f(z1), f(z2), f(z3)) also maps f(z1)
to 1, f(z2) to 0, and f(z3) to ∞. Since g ◦ f−1 and h are both Möbius
transformations, and both agree on three points, then g ◦ f−1 = h. Since
g ◦ f−1(f(z)) = (z, z1, z2, z3) and h(f(z)) = (f(z), f(z1), f(z2), f(z3)), the
result follows. 2
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8.1.2 Geometric Properties of Möbius Transformations

Of particular interest to us will be the effect of a Möbius transformation on
a circle or line.

Definition 8.3. A subset of the plane is a cline if it is either a circle or a
line.

The cross ratio can be used to identify clines.

Theorem 8.6. Let z0, z1, z2, and z3 be four distinct points. Then the cross
ratio (z0, z1, z2, z3) is real if and only if the four points lie on a cline.

Proof: Let f(z) = (z, z1, z2, z3). Then since f is a Möbius transforma-
tion, we can write

f(z) =
az + b

cz + d

Now f(z) is real if and only if

az + b

cz + d
=
az + b

cz + d

Multiplying this out, we get

(ac− ca)|z|2 + (ad− cb)z − (da− bc)z + (bd− db) = 0 (8.3)

If (ac− ca) = 0, let α = (ad− cb) and β = bd. Equation 8.3 simplifies to

Im(αz + β) = 0

This is the equation of a line (proved as an exercise).
If (ac− ca) 6= 0, then dividing through by this term we can write equa-

tion 8.3 in the form

|z|2 +
ad− cb
ac− ca

z − da− bc
ac− ca

z +
bd− db
ac− ca

= 0

Let γ = ad−cb
ac−ca and δ = bd−db

ac−ca . Since ac− ca is pure imaginary, we have
that

γ = (−)
da− bc
ac− ca

=
da− bc
ca− ac

Equation 8.3 becomes

|z|2 + γz + γz + δ = 0.
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Or,

|z + γ|2 = −δ + |γ|2

After multiplying and regrouping on the right, we get

|z + γ|2 =

∣∣∣∣ad− bcac− ca

∣∣∣∣2
Since ad− bc 6= 0, this gives the equation of a circle centered at -γ. 2

Theorem 8.7. A Möbius transformation f will map clines to clines. Also,
given any two clines c1 and c2, there is a Möbius transformation f mapping
c1 to c2.

Proof: Let c be a cline and let z1, z2, and z3 be three distinct points
on c. Let w1 = f(z1), w2 = f(z2), and w3 = f(z3). These three points
will lie on a line or determine a unique circle. Thus, w1, w2, and w3

will lie on a cline c′. Let z be any point on c different than z1, z2, or
z3. By the previous theorem we have that (z, z1, z2, z3) is real. Also,
(f(z), w1, w2, w3) = (f(z), f(z1), f(z2), f(z3)) = (z, z1, z2, z3), and thus f(z)
is on the cline through w1, w2, and w3.

For the second claim of the theorem, let z1, z2, and z3 be three distinct
points on c1 and w1, w2, and w3 be three distinct points on c2. By Theo-
rem 8.3 there is a Möbius transformation f taking z1, z2, z3 to w1, w2, w3.
It follows from the first part of this proof that f maps all points on c1 to
points on c2. 2

So, Möbius transformations map circles to circles. They also preserve
inversion through circles. Recall from Chapter 2 that the inverse of a point

P with respect to a circle c centered at O is the point P ′ on the ray
−−→
OP

such that (OP ′)(OP ) = r2, where r is the radius of c (Fig. 8.2).

O

C

P P’

Fig. 8.2 Circle Inversion
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If z = P and a = O, then the defining equation for the inverse z∗ of z
with respect to a circle c with radius r is

|z∗ − a||z − a| = r2

Since z∗ is on the ray through a and z, we get that z∗ − a = r1e
iθ and

z − a = r2e
iθ, and |z∗ − a||z − a| = r1 ∗ r2 = r1e

iθr2e
−iθ = (z∗ − a)(z − a).

Thus,

z∗ − a =
r2

z − a
(8.4)

It turns out that inversion can also be defined using the cross ratio.

Lemma 8.8. Let z1, z2, and z3 be distinct points on a circle c. Then, z∗ is
the inverse of z with respect to c if and only if (z∗, z1, z2, z3) = (z, z1, z2, z3).

Proof: Let c have center a and radius r. Then, since the cross ratio is
invariant under translation by −a, we have

(z, z1, z2, z3) = (z − a, z1 − a, z2 − a, z3 − a)

= (z − a, z1 − a, z2 − a, z3 − a)

= (z − a, r2

z1 − a
,

r2

z2 − a
,

r2

z3 − a
)

Since the cross ratio is invariant under the transformation f(z) = r2

z , we
have

(z, z1, z2, z3) = (
r2

z − a
, z1 − a, z2 − a, z3 − a)

Finally, translation by a yields

(z, z1, z2, z3) = (a+
r2

z − a
, z1, z2, z3)

So, if (z∗, z1, z2, z3) = (z, z1, z2, z3), we see immediately that z∗ = a+ r2

z−a
and z∗ is the inverse to z.

On the other hand, if z∗ = a + r2

z−a , then (z∗, z1, z2, z3) = (z, z1, z2, z3).
2

Definition 8.4. Two points z and z∗ are symmetric with respect to a circle
c if (z∗, z1, z2, z3) = (z, z1, z2, z3) for points z1,z2,z3 on c.

By the Lemma, this definition is not dependent on the choice of points
z1,z2,z3.
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Theorem 8.9 (The Symmetry Principle). If a Möbius transformation f
maps circle c to circle c′, then it maps points symmetric with respect to c to
points symmetric with respect to c′.

Proof: Let z1,z2,z3 be on c. Since

(f(z∗), f(z1), f(z2), f(z3)) = (z∗, z1, z2, z3)

= (z, z1, z2, z3)

= (f(z), f(z1), f(z2), f(z3))

the result follows. 2

8.2 Isometries in the Poincaré Model

We now return to our quest of finding one-to-one and onto maps of the
Poincaré disk to itself that are orientation-preserving and will preserve the
Poincaré distance function. Our earlier idea was to search within the group
of Möbius transformations for such functions. It is clear that any candidate
Möbius transformation must map the Poincaré disk to itself and so must
leave the boundary (unit) circle invariant.

Theorem 8.10. A Möbius transformation f mapping |z| < 1 onto |w| < 1
and |z| = 1 onto |w| = 1 has the form

f(z) = β
z − α
αz − 1

where |α| < 1 and |β| = 1.

Proof: Let α be the point which gets sent to 0 by f . Then by equa-
tion 8.4, the inverse to z = α, with respect to the unit circle, is the point
z∗ = 1

α . By Theorem 8.9, this inverse point gets sent to the inverse of 0,
which must be ∞.

If α 6= 0, then c 6= 0 (∞ does not map to itself), and

f(z) =
(a
c

) z + b
a

z + d
c

Since α maps to 0, then b
a = −α and since 1

α gets mapped to ∞, then
d
c = − 1

α . Letting β = α
(
a
c

)
, we get

f(z) = β
z − α
αz − 1
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Now 1 = |f(1)| = |β| |1−α||α−1| = |β|. Thus, |β| = 1.

If α = 0, then f(z) = a
dz+ c

d . Since f(0) = 0, cd = 0, and since |f(1)| = 1,
we get |β| = |ad | = 1. 2

Will transformations of the form given in this theorem preserve orienta-
tion and distance? Since such transformations are Möbius transformations,
and thus conformal maps, they automatically preserve orientation. To de-
termine if they preserve the Poincaré distance function, we need to evaluate
the distance function for points represented as complex numbers.

Theorem 8.11. The hyperbolic distance from z0 to z1 in the Poincaré
model is given by

dP (z0, z1) = | ln((z0, z1, w1, w0))| (8.5)

= | ln(
z0 − w1

z0 − w0

z1 − w0

z1 − w1
)|

where w0 and w1 are the points where the hyperbolic line through z0 and z1

meets the boundary circle.

Proof: From our earlier development of the Poincaré model (equation 7.2),
we have

dP (z0, z1) = | ln(
|z0 − w1|
|z0 − w0|

|z1 − w0|
|z1 − w1|

)|

Since |zw| = |z||w| and | zw | =
|z|
|w| , we have

dP (z0, z1) = | ln(|z0 − w1

z0 − w0

z1 − w0

z1 − w1
|)|

By Theorem 8.6, we know that z0−w1
z0−w0

z1−w0
z1−w1

, which is the cross ratio of
z0, z1, w1, and w0, is real since all four points lie on a circle. Also, this cross
ratio is non-negative (proved as an exercise). Thus,

dP (z0, z1) = | ln(
z0 − w1

z0 − w0

z1 − w0

z1 − w1
)|

2

Corollary 8.12. Transformations of the form

f(z) = β
z − α
αz − 1

where |α| < 1 and |β| = 1 preserve the Poincaré distance function.
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Proof: Let f be a transformation of the form described in the corollary,
and let z0, z1 be two points in the Poincaré disk, with w0, w1 the points
where the hyperbolic line through z0, z1 meets the boundary circle. Then,
since f is a Möbius transformation, it will map clines to clines and will
preserve angles. Thus, f(z0), f(z1) will be points in the Poincaré disk and
f(z0), f(z1), f(w0), f(w1) will all lie on a cline that meets the boundary
circle at right angles. That is, these points will lie on a hyperbolic line.
Also, since f maps the boundary to itself, we know that f(w0) and f(w1)
will lie on the boundary.

Thus, by Theorem 8.5, we have

dP (f(z0), f(z1)) = | ln((f(z0), f(z1), f(w1), f(w0)))|
= | ln(z0, z1, w1, w0))|
= dP (z0, z1)

2
What types of transformations are included in the set defined by

f(z) = β
z − α
αz − 1

(8.6)

where |α| < 1 and |β| = 1?
If |β| = 1, then β = eiθ. So, multiplication by β has the geometric effect

of rotation about the origin by an angle of θ. Thus, if α = 0 in equation 8.6,
then T (z) = −βz is a simple rotation about the origin by an angle of π+ θ.

On the other hand, if β = 1 in equation 8.6, consider the line tα passing
through the origin and α. We have that f(tα) = α t−1

|α|2−1
, which is again

a point on the line through α. The map f can be considered a translation
along this line.

Thus, we see that orientation- and distance-preserving maps contain
rotations and translations, similar to what we saw in the Euclidean case.
However, translations are not going to exhibit the nice parallel properties
that they did in the Euclidean plane.

What about orientation-reversing isometries? Since the cross ratio ap-
pears in the distance function and is always real on Poincaré lines, then
simple complex conjugation (f(z) = z) of Poincaré points will be a distance-
preserving transformation in the Poincaré model and will reverse orientation.

In fact, f , which is a Euclidean reflection, is also a hyperbolic reflection,
as it fixes a hyperbolic line. Similarly, Euclidean reflection in any diameter
will be a hyperbolic reflection. This is most easily seen by the fact that
Euclidean reflection about a diameter can be expressed as the conjugation
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of f by a rotation R about the origin by −θ, where θ is the angle the diameter
makes with the x-axis. Since rotation about the origin is an isometry in the
Poincaré model, then R−1 ◦ f ◦R is also an isometry.

All other hyperbolic reflections about lines that are not diameters can
be expressed as inversion through the circle which defines the line (proved
as an exercise).

We can now determine the structure of the complete group of isometries
of the Poincaré model. Let g be any orientation-reversing isometry of the
Poincaré model. Then, h = f ◦ g will be an orientation-preserving isometry,

and so h must be a transformation of the type in equation 8.6. Since f
−1

=
f , we have that g can be expressed as the product of f with an orientation-
preserving isometry. This same conjugation property would be true for any
hyperbolic reflection. Thus, we have

Theorem 8.13. The orientation-preserving isometries of the Poincaré model
can be expressed in the form g = β z−α

αz−1 . Also, if r is hyperbolic reflection
about some hyperbolic line, then all orientation-reversing isometries can be
expressed as r ◦ g for some orientation preserving g.

Hyperbolic isometries can be used to prove many interesting results in
hyperbolic geometry. Using Klein’s Erlanger Program approach, in order
to prove any result about general hyperbolic figures, it suffices to transform
the figure to a “nice” position and prove the result there. For example, we
can prove the following theorems on distance quite easily using this trans-
formational approach.

Theorem 8.14. Let z be a point in the Poincaré disk. Then

dH(0, z) = ln

(
1 + |z|
1− |z|

)
Proof: Let z = reiθ and T be rotation about the origin by −θ. Then

dH(0, z) = dH(T (0), T (z)) = dH(0, r). Now,

dH(0, r) =

∣∣∣∣ln( 0− 1

0− (−1)

r − 1

r − (−1)

)∣∣∣∣
=

∣∣∣∣ln(1− r
1 + r

)∣∣∣∣
= ln

(
1 + r

1− r

)
Since r = |z|, the result follows. 2

This result lets us convert from hyperbolic to Euclidean distance.
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Corollary 8.15. Let z be a point in the Poincaré disk. If |z| = r and if δ
is the hyperbolic distance from 0 to z, then

δ = ln

(
1 + r

1− r

)
and

r =
eδ − 1

eδ + 1

Proof: The first equality is a re-statement of the preceding theorem. The
second equality is proved by solving for r in the first equality. 2

Exercise 8.2.1. Show that the set of Euclidean rigid motions f(z) = eiφz + b,
with b complex and φ real, forms a group.

Exercise 8.2.2. Show that the equation Im(αz+ β) = 0, with α and β complex
constants, defines a line in the plane.

Exercise 8.2.3. Find a Möbius transformation mapping the circle |z = 1| to the
x-axis.

The next four exercises prove that the set of Möbius transformations
forms a group.

Exercise 8.2.4. Let f(z) = az+b
cz+d , where (ad − bc) 6= 0, and let g(z) = ez+f

gz+h ,

where (eh − fg) 6= 0, be two Möbius transformations. Show that the composition
f ◦ g is again a Möbius transformation.

Exercise 8.2.5. Show that the set of Möbius transformations has an identity
element.

Exercise 8.2.6. Let f(z) = az+b
cz+d , where (ad − bc) 6= 0, be a Möbius transfor-

mation. Show that f−1(w) has the form f−1(w) = dw−b
−cw+a and show that f−1 is a

Möbius transformation.

Exercise 8.2.7. Why does the set of Möbius transformations automatically sat-
isfy the associativity requirement for a group?

Exercise 8.2.8. Show that the set of Möbius transformations that fix the unit
circle is a group.

Exercise 8.2.9. Show that in the Poincaré model there is a hyperbolic isometry
taking any point P to any other point Q. [Hint: Can you find an isometry taking
any point to the origin?]

Exercise 8.2.10. Let T (z) = z−α
1−αz be a hyperbolic transformation, with α 6= 0.

Show that T has two fixed points, both of which are on the boundary circle, and
thus T has no fixed points inside the Poincaré disk. Why would it make sense to
call T a translation?
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Exercise 8.2.11. Show that the cross ratio term used in the definition of hy-
perbolic distance is always real and non-negative. [Hint: Use transformations to
reduce the calculation to one that is along the x-axis.]

Exercise 8.2.12. Use the idea of conjugation of transformations to derive the
formula for reflection across the diameter y = x in the Poincaré model. [Hint: Refer
to Exercise 5.7.3.]

Exercise 8.2.13. In the definition of hyperbolic distance given by equation 8.5,
we need to determine boundary points w0 and w1. Show that we can avoid this
boundary calculation by proving that

dH(z0, z1) = ln(
|1− z0z1|+ |z0 − z1|
|1− z0z1| − |z0 − z1|

)

[Hint: Use the hyperbolic transformation g(z) = z−z1
1−z1z and the fact that dH is

invariant under g.]

Exercise 8.2.14. Prove that if z0, z1, and z2 are collinear in the Poincaré disk
with z1 between z0 and z2, then dP (z0, z2) = dP (z0, z1)+dP (z1, z2). This says that
the Poincaré distance function is additive along Poincaré lines.

Exercise 8.2.15. Let l be a Poincaré line. Define a map f on the Poincaré disk
by f(P ) = P ′, where P ′ is the inverse point to P with respect to the circle on
which l is defined. We know by the results at the end of Chapter 2 that f maps
the Poincaré disk to itself. Prove that f is an isometry of the Poincaré disk. Then,
show that f must be a reflection. That is, inversion in a Poincaré line is a reflection
in the Poincaré model. [Hint: Review the proof of Lemma 8.8.]

8.3 Isometries in the Klein Model

At the end of the last section, we saw that reflections play an important role
in describing the structure of isometries in the Poincaré model. This should
not be too surprising. In Chapter 5 we saw that all Euclidean isometries
could be built from one, two, or three reflections. The proof of this fact used
only neutral geometry arguments. That is, the proof used no assumption
about Euclidean parallels. Thus, any isometry in hyperbolic geometry must
be similarly built from one, two, or three hyperbolic reflections.

In the Poincaré model, the nature of a reflection depended on whether
the Poincaré line of reflection was a diameter or not. If the line of reflection
was a diameter, then the hyperbolic reflection across that line was simple
Euclidean reflection across the line. If the line was not a diameter, then
hyperbolic reflection across the line was given by inversion of points through
the circle that defined the line.
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Let’s consider the first class of lines in the Klein model. Since the Klein
distance function is defined in terms of the cross ratio and since the cross
ratio is invariant under complex conjugation and rotation about the origin,
then these two transformations will be isometries of the Klein model. By the
same argument that we used in the last section, we see that any Euclidean
reflection about a diameter must be a reflection in the Klein model.

What about reflection across a Klein line that is not a diameter? Let’s
recall the defining properties of a reflection. By Theorem 5.6, we know that
if P, P ′ are two Klein points, then there is a unique reflection taking P to
P ′. The line of reflection will be the perpendicular bisector of PP ′.

Thus, given a Klein line l in the Klein disk and given a point P , we
know that the reflection of P across l can be constructed as follows. Drop a
perpendicular line from P to l intersecting l at Q. Then, the reflected point

P ′ will be the unique point on the ray opposite
−−→
QP such that PQ ∼= QP ′.

This point can be found by the following construction.

Theorem 8.16. Let l be a Klein line that is not a diameter. Let P be a
Klein point not on l. Let t be the Klein line through P that meets l at Q

at right angles. Let
←→
PΩ be the Klein line through P perpendicular to t, with

omega point Ω. Let ΩΩ′ be the Klein line through Q and Ω. Finally, let
P ′ be the point on t where the (Euclidean) line through the pole of t and Ω′

passes through t. Then P ′ is the reflection of P across l (Fig. 8.3).

l

Pole(l)

P

t

Q

Pole(t)

P’

Ω

Ω’

Fig. 8.3
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Proof: To construct t we draw a line from the pole of l through P . To

construct
←→
PΩ we draw a line from the pole of t through P . Both of these

perpendiculars are guaranteed to exist by results from neutral geometry.
Now the line through Q and Ω must intersect the boundary at a point

Ω′ that is on the other side of t from Ω (in the Euclidean sense). Thus, the
line through the pole of t and Ω′ must intersect t at a point P ′. If we can
show that PQ ∼= QP ′, we are done.

Since
←−→
P ′Ω′ passes through the pole of t, then it is perpendicular to t

(in the Klein sense). By Angle-Angle congruence of omega triangles (see
Exercise 7.3.10), we know that PQ ∼= QP ′. 2

The construction described in the theorem is quite important for many
other constructions in the Klein model. In the exercises at the end of this
section, we will investigate other constructions based on this one.

We can use this theorem to show that any two Klein lines are congruent.
That is, there is an isometry of the Klein model taking one to the other. To
prove this result, we will need the following fact.

Lemma 8.17. Given a Klein line l that is not a diameter of the Klein disk,
we can find a reflection r that maps l to a diameter of the Klein disk.

Proof: Let P be a point on l and let O be the center of the Klein disk.
Let Q be the midpoint of PO (in the sense of Klein distance). Let n be the
perpendicular to PO at Q. Then Klein reflection of l about n will map P
to O and thus must map l to a diameter, since Klein reflections map Klein
lines to Klein lines. 2

Corollary 8.18. Let l and m be Klein lines. Then there is an isometry in
the Klein model taking l to m.

Proof: By the lemma we know there is a reflection rl taking l to a
diameter dl. If dl is not on the x-axis, let Rl be rotation by −θ, where θ is
the angle made by dl and the x-axis. Then the Klein isometry hl = Rl ◦ r1

maps l to the diameter on the x-axis. Likewise, we can find a Klein isometry
hm taking m to a diameter on the x-axis. Then h−1

m ◦ hl is a Klein isometry
mapping l to m. 2

Exercise 8.3.1. Use the construction ideas of Theorem 8.16 to devise a construc-
tion for the perpendicular bisector of a Klein segment PP ′.

Exercise 8.3.2. Devise a construction for producing a line l that is orthogonal
to two parallel (but not limiting parallel) lines m and n.

Exercise 8.3.3. Show that in the Klein model there exists a pentagon with five
right angles. [Hint: Start with two lines having a common perpendicular.]
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Exercise 8.3.4. Let Ω and Ω′ be two
omega points in the Klein disk and let
P be a Klein point. Let the Euclidean
ray from the pole of ΩΩ′ through P in-
tersect the unit circle at omega point

Ω′′. Show that
−−→
PΩ′′ is the Klein model

angle bisector of ∠ΩPΩ′. [Hint: Use
omega triangles.]

Ω

Ω’

P

Ω’’
Pole

Exercise 8.3.5. Define a hyperbolic translation T in the Klein model as the
product of two reflections rl and rm where l and m have a common perpendicular
t. Show that t is invariant under T .

Exercise 8.3.6. Define a hyperbolic parallel displacement D in the Klein model
as the product of two reflections rl and rm where l and m are limiting parallel to
each other. Show that no Klein point P is invariant under D. [Hint: Assume that
P is invariant (that is, rl(P ) = rm(P )) and consider the line joining P to rl(P ).]

8.4 Mini-Project - The Upper Half-Plane Model

In this chapter we have looked in detail at the isometries of the Poincaré
and Klein models of hyperbolic geometry. Both of these models are based
on the unit disk.

There is really nothing special about using the unit disk in these models.
In the Poincaré model, for example, we could just as well have used any
circle in the plane and defined lines as either diameters or arcs meeting the
boundary at right angles. In fact, if c was any circle, we know there is a
Möbius transformation f that will map the unit disk to c. Since Möbius
transformations preserve angles, we could define new lines in c to be the
image under f of lines in the Poincaré model. Likewise, circles in c would
be images of Poincaré model circles, and the distance could be defined in
terms of f as well.
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A natural question to ask is whether there are models for hyperbolic
geometry other than ones based on a set of points inside a circle.

If we think of the extended complex plane as being equivalent to the
sphere via stereographic projection, then lines in the plane are essentially
circles that close up at the point at infinity.

Is there a model for hyperbolic geometry that uses as its boundary curve
a Euclidean line? To build a model using a line as a boundary curve, we use
the Klein Erlanger Program approach and determine the transformations
that leave the line invariant. This is analogous to the work we did earlier
to find the transformations that fix the unit circle in the Poincaré model.
For simplicity’s sake, let’s assume our line boundary is the x-axis. Then we
want to find Möbius transformations

f(z) =
az + b

cz + d

that fix the x-axis.

Exercise 8.4.1. Show that if f maps the x-axis to itself, then a, b, c, and d must
all be real. [Hint: Use the fact that 0 and ∞ must be mapped to real numbers and
that ∞ must also be the image of a real number.]

What about the half-planes y < 0 and y > 0? Let’s restrict our attention
to those transformations that move points within one half-plane, say the
upper half-plane y < 0.

Exercise 8.4.2. Show that if f fixes the x-axis and maps the upper half-plane
to itself, then ad− bc > 0. [Hint: Consider the effect of f on z = i.]

We have now proved the following result.

Theorem 8.19. If f fixes the x-axis and maps the upper half-plane to itself,
then

f(z) =
az + b

cz + d

where a,b,c,d are all real and ad− bc > 0.

We will call the group of transformations in the last theorem the Upper
Half-Plane group, denoted by U .

Exercise 8.4.3. What curves should play the role of lines in the geometry defined
by U? [Hint: Refer to Fig. 8.4.]
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z
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z
1

w
1

w
0
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Fig. 8.4 Upper Half-Plane Model

We can define distance just as we did for the Poincaré model in terms of
the cross ratio. For example, in Fig. 8.4 the distance from z0 to z1 will be
defined as

dU (z0, z1) = ln((z0, z1, w1, w0))

Exercise 8.4.4. What are the values of w0 and w1 in the distance formula if z0
and z1 are on a piece of a Euclidean line?

Exercise 8.4.5. Discuss why this geometry will satisfy the hyperbolic parallel
postulate. [Hint: Argue that it is enough to show the postulate is satisfied for the
y-axis and z0 as shown in Fig. 8.4.]

The geometry defined by the group U will be another model for hyper-
bolic geometry. This model (the upper half-plane model) is very similar to
the Poincaré model. In fact, there is a conformal map taking one to the
other. This map is defined by

g(z) = −iz + i

z − i
(8.7)

Exercise 8.4.6. Show that g maps the unit circle onto the x-axis. [Hint: Consider
z = i,−i, 1.]

Since g is a Möbius transformation, then g will preserve angles. So, it
must map Poincaré lines to upper half-plane lines. Also, since the distance
function is defined in terms of the cross ratio and the cross ratio is invariant
under g, then Poincaré circles will transform to upper half-plane circles.

We conclude that the upper half-plane model is isomorphic to the Poin-
caré model. Any property of one can be moved to the other by g or g−1.

For future reference, we note that the inverse transformation to g is given
by

g−1 = i
w − i
w + i

(8.8)



332 CHAPTER 8. NON-EUCLIDEAN TRANSFORMATIONS

8.5 Weierstrass Model

There are other models of hyperbolic geometry. One of the most interesting
is the Weierstrass model. Here points are defined to be Euclidean points on
one sheet of the hyperboloid x2 + y2 − z2 = −1 (see Fig. 8.5). Lines in this
model are the curves on the top sheet of the hyperboloid that are created by
intersecting the surface with planes passing through the origin. Each such
line will be one branch of a hyperbola. For a complete development of this
model, see [15].

Fig. 8.5 Weierstrass Model

8.6 Hyperbolic Calculation

In the last chapter we explored many of the basic results of hyperbolic
geometry, illustrating these results within the Poincaré and Klein models.

Except for the formula relating the area of a triangle to its defect, we
have not yet developed ways of calculating within hyperbolic geometry. For
example, in Exercises 7.3.11 and 7.3.12 we analyzed the angle of parallelism
function, which relates lengths of segments to angles of limiting parallels.
We saw that it was order-reversing and one-to-one, but as yet, we have no
explicit formula for this function.

Likewise, we do not have any way of calculating lengths and areas for
figures that are not constructed from segments.

In this section we will use transformations in the Poincaré model to de-
velop explicit formulas for these and other quantities of hyperbolic geometry.
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We begin our development with perhaps the most fundamental of all
calculations—that of arclength.

8.6.1 Arclength of Parameterized Curves

Recall the definition for distance between points z0 and z1 in the Poincaré
disk (refer to Theorem 8.11):

dH(z0, z1) = | ln((z0, z1, w1, w0))| (8.9)

= | ln(
z0 − w1

z0 − w0

z1 − w0

z1 − w1
)|

where w0 and w1 are the points where the hyperbolic line through z0 and
z1 meets the boundary circle of the Poincaré disk.

If z0 = 0 and z1 = z, we saw in Theorem 8.14 that this could be simplified
to

dH(0, z) = ln

(
1 + |z|
1− |z|

)
(8.10)

Let γ = z(t), a ≤ t ≤ b, be a smooth curve in the Poincaré disk, as shown
in Fig. 8.6. Consider the arclength of γ between points z(t) and z(t+4t).

O

s

γ

z(t)

z(t+∆ t)

P

Fig. 8.6

Let

g(z) =
z − z(t)
1− z(t)z
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This transformation is a hyperbolic transformation that will map z(t) to
the origin O and z(t+4t) to a point P . If 4z = z(t+4t)− z(t), then

P =
z(t+4t)− z(t)

1− z(t)z(t+4t)

=
4z

1− z(t)z(t+4t)
(8.11)

If we approximate the arclength s along γ between z(t) and z(t+4t) by
a hyperbolic segment (the dashed line in Fig. 8.6), then that segment will
be mapped by g to a segment from O to P and the length of the original
segment will be preserved by g. By equation 8.10, the hyperbolic length of
the segment is thus

dH(O,P ) = ln

(
1 + |P |
1− |P |

)

= ln

1 + |4z(t)|

|1−z(t)z(t+4t)|

1− |4z(t)|

|1−z(t)z(t+4t)|


= ln

(
1 +

|4z(t)|

|1− z(t)z(t+4t)|

)
− ln

(
1− |4z(t)|

|1− z(t)z(t+4t)|

)

For x small, ln(1 + x) ≈ x, and this approximation turns to an equality
as x goes to zero. Thus, we have that

dH(O,P ) ≈ |4z(t)|

|1− z(t)z(t+4t)|
− (−)

|4z(t)|

|1− z(t)z(t+4t)|

=
2|4z(t)|

|1− z(t)z(t+4t)|

=
2|4z(t)4t |

|1− z(t)z(t+4t)|
4t (8.12)

As 4t goes to zero, |4z(t)| goes to zero, and the approximation in
equation 8.12 becomes an equality. Also, z(t +4t) becomes z(t). Thus, if
we approximate γ by a series of (hyperbolic) linear approximations of the
form given by equation 8.12, and take the limit as 4t goes to zero, we have
the following:
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Theorem 8.20. Let γ = z(t) be a smooth curve in the Poincaré disk for
a ≤ t ≤ b. Then the arclength of γ, defined in terms of the distance function
dH , is given by ∫ b

a

2|z′(t)|
1− |z|2

dt (8.13)

Corollary 8.21. Let T be a hyperbolic transformation and γ a smooth curve.
Then the arclength of T (γ) is the same as the arclength of γ.

The proof is left as an exercise.

8.6.2 Geodesics

In Euclidean geometry a segment joining point A to point B is the shortest
length path among all paths joining the two points. We call such a shortest
length path a geodesic. What are the geodesics in hyperbolic geometry?

Theorem 8.22. Given two points z0 and z1 in the Poincaré disk, the
geodesic joining the points is the portion of the hyperbolic line between z0

and z1.

Proof: By using a suitable hyperbolic transformation, we can assume
that z0 is at the origin O and z1 is along the x-axis.

Then, it is sufficient to prove that the geodesic (shortest hyperbolic length
path) from O to X is the Euclidean segment from O to X. Let γ = z(t) =
x(t) + iy(t) be a smooth curve from O to X, a ≤ t ≤ b. Then, z(a) = 0 and
z(b) = X, and thus x(a) = 0 and x(b) = X. The length of γ is∫ b

a

2|z′|
1− |z|2

dt =

∫ b

a

2
√
x′2 + y′2

1− x2 − y2
dt

≥
∫ b

a

2
√
x′2

1− x2
dt

=

∫ X

0

2

1− x2
dx

= ln

(
1 +X

1−X

)
Since ln(1+X

1−X ) is also the hyperbolic distance along the line from 0 to X,
we see that the line segment must be the shortest length path. 2
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8.6.3 The Angle of Parallelism

Recall the definition of the angle of parallelism function.

Let PQ be a segment of length h.
Let l be a perpendicular to PQ at

Q and
←→
PR the limiting parallel to

l at P . The angle of parallelism,
a(h), is defined as a(h) = ∠QPR.

l

P

Q

R

By use of appropriate hyperbolic transformations we can assume that P
is at the origin and l is symmetrically located across the x-axis, as shown in
Fig. 8.7.

P

Ω
1

R
Q

Ω
2

l
θ

Fig. 8.7

Let Ω1 and Ω2 be the ideal points of l and let
←−→
Ω1R be the tangent to the

Poincaré disk at Ω1, with R the intersection of the tangent with
←→
PQ. Then,

R is the center of the (Euclidean) arc through Ω1, Q, and Ω2.
Since ∠PΩ1R is a right angle and the Poincaré disk has unit radius, then

QR = Ω1R = tan(θ)

PR = sec(θ)

PQ = sec(θ)− tan(θ) =
1− sin(θ)

cos(θ)

Also, we can convert between Euclidean length and hyperbolic length by
using the formula of Corollary 8.15:
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h = ln

(
1 + PQ

1− PQ

)
This is equivalent to

e−h =
1− PQ
1 + PQ

=
cos(θ) + sin(θ)− 1

cos(θ)− sin(θ) + 1

(8.14)

After multiplying the numerator and denominator of this last equation
by cos(θ) + sin(θ) + 1, we get

e−h =
cos2(θ) + 2 cos(θ) sin(θ) + sin2(θ)− 1

cos2(θ) + 2 cos(θ) + 1− sin2(θ)

=
2 cos(θ) sin(θ)

2 cos2(θ) + 2 cos(θ)

=
sin(θ)

cos(θ) + 1

=
2 sin( θ2) cos( θ2)

2 cos2( θ2)− 1 + 1

= tan(
θ

2
) (8.15)

Solving this equation for θ gives the following formula for the angle of
parallelism:

Theorem 8.23. Let PQ be a hyperbolic segment of length h. Then the
angle of parallelism function a(h) is given by

a(h) = 2 tan−1(e−h)

8.6.4 Right Triangles

In Fig. 8.8 we have a triangle with a right angle at the origin and vertices
along the x- and y- axes at points x and iy.
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O x

iy 

Fig. 8.8

In order to develop a hyperbolic version of the Pythagorean Theorem,
we will use the hyperbolic trigonometric functions cosh and sinh.

The hyperbolic functions are defined as:

sinh(x) =
ex − e−x

2
, cosh(x) =

ex + e−x

2

The hyperbolic functions share many of the same properties as the circu-
lar functions sine and cosine. For example, the identity cos2(x)+sin2(x) = 1
has as its counterpart the hyperbolic identity cosh2(x)− sinh2(x) = 1. The
proof of this fact is left as an exercise.

To compare the lengths of the sides of a hyperbolic right triangle, as
shown in Fig. 8.8, we will make use of the following relationship:

Lemma 8.24. Let z and w be two points in the Poincaré disk. Then

cosh(dH(z, w)) =
|1− zw|2 + |z − w|2

|1− zw|2 − |z − w|2

Proof: From Exercise 8.2.13, we know that

dH(z, w) = ln

(
|1− zw|+ |z − w|
|1− zw| − |z − w|

)

The result then follows from the definition of cosh and simple algebra
and is left as an exercise. 2



8.6. HYPERBOLIC CALCULATION 339

In the case of our right triangle, we have

cosh(dH(x, iy)) =
|1 + ixy|2 + |x− iy|2

|1 + ixy|2 − |x− iy|2

=
1 + x2y2 + x2 + y2

1 + x2y2 − x2 − y2

=

(
1 + x2

1− x2

)(
1 + y2

1− y2

)
= cosh(dH(0, x)) cosh(dH(0, iy))

Since any right triangle can be moved into the position in Fig. 8.8 by a
suitable hyperbolic transformation, we have the following hyperbolic version
of the Pythagorean Theorem.

Theorem 8.25. (Hyperbolic Pythagorean Theorem) Let ∆ABC be a hy-
perbolic right triangle with hypotenuse of length c and base lengths of a and
b. Then

cosh(c) = cosh(a) cosh(b)

8.6.5 Area

Let R be an area in the Poincaré disk. Since the differential of arclength is

ds =
2|dz|

1− |z|2

and since hyperbolic geometry is approximately Euclidean in very small
regions, then it makes sense to define the area integral as

Area(R) =

∫ ∫
R

4

(1− |z|2)2
dy dx (8.16)

The polar form of this area formula is as follows:

Theorem 8.26. Let R be a region in the plane, r the hyperbolic length of
z, and θ the angle z makes with the x-axis. Then

Area(R) =

∫ ∫
R

sinh(r)dr dθ

Proof: Let x and y have the polar form

x = ρ cos(θ)

y = ρ sin(θ)
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where ρ is the Euclidean length of the point z. The polar form of the integral
expression in area definition 8.16 becomes

Area(R) =

∫ ∫
R

4

(1− ρ2)2
ρ dρ dθ

Now hyperbolic length and Euclidean length are connected by equa-
tion 8.10, so if r is the hyperbolic length of z we have

r = ln

(
1 + ρ

1− ρ

)
Solving for ρ and differentiating, we get

ρ = tanh(
r

2
)

dρ =
1

2
sech2(

r

2
)dr

Substituting these values into the area integral and using the fact that
1− tanh2(a) = sech2(a), we get

Area(R) =

∫ ∫
R

2 sinh(
r

2
) cosh(

r

2
) dr dθ

Since 2 sinh( r2) cosh( r2) = sinh(r) (proved as an exercise), we get

Area(R) =

∫ ∫
R

sinh(r)dr dθ

and the proof is complete. 2

Exercise 8.6.1. Show that cosh2(x)− sinh2(x) = 1.

Exercise 8.6.2. Finish the proof of Lemma 8.24.

Exercise 8.6.3. Show that 2 sinh( r2 ) cosh( r2 ) = sinh(r).

Exercise 8.6.4. Let c be a circle in the Poincaré Model of hyperbolic radius hr.
Show that the circumference of the circle is s = 2π sinh(hr) by using the formula
for the arclength of a parameterized curve γ = z(t). [Hint: Use a transformation
to simplify the calculation.]
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Exercise 8.6.5. Let S(w) be the model isomorphism from the upper half-plane
model of hyperbolic geometry to the Poincaré Model given by

z = S(w) = i
w − i
w + i

(8.17)

[Refer to equation 8.8.]

If w(t), a ≤ t ≤ b is a smooth parameterized curve in the upper half-plane,
discuss why z(t) = S(w(t)) will be a smooth curve in the Poincaré disk having
the same length. Show that |z′| = 2

|w+i|2 |w
′|, and use this and the integral for

arclength in the Poincaré Model, to show that the length of w(t) = u(t) + iv(t) in
the upper half-plane is given by

∫ b

a

|w′(t)|
v(t)

dt (8.18)

Exercise 8.6.6. Prove Corollary 8.21. [Hint: Use the chain rule.]

8.7 Project 12 - Infinite Real Estate?

Now that we have experience with transformations and calculations in hy-
perbolic geometry, let’s see if we have developed any intuition about how it
would feel to live in such a world.

Suppose we had a triangular plot of
land defined by three stakes placed
at A, B, and C.

B

A
C
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Now suppose we pull up the
stakes and move out to new posi-
tions A′, B′, and C ′.

B

A
C

B’

A’

C’

Clearly, the area of our plot of land will increase as we move the three
stakes farther and farther apart, and the area will increase without bound.
Theoretically, we could have a plot of land with area approaching infinity!

Will the same be true for a triangular plot of land in hyperbolic space?

Start Geometry Explorer and cre-
ate a hyperbolic canvas by choosing
New (File menu). Then, create a
hyperbolic triangle with vertices A,
B, and C.

A

B

C
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Multi-select points A, B, and C,
and click on the Filled-Polygon but-
ton in the Construct panel (third
button in third row). A filled area
will be constructed. Select the area
by clicking on the colored region,
and then choose Area (Measure
menu) to calculate the area of the
triangle.

A

B

C

Area(polygon(A,C,B)) = 0.20

Now, let’s pull up the stakes
and move the points toward infin-
ity, that is, toward the boundary of
the Poincaré disk.

A

B

C

Area(polygon(A,C,B)) = 2.84

The area has grown a bit, but
not that much, actually. Let’s move
as close to the boundary as we can.

A

B

C

Area(polygon(A,C,B)) = 3.13
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It appears that our plot of land is not becoming infinitely large, even
though it would take us a very long time to walk from one corner to the other.
In fact, as you were moving the points closer and closer to the boundary,
you may have become curious about the value of the area. The number 3.13
is very close to another significant mathematical constant.

To settle once and for all what happens to this hyperbolic triangle, it will
be convenient to convert the area integral from the last section to an area
integral in the upper half-plane model. Let S(w) be the model isomorphism
from the upper half-plane model of hyperbolic geometry to the Poincaré
Model as given in equation 8.8. That is, if w = u+ iv is a point in the upper
half-plane, then z = x+ iy in the Poincaré disk is given by

z = S(w) = i
w − i
w + i

(8.19)

Exercise 8.7.1. Show that

x =
2u

u2 + (v + 1)2

y =
u2 + (v2 − 1)

u2 + (v + 1)2
(8.20)

Consider S as a map from (x, y) to (u, v). By the change of basis formula
from calculus, we know that the area integral in x and y will change by the
Jacobian of the map S, which is the determinant of the matrix of partial
derivatives.

Due to the Cauchy-Riemann equations of complex variables, the Jaco-
bian J for the change of variables defined by x(u, v) and y(u, v) will be equal
to x2

u + y2
u.

Exercise 8.7.2. Show that

J = x2u + y2u =
4

(u2 + (v + 1)2)2
=

4

|w + i|4
(8.21)

The area integral for the upper half-plane model then becomes

Area(R) =

∫ ∫
R

4

(1− |w−i|
2

|w+i|2 )2
J dv du

=

∫ ∫
R

4|w + i|4

(|w + i|2 − |w − i|2)2

4

|w + i|4
dv du

=

∫ ∫
R

16

16v2
dv du

=

∫ ∫
R

1

v2
dv du
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Theorem 8.27. The area of a region R in the upper half-plane is given by

Area(R) =

∫ ∫
R

1

v2
dv du

Before we tackle the question of a triangle where all vertices are at infin-
ity, we will consider a doubly limiting triangle, one where only two vertices
are at infinity.

Given a doubly limiting triangle, we
can find an isometry that will move
it to the triangle with vertices at
−1, P = (cos(θ), sin(θ)), and at in-
finity in the upper half-plane, as il-
lustrated by the shaded region at
right. The points −1 and∞ will be
Ω points; that is, points at infinity.

O 1-1

P

θ
A B

θ

Exercise 8.7.3. Let
←→
PB be the tangent to the unit circle at P . (In the figure

above, the tangent intersects the x-axis, but this is not necessarily always the case.)
Show that the interior angle of the triangle at P must be θ.

Exercise 8.7.4. Use the area integral and the fact that the triangle is bounded
by v =

√
1− u2, v =∞, and −1 ≤ u ≤ cos(θ) to show that the area of this triangle

is actually π − θ.

We have now proved that

Theorem 8.28. The area of a doubly limiting triangle of angle θ is π − θ.
The area of a triply limiting triangle is π.

What conclusions can you make about triangular real estate in hyper-
bolic geometry? What about four-sided real estate? Five-sided real estate?
And n-sided real estate?

For your project report give a careful and complete summary of your
work done on this project.





Chapter 9

Fractal Geometry

Why is geometry often described as “cold” and “dry”? One
reason lies in its inability to describe the shape of a cloud, a
mountain, a coastline, or a tree. Clouds are not spheres, moun-
tains are not cones, coastlines are not circles, and bark is not
smooth, nor does lightning travel in a straight line.

—Benoit Mandelbrot in The Fractal Geometry of Nature [30]

9.1 The Search for a “Natural” Geometry

Classical Euclidean geometry had its roots in ancient Babylonian and Egyp-
tian calculations of land areas and architectural designs. The word geometry
means “earth measurement.” It is said that Aristotle came to believe that
the earth was a sphere by watching ships disappear over the ocean’s horizon.

Intuitively, we like to think our notions of Euclidean geometry are the
results of our interactions with nature, but is that really the case?

As mentioned in the quote above, most objects in nature are not really
regular in form. A cloud may look like a lumpy ball from far away, but as
we get closer, we notice little wisps of vapor jutting out in every direction.
As we move even closer, we notice that the cloud has no real boundary. The
solidness of the form dissolves into countless filaments of vapor. We may be
tempted to replace our former notion of the cloud being three-dimensional
with a new notion of the cloud being a collection of one-dimensional curves.
But, if we look closer, these white curves dissolve into tiny water droplets.
The cloud now appears to be a collection of tiny three-dimensional balls. As
we move even closer, to the molecular level, these droplets dissolve into tiny

347
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whirling masses of hydrogen and oxygen, shapes akin to the original cloud
itself.

So, a cloud in the sky cannot really be described as a classical geometric
figure. This seems to contradict the commonly held intuition about Eu-
clidean geometry being a product of our natural environment. How can
we make geometric sense of objects like clouds, mountains, trees, atoms,
planets, and so on?

We saw in Chapters 5 and 6 that there is one geometric idea that does
seem to resonate with our experience of the natural world—the idea of sym-
metry. Symmetry is the idea that an object is invariant under some trans-
formation of that object. In Chapter 5 we looked at the notion of symmetry
as invariance under Euclidean isometries. Such symmetries include bilateral
symmetry, rotational symmetry, translation symmetry, and glide symmetry.

In the discussion of the cloud as a geometric object, we noticed that
when we viewed a section of the cloud at the molecular level, we saw a
shape similar to the original cloud itself. That is, the molecular “cloud”
appeared to be the same shape as the original cloud, when scaled up by an
appropriate scale factor.

Similarly, consider the fern in Fig. 9.1. Each leaf is made up of sub-leaves
that look similar to the original leaf, and each sub-leaf has sub-sub-leaves
similar to the sub-leaves, and so on.

Fig. 9.1 Fern Leaf

Thus, many natural objects are similar to parts of themselves, once you
scale up the part to the size of the whole. That is, they are symmetric under
a change of scale. We call such objects self-similar objects. Such objects
will be our first example of fractals, a geometric class of objects that we will
leave undefined for the time being.
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9.2 Self-Similarity

An object will be called self-similar if a part of the object, when scaled by
a factor c > 0, is equivalent to the object itself.

We can be more precise in this definition by making use of similarity
transformations.

Definition 9.1. A similarity transformation S, with ratio c > 0, is a trans-
formation (i.e., one-to-one and onto map) from Euclidean n-dimensional
space (Rn) to itself such that

|S(x)− S(y)| = c |x− y| (9.1)

A self-similar set will be a set that is invariant under one or more simi-
larity transformations.

Definition 9.2. A self-similar set F in Rn is a set that is invariant under
a finite number of non-identity similarity transformations.

Which classical Euclidean objects are self-similar? Consider a circle C.
We know that the closer we “look” at the circle, the flatter the curve of
the circle becomes. Thus, a circle cannot be self-similar. Similarly, any
differentiable curve in the plane will not be self-similar, with one exception—
a line. Lines are perhaps the simplest self-similar figure.

Self-similarity is a concept foreign to most of the 2-dimensional geometry
covered in calculus and Euclidean geometry. To develop some intuition for
self-similarity, we need some examples.

9.2.1 Sierpinski’s Triangle

Our first example is generated from
a simple filled-in triangle, 4ABC.

A

B

C
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Let L, M , and N be the mid-
points of the sides and remove the
middle third triangle, 4LMN .

A

B

C

L

N

M

Now, each of the three smaller
triangles is almost the same fig-
ure as the original triangle, when
scaled up by a factor of three, ex-
cept for the “hole” in the middle of
the big triangle, which is missing in
the smaller triangles. To make the
smaller triangles similar to the orig-
inal, let’s remove the middle third of
each triangle.

A

B

C

L

N

M

Now, we have fixed our problem,
and each of the three sub-triangles
has a hole in the middle. But, now
the big triangle has sub-triangles
with holes, and so the three sub-
triangles are, again, not similar to
the big triangle. So, we will remove
the middle third of each of the sub-
sub-triangles.

A

B

C

L

N

M
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Again, we have almost self-
similarity. To create a truly self-
similar figure, we need to continue
this middle third removal process to
infinity! Then each sub-triangle will
be exactly similar to the original tri-
angle, each sub-sub-triangle will be
similar to each sub-triangle, and so
on, with the scale factor being 3 at
each stage.

The figure that is left after carrying on the middle third removal process
infinitely often is called the Sierpinski Triangle, or Sierpinski Gasket, in
honor of Waclaw Sierpinski (1882–1969), a Polish mathematician who is
known for his work in set theory, topology, and analysis.

Note that Sierpinski’s Triangle is invariant under three basic similarities,
scaling transformations by a factor of 1

2 toward points A, B, and C.

Since the process of creating Sierpinski’s Triangle starts with a simple
2-dimensional filled-in triangle, it is natural to try to calculate the area of
the final figure.

Let’s denote by stages the successive process of removing middle thirds
from sub-triangles. At stage 0 we have the original filled-in triangle, 4ABC.
At stage 1 we have removed the middle third. At stage 2 we have removed
the middle third of each of the remaining triangles, and so on.

We can assume the area of the first triangle to be anything we like, so
we will assume it equal to 1. At stage 1 the area remaining in the figure will
be

Area(stage 1) = 1− 1

4

since all of the four sub-triangles are congruent (proved as an exercise), and
thus have an area 1

4 the area of the original triangle.

At stage 2 we remove three small triangles from each of the remaining
sub-triangles, each of area 1

16 . The area left is

Area(stage 2) = 1− 1

4
− 3

16

At stage 3 we remove nine areas, each of area 1
64 . Thus,

Area(stage 2) = 1− 1

4
− 3

16
− 9

64
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Seeing the pattern developing here, we conclude that the area left for
Sierpinski’s Triangle at stage n is

Area(stage n) = 1− 1

4

n∑
k=0

(
3

4

)k
lim
n→∞

Area = 1− 1

4

1

(1− 3
4)

= 0

This is truly an amazing result! The Sierpinski Triangle has had all of
its area removed, but still exists as an infinite number of points. Also, it
has all of the boundary segments of the original triangle remaining, plus all
the segments of the sub-triangles. So, it must be at “least” a 1-dimensional
object. We will make this idea of “in-between” dimension more concrete in
the next section.

9.2.2 Cantor Set

What kind of shape would we get if we applied the middle-third removal
process to a simple line segment?

Here we have a segment AB. A B

Remove the middle third to get
two segments AC and DB.

A BC D

Perform this process again and
again as we did for the Sierpinski
Triangle. Here is a collection of the
stages of the process, where we have
hidden some of the points for clar-
ity.

A B
Stage 0

Stage 1

Stage 2

Stage 3

Stage 4

The limiting figure, which has an infinite number of middle thirds re-
moved, is called the Cantor Set, in honor of Georg Cantor (1845–1918).
Cantor is known for his work in set theory and in particular for his investi-
gation of orders of infinity and denumerable sets. It is left as an exercise to
show that the Cantor Set has length 0, although it is made up of an infinite
number of points.
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Both of our examples so far, Sierpinski’s Triangle and the Cantor Set,
do not seem to fit into our classical notion of 1- and 2- dimensional objects.

Sierpinski’s Triangle is more than a 1-dimensional curve, yet certainly
less than an area, which is 2-dimensional, while the Cantor Set lies some-
where between dimensions 0 and 1. How can this be? How can an object
have fractional dimension? This idea of fractional dimension was the critical
organizing principle for Mandelbrot in his study of natural phenomena and
is why he coined the term fractal for objects with non-integer dimension.

9.3 Similarity Dimension

The dimension of a fractal object turns out to be quite difficult to define
precisely. This is because there are several different definitions of dimension
used by mathematicians, all having their positive as well as negative aspects.
In this section we will look at a fairly simple definition of dimension for self-
similar sets, the similarity dimension.

To motivate this definition, let’s look at some easy examples.

Consider our simplest self-similar
object, a line segment AB.

A B

It takes two segments of size AB
2

to cover this segment.
A B

C

AB/2 AB/2

In general, it takes N sub-segments of the original segment of size AB
N

to cover the original segment. Or, if we think of the sub-segments as being
similar to the original, it takes N sub-segments of similarity ratio 1

N to cover
AB.

We will define the function r(N) to be the similarity ratio between a
figure and its parts.

Suppose we have a rectangleABCD
of side lengths AB = a and BC = b.
If we subdivide this region into N
parts that are similar to the original
region, then the area of each sub-
part will be ab

N , and the length of
each side will be scaled by the sim-
ilarity ratio r(N) = 1√

N
= 1

N
1
2

. In

the figure at right, we have N = 9.

A B
a

D C

b

a/3

b/3
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For a rectangular solid in three dimensions, the similarity ratio would be
r(N) = 1

N
1
3

.

Note that these three similarity ratios hold no matter the size of the
segment, rectangle, or solid under consideration. In higher dimensions, the
similarity ratio for a d-dimensional rectangular object would be r(N) = 1

N
1
d

.

Equivalently, if we let r = r(N), we have

Nrd = 1

log(N) + d log(r) = 0

d =
log(N)

−log(r)
=
log(N)

log(1
r )

(9.2)

Since the value of d matches our Euclidean notion of dimension for simple
self-similar objects, like segments and rectangles, we will define the similarity
dimension to be the value of d given by equation 9.2.

Definition 9.3. The similarity dimension d of a self-similar object is given
by

d =
log(N)

log(1
r )

(9.3)

where the value of r = r(N) is the ratio by which a ruler measuring a side
of the object will change under the assumption that each of N sub-objects
can be scaled to form the original object. The ratio r is called the similarity
ratio of the object.

For example, consider the Cantor Set. Each sub-object is 1
3 the scale

of the original segment, and it takes two sub-objects to make up the whole
(after stage 0). Thus, the similarity dimension of the Cantor Set is

log(2)

log
(

1
1
3

) =
log(2)

log(3)
≈ .6309

This result agrees with our earlier intuition about the dimension of the
Cantor Set being somewhere between 0 and 1.

As another example, it takes three sub-triangle shapes to scale up and
cover the bigger triangle in Sierpinski’s Triangle (again, ignoring stage 0).
Each sub-triangle has side-length scaled by 1

2 of the original side-length, thus
the similarity ratio is 1

2 , and the similarity dimension is

log(3)

log
(

1
1
2

) =
log(3)

log(2)
≈ 1.58496
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Exercise 9.3.1. Show that all sub-triangles at stage 1 of the Sierpinski Triangle
process are congruent.

Exercise 9.3.2. Show that the length left after all of the stages of construction
of Cantor’s Set is 0.

Exercise 9.3.3. Sierpinski’s Carpet is defined by starting with a square and
removing the middle third sub-square, each side of which is 1

3 the size of the original
square.

Here is stage 1 for Sierpinski’s Carpet.

The Carpet is defined as the limiting process of successively removing middle-third
squares. Does Sierpinski’s Carpet have non-zero area? Sketch the next iteration of
this figure.

Exercise 9.3.4. Show that the similarity dimension of Sierpinski’s Carpet

is log(8)
log(3) . Thus, Sierpinski’s Carpet is much more “area-like” than Sierpinski’s

Triangle.

Exercise 9.3.5. In the construction of the Sierpinski Carpet, instead of removing
just the middle-third square, remove this square and all four squares with which it
shares an edge. What is the similarity dimension of the limiting figure?

Exercise 9.3.6. The Menger Sponge is defined by starting with a cube and sub-
dividing it into 27 sub-cubes. Then, we remove the center cube and all six cubes
with which the central cube shares a face. Continue this process repeatedly, each
time sub-dividing the remaining cubes and removing pieces. The Menger Sponge is
the limiting figure of this process. Show that the dimension of the Menger Sponge

is log(20)
log(3) . Is the sponge more of a solid or more of a surface? Devise a cube removal

process that would produce a limiting figure with fractal dimension closer to a
surface than a cube. The Menger Sponge is named for Karl Menger (1902–1985).
He is known for his work in geometry and on the definition of dimension.

Exercise 9.3.7. Starting with a cube, is there a removal process that leads to a
fractal dimension of 2, yet with a limiting figure that is fractal in nature?
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9.4 Project 13 - An Endlessly Beautiful Snowflake

In this project we will use Geometry Explorer to create a self-similar
fractal. Self-similar fractals are ideal for study using computational tech-
niques, as their construction is basically a recursive process—one that loops
back upon itself. To construct a recursive process using Geometry Explorer,
we will make use of the program’s ability to record a sequence of geometric
constructions and then play the constructions back recursively.

The self-similar fractal we will construct is “Koch’s snowflake curve,”
named in honor of Helge von Koch (1870–1924), a Swedish mathematician
who is most famous for the curve that bears his name. It is an example of a
continuous curve that is not differentiable at any of its points. In the next
few paragraphs we will discuss how to use a “template” curve to recursively
build the Koch self-similar snowflake curve. Please read this discussion
carefully (you do not need to construct anything yet).

To construct the template curve for the Koch snowflake, we start with
a segment AB. Just as we removed the middle third for the Cantor Set
construction, we remove the middle third of AB, but replace it with the two
upper segments of an equilateral triangle of side length equal to the middle
third we removed (Fig. 9.2).

A B

Fig. 9.2

Now think of the process just described as a replacement process, where
we take a segment and replace it with a new curve, the template curve. Each
segment of the new template curve can then be replaced with a copy of the
template that is scaled by a factor of 1

3 . If we carry out this replacement
process for each of the four small segments in the template, we get the curve
shown in Fig. 9.2.
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A B

Fig. 9.3

The process just outlined can be made recursive. We could take each
of the new segments in the curve just described and replace them with a
scaled-down copy of the template. We could then repeatedly take each new
set of segments at stage n and replace them with copies of the template to
get a curve at stage n+ 1. Thus, the replacing of segments by copies of the
template loops back on itself indefinitely.

At the point where we stopped the replacement process, the curve had
16 small segments, each of length 1

9 of the original segment AB. Replacing
each of these segments with a 1

27 scale copy of our template, we get a new
curve with 64 segments, each a length 1

27 of the original. The new curve
is shown in Fig. 9.4 where we have hidden all points except A and B for
clarity.

A B

Fig. 9.4

The Koch curve is the curve that results from applying this template
replacement process an infinite number of times. The curve is self-similar in
the sense that if you took a piece of the curve and magnified it by a factor
of 3, you would see the same curve again.

Let’s see how to use the recording capability of Geometry Explorer to
construct the Koch curve.
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Start Geometry Explorer. Our first
task is to record the construction
of the template. Choose New
Recording (File menu) to open up
the Recording window. Click the
button labeled “Record” to begin
recording. Then, create a segment
AB on the Canvas. (In this series of
figures, we show only that portion
of the screen necessary to illustrate
recording.)

Notice how the Recording win-
dow records what we have done.
Next, we will divide segment AB
into three equal parts. Select point
A and choose Center from the
Mark pop-up menu in the Trans-
form panel. Then choose Dilation
from the Custom pop-up menu
and type in 1 and 3 for the numer-
ator and denominator in the dialog
box that will appear. Select point B
and click the Dilate button to scale
B by 1

3 toward A.

Similarly, carry out the neces-
sary steps to dilate point B by a
ratio of 2

3 toward point A. Then
hide segment AB. We have now
split AB into equal thirds.
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Next we create the “bump” in
the middle of the template. As we
did before, set C as a new center of
rotation/dilation and define a cus-
tom rotation of 60 degrees. Then
select point D and click on the Ro-
tate button in the Transform panel.

Finally, select points A, C, E,
D, and B (in that order) and click
on the Open Polygon button in
the Construct panel (first button
in third row). At this point our
template curve is complete. Note
how the Recorder has kept track of
our constructions. However, do not
stop the Recorder yet.

At this point in the Koch curve construction, the template should be
used to replace each of the four segments that are in the template itself.
That is, we need to make our construction a recursive process. We need
to apply the same recording that we just completed to each of the four
segments of the template curve that is currently in the Canvas. We can do
this using the Loop button in the Recorder window.

Multi-select points A and C. The
Loop button (the one with the ar-
row looping back on itself) will now
be active in the Recording window.
In general the Loop button will be-
come active whenever a selection is
made that matches the set of ba-
sis elements used in the recording.
Since this recording has two points
(A and B) as basis elements, then
any selection of two points will ac-
tivate the Loop button.
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Click the Loop button to record
the fact that we want the recording
to recursively play itself back on A
and C.

To make the Recorder loop on each of the other three segments, do the
following:

1. Multi-select C and E and click Loop.

2. Multi-select E and D and click Loop.

3. Multi-select D and B and click Loop.

We have now completed recording the looping process for the Koch curve,
so we should stop the Recorder by clicking on the Stop button in the Record-
ing window.

Let’s try our recursive process on a line segment.

Clear the screen (Clear (Edit menu)). Create two points A and B and
then multi-select these points. Notice that the “Step,” “Play,” and “FF”
buttons in the Recording window become active. We can now play our
construction back. Click “Play.” A dialog box will pop up requesting the
recursion level. A recursion level of 0 would mean to just play the recording
and not to loop at all. A level of 1 would mean to play the recording back
and loop the recording on all sub-segments. Level 2 would mean that sub-
sub-segments would be replaced with templates, and so on for level 3, 4,
etcetera. Type in 2 and hit Return.
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The recording will now play back,
recursively descending down seg-
ment levels as the template is used
to replace smaller and smaller seg-
ments. Watch closely how the
recording gets played back to get a
feel for this recursive process.

The curve is densely packed to-
gether, so we will stretch it out by
grabbing one of the endpoints and
dragging it.

Exercise 9.4.1. Find a formula for the length of the Koch curve at stage n of
its construction, with stage 0 being the initial segment AB, which you can assume
has length 1. Is the Koch curve of finite or infinite length?

The Koch Snowflake curve is the result of applying this recursive process
to each of three segments of a triangle.

Create a triangle, 4ABC, in the
Geometry Explorer Canvas. Then
run the Recording we just created
on each edge, setting the recursion
level at depth 1. We can see why
this curve is called the “snowflake”
curve.

A

B

C



362 CHAPTER 9. FRACTAL GEOMETRY

The Koch snowflake curve is the result of applying the template re-
placement process an infinite number of times to each of the three edges of
4ABC.

Exercise 9.4.2. Suppose the area of 4ABC is equal to 1. Show that the area
enclosed inside the Koch snowflake curve is given by the infinite series

Area = 1 +
3

9
+ 4 · 3

92
+ 42 · 3

93
+ · · ·

Find the sum of this series.

Exercise 9.4.3. Find the similarity dimension of the Koch snowflake curve.

Let the “Koch hat curve” be the curve obtained by running the recursive
process described, but replacing segments at each stage with a different
template.

Instead of the triangle template, use
the square template at right, where
each side of the square is 1

3 the
length of the original segment.

A B

Exercise 9.4.4. Find the next stage of this fractal curve and show that the curve
intersects itself. Find the dimension of the Koch hat curve.

Exercise 9.4.5. Design a template different from the two used above, and use it
to create a fractal curve. Find the dimension of this new curve.

9.5 Contraction Mappings and the Space of
Fractals

In the last few sections we focused our attention on the simplest kinds of
self-similar sets, those that are invariant under similarities Sn, all of which
share the same scaling ratio c.

For example, the Cantor Set, defined using the interval [0, 1] as the initial
figure, will be invariant under the similarities S1 and S2, defined by

S1(x) =
x

3

S2(x) =
x

3
+

2

3
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Both S1 and S2 are special cases of more general functions called con-
traction mappings.

Definition 9.4. A contraction mapping S is a function defined on a set D
of (Rn) such that there is a number 0 ≤ c < 1 with

|S(x)− S(y)| ≤ c |x− y|

for all x, y in D.

One of the great insights in the subject of fractal geometry is the fact
that not only are many fractals invariant under contraction mappings, but
the fractal itself can be generated from iterating the contraction mappings
on an initial shape.

Let’s consider again the Cantor Set on the interval [0, 1], with the con-
traction mappings S1 and S2 as just defined. Let Bn be the result of applying
these contractions repeatedly n times. That is,

B0 = [0, 1]

B1 = S1(B0) ∪ S2(B0) = [0,
1

3
] ∪ [

2

3
, 1]

B2 = S1(B1) ∪ S2(B1) = S1([0,
1

3
]) ∪ S1([

2

3
, 1]) ∪ S2([0,

1

3
]) ∪ S2([

2

3
, 1])

= [0,
1

9
] ∪ [

2

9
,
1

3
] ∪ [

2

3
,
7

9
] ∪ [

8

9
, 1]

·
·
·

Bn = S1(Bn−1) ∪ S2(Bn−1)

Note that B0 is the figure from the Cantor Set construction at stage 0;
B1 is the figure at stage 1 (the middle third is gone); B2 is the figure at
stage 3; and so on. Why is this the case? Think of what the two contraction
mappings are doing geometrically. The effect of S1 is to contract everything
in the interval [0, 1] into the first third of that interval, while S2 also contracts
by 1

3 , but then shifts by a distance of 2
3 . Thus, the effect of iterating these

two maps on stage k − 1 of the Cantor Set construction is to shrink the
previous set of constructed segments by 1

3 and then copying them to the
intervals [0, 1

3 ] and [2
3 , 1]. This has an effect equivalent to the removal of all

middle-thirds from the previous segments at stage k − 1.
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Suppose we started our construction with the interval [2, 4] instead of
[0, 1]. Then

B0 = [2, 4]

B1 = S1(B0) ∪ S2(B0) = [
2

3
,
4

3
] ∪ [

4

3
, 2] = [

2

3
, 2]

B2 = S1(B1) ∪ S2(B1) = [
2

9
,
2

3
] ∪ [

8

9
,
4

3
]

B3 = [
2

27
,
2

9
] ∪ [

8

27
,
4

9
] ∪ [

20

27
,
8

9
] ∪ [

26

27
,
10

9
]

B4 = [
2

81
,

2

27
] ∪ · · · [80

81
,
28

27
]

and so on.

Note what is happening to the initial and final intervals at each stage
of iteration. For example, at stage 3 we have points ranging from 2

27 to 10
9 ,

and at stage 4 we have points ranging from 2
81 to 28

27 . It looks like repeatedly
applying S1 and S2 to the interval [2, 4] is closing in on the interval [0, 1].
This should not be surprising, as 0 and 1 are fixed points of S1 and S2. In
fact, for any x we have

|S2(x)− S2(1)| = |S2(x)− 1| = 1

3
|x− 1|

Thus,

|Sn2 (x)− 1| = |Sn2 (x)− Sn2 (1)| = 1

3
|Sn−1

2 (x)− Sn−1
2 (1)|

=
1

3

2

|Sn−2
2 (x)− Sn−2

2 (1)|
·
·
·

=
1

3

n

|x− 1|

Clearly, as n grows without bound, Sn2 (x) must approach 1. By a similar
argument, we can show Sn1 (x) approaches 0. On the other hand, points
inside [0, 1] can “survive” forever by the combined action of S1 and S2. For
example, the points 1

3 and 2
3 are pulled back and forth by S1 and S2, but

always by the same amount toward each of the fixed points, and thus they



9.5. CONTRACTION MAPPINGS 365

survive all stages of the construction process. No point outside [0, 1] will
have this prospect of surviving.

Thus, it appears that the points in the Cantor Set are not uniquely tied
to the starting interval [0, 1]. We would get the same set of limiting points if
we started with any interval. The Cantor Set is thus attracting the iterates
of the two contraction mappings S1 and S2.

From this brief example one might conjecture that something like this
attracting process is ubiquitous to fractals, and such a result is, in fact, the
case.

To prove this, we need to develop some tools for handling the iteration
of sets of functions on subsets of Euclidean space. We will first need a few
definitions.

Definition 9.5. The distance function in Rn will be denoted by d. Thus,
d(x, y) measures the Euclidean distance from x to y.

Definition 9.6. A set D in Rn is bounded if it is contained in some suffi-
ciently large ball. That is, there is a point a and radius R such that for all
x ∈ D, we have d(x, a) < R.

Definition 9.7. A sequence {xn} of points in Rn converges to a point x as
n goes to infinity, if d(xn, x) goes to zero. The point x is called the limit
point of the sequence.

Definition 9.8. A set D in Rn is closed if it contains all of its limit points,
that is, if every convergent sequence of points from D converges to a point
inside D.

Definition 9.9. An open ball of radius ε in Rn is the set of points ~x in Rn
such that ||~x|| < ε.

Definition 9.10. A set D in Rn is open if for every x in D, there is an open
ball of non-zero radius that is entirely contained in D.

The unit disk x2 + y2 ≤ 1 is closed. The interval (0, 1) is not. The set
x2 + y2 < 1 is open, as is the interval (0, 1). The interval [0, 1) is neither
open nor closed.

Definition 9.11. A set D in Rn is compact if any collection of open sets
that covers D (i.e., with the union of the open sets containing D) has a finite
sub-collection of open sets that still covers D.
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It can be shown that if D is compact, then it is also closed and bounded
[4, pages 20–25].

We will be working primarily with compact sets and so will define a
structure to contain all such sets.

Definition 9.12. The space H is defined as the set of all compact subsets
of Rn.

The “points” of H will be compact subsets. In the preceding example
of the Cantor Set, we can consider the stages B0, B1, and so forth, of the
construction as a sequence Bn of compact sets, that is, a sequence of “points”
in H. It appeared that this sequence converged to the Cantor Set. However,
to speak of a sequence converging, we need a way of measuring the distance
between points in the sequence. That is, we need a way of measuring the
distance between compact sets.

Definition 9.13. Let B ∈ H and x ∈ Rn. Then

d(x,B) = min{d(x, y)|y ∈ B}

Lemma 9.1. The function d(x,B) is well defined. That is, there always
exists a minimum value for d(x, y) where y is any point in B.

Proof: Let f(y) = d(x, y). Since the distance function is continuous (by
definition!), we have that f is a continuous function on a compact set and
thus must achieve a minimum and maximum value. (For the proof of this
extremal property of continuous function on a compact set, see [4, page 31].)
2

Definition 9.14. Let A,B ∈ H. Then

d(A,B) = max{d(x,B)|x ∈ A}

The value of d(A,B) will be well defined by a similar continuity argument
to the one given in the proof of the last lemma.

As an example, let A be a square
and B a triangle as shown at the
right. Given x ∈ A, it is clear that
d(x,B) = d(x, y1), where y1 is on
the left edge of triangle B. Then
d(A,B) = d(x1, y1), where x1 is on
the left edge of the square. On the
other hand, d(B,A) = d(y2, x2) 6=
d(A,B).

A B

x

y
y
2

y
1

x
2

x
1
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Thus, in general d(A,B) need not equal d(B,A). Since one of the defin-
ing conditions for a distance function (or metric) is that it be symmetric,
we need to modify the definition a bit.

Definition 9.15. The Hausdorff distance between A and B in H is given
by

dH(A,B) = max{d(A,B), d(B,A)}

The Hausdorff distance function satisfies all of the requirements for a
metric. That is,

1. dH(A,B) = dH(B,A)

2. dH(A,A) = 0

3. dH(A,B) > 0 if A 6= B

4. dH(A,B) ≤ dH(A,C) + dH(C,B) for A, B, C in H. This is called the
Triangle Inequality.

Condition 1 is true by the way we defined the Hausdorff distance. Con-
ditions 2 and 3 are left as exercises.

Lemma 9.2. The Hausdorff distance function satisfies the Triangle Inequal-
ity.

Proof: Let a, b, and c be points in A, B, and C, respectively. Using the
Triangle Inequality for Euclidean distance, we have that d(a, b) ≤ d(a, c) +
d(c, b). Thus,

d(a,B) = min{d(a, b)|b ∈ B}
≤ min{d(a, c) + d(c, b)|b ∈ B} for all c ∈ C
≤ d(a, c) +min{d(c, b)|b ∈ B} for all c ∈ C
≤ min{d(a, c)|c ∈ C}+min{min{d(c, b)|b ∈ B}|c ∈ C}
≤ d(a,C) +max{min{d(c, b)|b ∈ B}|c ∈ C}
≤ d(a,C) + d(C,B)

And so,

d(A,B) = max{d(a,B)|a ∈ A}
≤ max{d(a,C) + d(C,B)|a ∈ A}
≤ d(A,C) + d(C,B)
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Likewise, d(B,A) ≤ d(B,C) + d(C,A). So,

dH(A,B) = max{d(A,B), d(B,A)}
≤ max{d(A,C) + d(C,B), d(B,C) + d(C,A)}
≤ max{d(A,C), d(C,A)}+max{d(B,C), d(C,B)}
≤ dH(A,C) + dH(C,B)

2
We are now in a position to prove that contraction mappings on Rn

generate contraction mappings on H.

Theorem 9.3. Let S be a contraction mapping on Rn, with ratio c < 1.
Then S is a contraction mapping on compact sets in H.

Proof: First, since a contraction map is continuous (proved as an exer-
cise), then if D is a non-empty compact set, S(D) must also be a non-empty
compact set. So, S is a well-defined mapping from H to itself.

Now, for A and B in H:

d(S(A), S(B)) = max{min{d(S(x), S(y))|y ∈ B}|x ∈ A}
≤ max{min{c d(x, y)|y ∈ B}|x ∈ A}
≤ c max{min{d(x, y)|y ∈ B}|x ∈ A}
≤ c d(A,B)

Likewise, d(S(B), S(A)) ≤ c d(B,A), and so

dH(S(A), S(B)) = max{d(S(A), S(B)), d(S(B), S(A))}
≤ max{c d(A,B), c d(B,A)}
≤ c dH(A,B)

2

Theorem 9.4. Let S1, S2, . . . , Sn be contraction mappings in Rn with ratios
c1, c2, . . . , cn. Define a transformation S on H by

S(D) =

n⋃
i=1

Si(D)

Then, S is a contraction mapping on H, with contraction ratio
c = max{ci|i = 1, . . . , n}, and S has a unique fixed set F ∈ H given by

F = lim
k→∞

Sk(E)

for any non-empty E ∈ H.
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To prove this theorem, we will use the following lemma.

Lemma 9.5. Let A, B, C, and D be elements of H. Then

dH(A ∪B,C ∪D) ≤ max{dH(A,C), dH(B,D)}

Proof: First, d(A ∪ B,C) = max{d(A,C), d(B,C) (proved as an exer-
cise). Second, d(A,C ∪D) ≤ d(A,C) and d(A,C ∪D) ≤ d(A,D) (proved as
an exercise). Thus,

dH(A ∪B,C ∪D) = max{d(A ∪B,C ∪D), d(C ∪D,A ∪B)}
= max{max{d(A,C ∪D), d(B,C ∪D)},

max{d(C,A ∪B), d(D,A ∪B)}}
≤ max{max{d(A,C), d(B,D)}, max{d(C,A), d(D,B)}}
≤ max{max{d(A,C), d(C,A)}, max{d(B,D), d(D,B)}}
≤ max{dH(A,C), dH(B,D)}

2
Now for the proof of Theorem 9.4. We will prove the result in the case

where n = 2. Let A and B be in H. Then, by the previous lemma, we have

dH(S(A), S(B)) = dH(S1(A) ∪ S2(A), S1(B) ∪ S2(B))

≤ max{dH(S1(A), S1(B)), dH(S2(A), S2(B))}
≤ max{c1 dH(A,B), c2 dH(A,B)}
≤ c dH(A,B)

Now let E be a non-empty set in H. Then assuming m ≤ n, we have

dH(Sm(E), Sn(E)) ≤ cdH(Sm−1(E), Sn−1(E))

·
·
·
≤ cn−mdH(E,Sn−m(E))

Also, by the Triangle Inequality, we have

dH(E,Sk(E)) ≤ dH(E,S(E)) + dH(S(E), S2(E)) + · · ·
+ dH(Sk−1(E), Sk(E))

≤ (1 + c+ c2 + · · ·+ ck−1) dH(E,S(E))

≤
(

ck

1− c

)
dH(E,S(E))

≤
(

1

1− c

)
dH(E,S(E))



370 CHAPTER 9. FRACTAL GEOMETRY

Thus,

dH(Sm(E), Sn(E)) ≤
(
cn−m

1− c

)
dH(E,S(E))

Since dH(E,S(E)) is fixed and 0 ≤ c < 1, we can make the term
dH(Sm(E), Sn(E)) as small as we want. A sequence having this property
is called a Cauchy sequence. It is a fact from real analysis that Cauchy
sequences converge in Rn. Thus, this sequence must converge to some set
F in H.

If F ′ were another compact fixed set of S, then the sequence {Sk(F ′)}
must converge to F , which means the distance from F to F ′ goes to zero,
and so F = F ′. 2

Definition 9.16. The set F that is the limit set of a system of contrac-
tion mappings Sk on Rn is called the attractor of the system. A system of
contraction mappings that is iterated on a compact set is called an iterated
function system or IFS.

Note how Theorem 9.4 confirms our conjecture arising from the Cantor
Set construction. This theorem guarantees that the Cantor Set is actually
the attractor for the IFS consisting of the two contractions S1 and S2 that
were used in the set’s construction.

For another example, let’s return to the Sierpinski Triangle, defined on
an initial triangle ∆ABC. This figure is fixed under three contractions:
scaling by 1

2 toward A, scaling by 1
2 toward B, and scaling by 1

2 toward C.

Suppose that points A, B, and C are at positions (0, 0), (0, 1), and (1, 1).
Then the three contractions are defined as S1(x, y) = 1

2(x, y), S2(x, y) =
1
2(x, y) + (0, 1

2), and S3(x, y) = 1
2(x, y) + (1

2 ,
1
2).

Suppose we iterate these three con-
tractions on the unit square shown
at the right.

AA

B C
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After one iteration of the three
contractions, we would have three
sub-squares as shown.

AA

B C

After two iterations, we would
have nine sub-squares.

AA

B C

After one more iteration, we be-
gin to see the Sierpinski Triangle
take shape, as this is the attractor
of the set of three contractions.

AA

B C
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9.6 Fractal Dimension

Recall our definition of the similarity dimension of a self-similar fractal as
the valueof

d =
log(N)

log(1
r )

where r = r(N) was the similarity ratio, the ratio by which a ruler measuring
a side of an object at stage i of the construction would change under the
assumption that N sub-objects can be scaled to exactly cover the object at
stage i.

This definition assumes that the scaling of sub-parts of the fractal exactly
matches the form of the fractal itself, the scaling factor is uniform throughout
the fractal, and there is only one such scaling factor.

It would be nice to have a definition of fractal dimension that does
not suffer from all of these constraints. In this section we will expand the
similarity dimension concept to a more general covering-scaling concept of
dimension.

First, we need to explicitly define the notion of a covering set.

Definition 9.17. Let A be a compact set. Let B(x, ε) = {y ∈ A|d(x, y) ≤
ε}. That is, B(x, ε) is a closed ball centered at x of radius ε. Then⋃M
n=1B(xn, ε), with xn ∈ A, is an ε-covering of A if for every x ∈ A, we

have x ∈ B(xn, ε) for some n.

Here we have a 1
2 covering of the

unit square. Note that this cover-
ing uses eight disks (2-dimensional
balls) to cover the square.

A B

C D

Clearly, there must be some minimal number of circles of radius 1
2 that

will cover the unit square. This minimal covering number will be used in
our definition of fractal dimension.
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Definition 9.18. Let A be a compact set. Then the minimal ε covering
number for A is

N (A, ε) = min{M |A ⊂
M⋃
n=1

B(xn, ε)}

for some set of points {xn}.

We note that the value of N (A, ε) is well defined, as every set can be
covered by some collection of open ε-balls. Since A is compact, then there
is a finite sub-collection that still covers A, and the closure of this collection
of open balls will also cover A. Thus, A has at least one finite ε-covering
and, thus, must have one with the fewest number of elements.

Intuitively, as ε changes, the minimum number of balls needed to cover A
should also change. For a line segment, the two should be directly related:
if we decrease ε by a factor of 1

2 , the number of segments (1-dimensional
balls) should go up by 2 = 21. If A is a rectangle and we decrease ε by a
factor of 1

2 , the number of disks should go up by 4 = 22. For a cube, the
increase in the number of balls should be 8 = 23.

This was precisely the relationship we noticed when defining the simi-
larity dimension, so it makes sense to define the fractal dimension to mirror
the definition of similarity dimension.

Definition 9.19. Let A be a compact set. Then if

DF = lim
ε→0

log(N (A, ε))

log(1
ε )

exists, we call DF the fractal dimension of A.

Using this definition, it is not hard to prove the following result.

Theorem 9.6. (Box-Counting Theorem) Let A be compact. Cover Rn by
just-touching square boxes of side-length 1

2n . Let Nn(A) be the number of
boxes that intersect A. Then

DF (A) = limn→∞
log(Nn(A))

log(2n)

The proof amounts to showing that the boxes in a covering of A can be
trapped between two sequences of ε balls that both converge to the fractal
dimension. The proof can be found in [4].

Finally, we have the following simplification of the calculation of fractal
dimension in the case of an iterated function system (IFS).
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Theorem 9.7. (IFS Fractal Dimension Theorem) Let {Sn}Mn=1 be an IFS
and let A be its attractor. Assume that each Sn is a transformation with scale
ratio 0 < cn < 1, and assume that, at each stage of its construction, portions
of the fractal meet only at boundary points. Then the fractal dimension is
the unique number D = DF (A) such that

M∑
n=1

cDn = 1

Again, the proof can be found in [4]. For example, for the Cantor Set,
at each stage, the fractal consists of completely distinct segments, which do

not intersect at all. Thus, we have that
(

1
3

)D
+
(

1
3

)D
= 1, and so D = log(2)

log(3) .

This theorem would also apply to Sierpinski’s Triangle, as portions of
the fractal at each stage in the construction are triangles that meet each
other only at boundary segments.

Exercise 9.6.1. Show that a contraction mapping must be a continuous function
on its domain.

Exercise 9.6.2. Give an example of two compact subsets, A and B of R2, with
d(A,B) = d(B,A).

Exercise 9.6.3. Prove that conditions 2 and 3 in the list of properties for a
metric hold for the Hausdorff distance function.

Exercise 9.6.4. Prove the first statement in the proof of Lemma 9.5. That is,
show that d(A ∪B,C) = max{d(A,C), d(B,C)}.

Exercise 9.6.5. Prove the second statement in the proof of Lemma 9.5. That
is, show that d(A,C ∪D) ≤ d(A,C) and d(A,C ∪D) ≤ d(A,D).

Exercise 9.6.6. Use the construction for Sierpinski’s Triangle based on the points
A = (0, 0), B = (0, 1), and C = (1, 1) to show that N1(S) = 3, N2(S) = 32,
N3(S) = 33, and so on, where S is Sierpinski’s Triangle. Use this to find the fractal
dimension. How does the fractal dimension compare to the similarity dimension?

Exercise 9.6.7. Use the IFS Fractal Dimension Theorem to compute the fractal
dimension of Sierpinski’s Triangle.

Exercise 9.6.8. Show that the IFS consisting of S1(x) = 1
2x and S2(x) = 2

3x+ 1
3

does not meet the overlapping criterion of Theorem 9.7. Nevertheless, by identifying
the attractor for this IFS, show that its fractal dimension can be calculated and is
equal to 1.
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9.7 Project 14 - IFS Ferns

We saw in the last few sections that a compact set A can be realized as
the attractor of an iterated function system (IFS), a system of contraction
mappings whose fixed set is A.

It should not be too surprising, then, that natural shapes can arise as
the attractors of IFS systems. In this project we will look at an especially
pretty attractor—the 2-dimensional outline of a fern.

Consider the fern shown in Fig. 9.5. Each leaf is made up of sub-leaves
similar to the original leaf, and each sub-leaf has sub-sub-leaves similar to
the sub-leaves, and so on.

Fig. 9.5 Fern Leaf

How can we find the contraction mappings that lead to the fern? Michael
Barnsley in [4] proved that to find an IFS whose attractor approximates a
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given shape F , one only needs to find affine mappings that when applied to
F yield a union, or collage of shapes that approximate F . Barnsley called
this the Collage Theorem.

Definition 9.20. An affine mapping S on the plane is a function of the
form

S(x, y) = (ax+ by + e, cx+ dy + f) (9.4)

where a, b, c, d, e, and f are real constants.

Affine mappings are generalizations of the planar isometries we studied in
Chapter 5. For example, if a = cos(θ), b = − sin(θ), c = sin(θ), d = cos(θ),
and e = f = 0, then S will be a rotation of angle θ about the origin. Note
that affine mappings are not necessarily invertible. If they are invertible, we
will call them affine transformations.

In this project we will discover a set of affine mappings that will split
the fern into a collage of sub-ferns that can be reassembled into the original
shape of the fern.

Start Geometry Explorer and choose Image (View menu). A file dialog
box will pop up (Fig. 9.6). On the right side of the dialog box, there is
an Image Preview area and a button labeled “Examples.” Click on this
button to go to the directory where the fern image is stored. Scroll down
(if necessary) and click on the file labeled “fern.jpg.” In a few seconds, the
image of the file will appear in the preview area of the dialog box.

Fig. 9.6
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Click “Open” in the dialog box to
load the fern image into the main
Geometry Explorer window. Create
point A at the very tip of the fern,
C at the second branch point, and
B at the base, as shown at right.

A

B

C

To split the fern into a collage
of similar pieces, we will start with
the set of branches totally enclosed
in the polygon ADECF . Clearly,
this sub-fern of branches is similar
to the entire fern, if we scale the
sub-fern by an appropriate scaling
factor.

A

B

C

D

E

F
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To calculate the scaling factor,
we will measure the ratio of AC to
AB. This should match the scal-
ing factor of the sub-fern to the
original fern. Multi-select A and
C and choose Distance (Measure
menu). Similarly, calculate AB
and use the Calculator (Calcula-
tor (View menu)) to compute the
ratio of these two distances. (Note:
Your distances may vary from the
ones shown. This is okay—we are
interested only in the ratio of these
distances.)

A

B

C

D

E

F

Dist(A,C) = 3.82

Dist(A,B) = 4.71

Dist(A,C)/Dist(A,B)  = 0.81

It appears that the ratio of the sub-fern to the entire fern is about 0.8.
This is the scaling factor we sought. However, the sub-fern is not just a
scaled-down version of the bigger fern. After scaling the big fern by a scale
factor of 0.8, we need to turn it slightly, about 5 degrees clockwise, and
translate it upward by the length of BC to exactly match the outline of the
big fern. Measure the length of BC. (Again, your measurement may vary
from the value shown.)

The affine mapping that will take the bigger fern to the smaller fern is
then the composition of a rotation by 5 degrees, a scaling by 0.8, and a
translation by the length of BC, which we will denote by h. All of these
functions are invertible, so the composition will be a transformation of the
plane.

Exercise 9.7.1. Let T1 be the transformation taking the entire fern to the sub-
fern enclosed by ADECF . Show that

T1(x, y) ≈
[

0.8 0.07
−0.07 0.8

](
x

y

)
+

(
0.0

h

)

We now have an affine transformation, T1, that when applied to the fern
will cover a major portion of the fern itself. But, we are still missing the
lower two branches and the trunk.
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Consider the lower branches and in
particular the one enclosed by the
polygon CHGJ . Measure appropri-
ate distances to verify that the scal-
ing factor for this sub-fern is about
0.3.

A

B

CH

G

Jh

i

Exercise 9.7.2. Let T2 be the transformation taking the entire fern to the
sub-fern enclosed by CHGJ . The angle of rotation for T2 appears to be about
50 degrees. Show that

T2(x, y) ≈
[

0.19 −0.23
0.23 0.19

](
x

y

)
+

(
0.0

h

)
Exercise 9.7.3. Let T3 be the transformation taking the entire fern to the bottom
right sub-fern. Show that the scaling factor for T3 is about 0.3, the angle of rotation
for T3 is about −60 degrees, and T3 includes a reflection about the y-axis. Use this
information to show that

T3(x, y) ≈
[
−0.15 0.26
0.26 0.15

](
x

y

)
+

(
0.0
h
2

)
Using the affine transformations T1, T2, and T3, we can almost cover the

original fern with copies of itself. The only piece of the fern missing from
this collage is the small piece of trunk between B and C. Since this is about
1
5 of the height of the fern, we can just squash the fern down into a vertical
line of length 0.2. The affine mapping that will accomplish this is

T4(x, y) ≈
[

0.0 0.0
0.0 0.2

](
x

y

)
+

(
0.0

0.0

)
We note here that T4, while a valid affine mapping, is not a transforma-

tion. It is not one-to-one and, thus, not invertible.
We have now completed our splitting of the fern into a collage of four

sub-pieces. According to the Collage Theorem, an IFS consisting of T1,
T2, T3, and T4 should have as its attractor a shape that approximates the
original fern. Let’s see if that is true.
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Clear the screen (Clear (Edit
menu)), and choose Affine from
the Custom pop-up menu in the
Transform panel. A dialog box will
appear as shown at right.

By using this dialog box, we can define an affine mapping for use in
Geometry Explorer. The affine mapping will have the general form

T (x, y) =

[
a b
c d

](
x

y

)
+

(
e

f

)
For example, the transformation T1 defined earlier has a = 0.8, b = 0.07,

c = −0.07, d = 0.8, e = 0.0, and f = 1.0. (We are using f = h = 1.0 from
the earlier measurements.)

Type these values into the dialog
box text fields and name the map
T1 as shown. Then, hit the New
button to have Geometry Explorer
store this function.

Similarly, type in the values for
T2 and T3, each time hitting the
New button to complete the defi-
nition of each transformation. Fi-
nally, type in the value of d = 0.2
for T4 as shown, but don’t hit the
New button.

Since T4 is a non-invertible function, we need to turn off the inverse
checking that Geometry Explorer does for affine transformations. (This is
the only place in Geometry Explorer where non-invertible maps of the plane
are allowed.) Click the toggle button labeled “Check Inverse” to disable
inverse checking. Then hit the Okay button as we are finished defining our
affine maps.
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At this point we should have four
new affine mappings that we can ap-
ply to arbitrary geometric objects.
Click on the Custom pop-up menu
in the Transform panel. The four
affine mappings should appear.

We will now use these four map-
pings to define an iterated function
system (IFS). Choose Compound
from the Custom pop-up menu.

Currently defined transforma-
tions (and other mappings) appear
in the left column. We want to de-
fine a compound function using all
four of our new affine mappings.
To do this, click on each mapping’s
name, placing it into the right col-
umn. Then name the compound
function. In this example we have
named it “ifs-fern.” Finally, click
on the checkbox labeled “IFS Re-
placement Transform” to define the
new compound function as an IFS
system.
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We can now iterate this IFS
system on a geometric object. Cre-
ate a point A on the screen. Then
select A and choose Iterated under
the Custom pop-up menu in the
Transform panel. A dialog box will
pop up as shown. This dialog box
allows us to iterate a mapping on
the currently selected object. Click
the list item named “ifs-fern” and
then type in 4 for the iteration level.

The iteration level is the number of times the IFS system is applied
recursively to the point A. The first time it is applied, four new points are
created, the second time it is applied, each of the four transformations is
applied to these four new points, yielding 16 = 42 points. The third time
through, 64 = 43 points are created, and the fourth time 256 = 44 points
are created. We can see that this recursive process grows in size very fast.

Click “Okay” in the dialog box to
run the IFS on point A.
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The shape that appears is some-
thing like the fern. One problem
is that our points are too large.
Choose Preference (Edit menu)
and reduce the point size to 3 pixels.

Select one of the points on the
screen and run the Iterated Trans-
form dialog (choose Iterated under
the Custom pop-up menu) again.
This time, click the toggle but-
ton labeled “Flatten Points.” This
will speed up Geometry Explorer’s
drawing routines by making points
non-interactive. Finally, choose a
higher level of recursion, say 7.
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Click “Okay” in the dialog box
to run the IFS. The completion of
the process may take awhile, so wait
until the “Stop” button returns to
its “Okay” state. After the pro-
cess finishes we see that, indeed, the
fern reappears as the attractor of
the IFS system.

Exercise 9.7.4. The affine maps T1, T2, and T3 are valid transformations (i.e.,
are invertible), and thus the IFS Fractal Dimension Theorem (Theorem 9.7) applies
to the shape of the fern minus its trunk. Use the contraction scale factors for T1,
T2, and T3 to estimate the fractal dimension of the portion of the fern that does
not include the main trunk.

Exercise 9.7.5. Find the four affine
maps that will create the shape at right.
You may assume that shape is bounded
by the unit square (0 ≤ x ≤ 1 and 0 ≤
y ≤ 1).

In this project we have seen how a small number of affine maps can
represent or encode the shape of a complex natural object. In theory, any
complex object can be similarly encoded once the affine maps for that ob-
ject are discovered. This has important implications for the transmission
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of complex data, such as images over a computer network. If we can en-
code each image with just a small number of affine maps, we can greatly
reduce the transmission time for images and video. The Collage Theorem
guarantees that we can get arbitrarily close to the original image by a good
choice of affine maps. Once we have these affine maps, the reproduction
of the original image is completely straightforward and fast, using modern
computers. The major draw-back to an encoding scheme using IFS systems
is the discovery of which affine maps will produce a good approximation to
an image.

9.8 Algorithmic Geometry

In our discussion of self-similar fractals, we saw that their construction re-
quired a looping process, whereby each level of the construction was built
from specific rules using the results of previous levels. This created a recur-
sive sequence of constructions and transformations to produce the fractal.

In the last section we saw how we could use a system of affine maps, an
IFS system, to generate a fractal. Transformations are applied recursively
to an initial object, with the fractal appearing as the attracting set of the
IFS system.

In both cases, fractals are created using a set of instructions which gen-
erate a recursive procedure. Such a set of instructions is called an algorithm.
Since the construction of many fractals requires hundreds or even thousands
of calculations, fractal algorithms are most often carried out by computers.

In the construction of self-similar fractals, we used the computer as a
powerful bookkeeping device to record the steps whereby edges were replaced
by template curves. For IFS systems, the computer carried out the numerous
iterations of a set of affine maps, leading to a fractal attractor appearing as
out of a mist. In both of these fractal construction algorithms, we use the
computer to make the abstract ideas of self-similarity or attracting sets a
concrete reality.

9.8.1 Turtle Geometry

The notion of utilizing computing technology to make abstract mathemati-
cal ideas more “real” was the guiding principle of Seymour Papert’s work on
turtle geometry and the programming language LOGO. In his book Mind-
storms, Papert describes turtle geometry as the “tracings made on a display



386 CHAPTER 9. FRACTAL GEOMETRY

screen by a computer-controlled turtle whose movements can be described
by suitable computer programs” [34, page xiv].

Papert’s work has inspired thousands of teachers and children to use
turtle geometry in the classroom as a means of exploring geometry (and
computer programming) in a way that is very accessible to young (and old)
students.

Turtle geometry has also proved to be an ideal way in which to explore
fractal shapes. To see how fractals can be constructed using turtle geometry,
we first have to create a scheme for controlling the turtle on screen.

We will direct the behavior of the turtle with the following set of com-
mands.

1. f Forward: The turtle moves forward a specified distance without
drawing.

2. | Back: The turtle moves backward a specified distance without draw-
ing.

3. F Draw Forward: The turtle moves forward and draws as it moves.

4. + Turn Left: The turtle rotates counterclockwise through a specified
angle.

5. − Turn Right: The turtle rotates clockwise through a specified angle.

6. [ Push: The current state of the turtle is pushed onto a state stack.

7. ] Pop: The state of the turtle is set to the state on top of a state
stack.

As an example, suppose we have specified that the turtle move 1 unit
and turn at an angle of 90 degrees. Also, suppose the initial heading of the
turtle is vertical. Then the set of symbols

F + F + F + F

can be considered a program that will generate a square of side-length 1
when interpreted, or carried out, by the turtle.

Here we have labeled the edges
drawn by the turtle as a, b, c, and d,
in the order that the turtle created
them. a

b

c

d
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Here is an example illustrating
the use of the turtle-state stack.
The turtle was given the program
F [+FF + FF + FF ]+. After the
first edge is drawn (edge a), the
position and heading of the turtle
(direction it is pointing) are stored
as a turtle-state. This turtle-state
is placed on the top of a virtual
stack of possible turtle-states. Then
the turtle interprets the symbols
+FF +FF +FF , ending with edge
g. At the symbol ] the turtle “pops”
the stored turtle-state off the stack
and the turtle resets itself to that
position and heading.

a

bc

d

e

f g

Let’s see how we can use this set of symbols to represent the stages of
construction of the Koch snowflake curve.

Recall that the Koch snowflake
curve is a fractal that is constructed
by beginning with an initial seg-
ment. This segment is then re-
placed by a template curve made
up of four segments as shown at the
right. The angles inside the peak
are 60 degrees, making the triangle
formed by the peak an equilateral
triangle.

Level 2
Template
(level 1)

  Initial
(level 0)

The initial segment is the Koch curve at level 0. The template is the
Koch curve at level 1. If we replace each of the segments in the template
with a copy of the template at a reduced scale, we get the Koch curve at
level 2, and so on.

To model the Koch snowflake curve using our set of symbols, we could say
that the initial segment is a Draw Forward, or the symbol F . The template
is (forgetting for now the problem of scaling) a Draw Forward followed by a
Turn Left of 60 degrees, then a Draw Forward followed by two Turn Rights of
60 degrees, then a Draw Forward followed by a Turn Left of 60 degrees, and
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finally another Draw Forward. The symbol set that describes the template
is thus F + F −−F + F (assuming our turns are always 60 degrees).

Thus, the Koch curve is defined by an initial symbol F and a template
symbol set F +F −−F +F that governs how the initial segment is replaced.
At level 0 the Koch curve is F . At level 1 we replace F by F + F −−F +
F . At level 2 we replace all segments of level 1 by the template. This is
equivalent to replacing all occurrences of the symbol F in the level 1 symbol
set by the template set F + F − −F + F . The level 2 symbol set is then
F +F −−F +F +F +F −−F +F −−F +F −−F +F +F +F −−F +F .

9.9 Grammars and Productions

The set of turtle symbols described in the last section was used in the classic
work by Prusinkiewicz and Lindenmayer, titled The Algorithmic Beauty of
Plants [29]. This beautiful book describes how one can use turtle geometry to
model plants and plant growth. Their method of describing natural fractal
shapes has been called Lindenmayer Systems, or L-systems, in honor of
Astrid Lindenmayer, who first pioneered the notion of using symbols to
model plant growth.

Lindemayer’s novel idea was to model plant structures through a gram-
mar rewriting system. We can think of a set of symbols as a word in a
grammar built from those symbols. The symbol set F +F +F +F is a word
in the grammar built on turtle command symbols.

In the Koch curve example, the curve is grammatically defined by an
initial word F and a template word F + F − −F + F . At each level we
rewrite the previous level’s word by substituting in for each occurrence of
the symbol F .

The Koch curve can be completely described by two words: the starter
word F and template word F + F − −F + F . The Koch curve is then the
limiting curve one gets by successively rewriting an infinite number of times,
having the turtle interpret the final word, which is theoretically possible but
physically impossible.

A major difference between the grammar rewriting system of describing
the Koch curve and the recursive description given earlier in this chapter is
that in the grammar-based system, we do not scale the template, whereas
in the recursive description we scale the template by a factor of 1

3 before
looping. When the turtle draws succeeding levels of the rewritten start
symbol, each successive curve will get longer than the one at the previous
level.
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The formal definition of an L-system is as follows.

Definition 9.21. A Lindenmayer system or L-system consists of

• a finite set Σ of symbols

• a set Ω of words over Σ

• a finite set P of production rules or rewrite rules, of the form σ− > ω,
where σ ∈ Σ and ω ∈ Ω

• a symbol S in Σ that is called the start symbol or the axiom of the
system

Lindenmayer Systems are special types of formal grammars. A formal
grammar is used in computer science to describe a formal language, a set of
strings made up of symbols from an alphabet. Formal grammars are used to
express the syntax of programming languages such as Pascal or Java. These
languages can be completely expressed as a set of production rules over a
set of symbols and words.

For example, suppose Σ = {a, b, S}, and P = {S− > aSb, S− > ba}.
That is, there are two production rules:

1. S− > aSb

2. S− > ba

Beginning with the start symbol S, we can rewrite using production rule
1 to get the new word aSb. Then using rule 2 on this word, we can rewrite to
get abab. At this point, we can no longer rewrite, as there is no longer a start
symbol in our word. We have reached a terminal word in the grammar. In
fact, it is not hard to see that the set of all producible words (i.e., words that
are the result of repeatedly rewriting the start symbol) consists of a subset
of all strings containing an equal number of a’s and b’s. We only get a subset
of such strings because the string bbaa, for example, is not producible. We
will call the set of producible strings the language of the grammar.

9.9.1 Space-filling Curves

As another example, let’s consider a grammar that classifies the Draw For-
ward segments of a turtle into two groups: left edges, which we will denote
by Fl, and right edges, which we will denote by Fr.

By artificially creating such a classification, we can control which in-
stances of the symbol F in a word will be replaced under a production.
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Those edges labeled Fl will be replaced by a production rule for Fl, and
those labeled Fr will be replaced by a production rule for Fr. When the
turtle interprets a word that uses these two symbols, it will interpret both
as a simple Draw Forward.

To see how this works, let’s consider the problem of filling up a unit
square by a path passing through the points in the square.

Here we have subdivided a square
into 25 sub-squares. Look carefully
at the path weaving through the
square. It touches each of the cor-
ners of the internal sub-squares, will
hit one or the other of the corners of
the squares on the left or right sides,
and will also do this on the top and
bottom sides. Note that this path
starts at the lower left corner of the
square (P ) and ends at the lower
right corner (Q).

P Q

A B C

Consider the edge of this path
in the sub-square labeled A. If we
scaled down the path in the previ-
ous figure by a factor of 1

5 , we could
replace this edge with the scaled-
down copy of the original path. The
original path can be considered a
template, similar to the strategy we
used for the Koch snowflake. Sup-
pose we try to replace each edge of
the original path with the template.
In the figure at right, we have re-
placed the edges in sub-squares A
and B.

P Q
A B C

When we try to replace the edge in sub-square C, we have a problem. If
we substitute our template on the left side of the edge in C, we will collide
with the path we already have in B. Thus, we need to substitute to the right
of this edge. However, our template is not oriented correctly to do this. We
need to substitute a new path, one that first passes directly into square C,
so that it does not “double-up” on any of the points already covered on the
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edge between B and C. Also, it must not “double-up” on any of the other
edges it might possibly share with the previous template curve, if it is in
another orientation.

Here is a picture of what the “right”
template curve should be. Note
that it is shown in relation to the
original template curve. To see how
it would appear in sub-square C,
rotate the curve 90 degrees counter-
clockwise. This template will not
“double-up” with our old template,
which we will call the “left” tem-
plate. Also, if this template ad-
joins a left template, then all corner
points on the edge where the two
squares meet will be covered by one
path or the other.

P Q

Now all we have to do to create the template replacement process is to
label all edges in each of the two templates with “l” or “r” to designate
which of the scaled-down templates will replace that edge. We start with
the left template and label the first edge “l.” Then the next edge is also “l,”
but the edge at C must be “r,” as must be the next edge.

Continuing in this way, we get the
following set of edge labels for the
left template.

A B C

r
l

ll

l
l

l

l

r

r

r
r

r

r

l

l

l

l

r

r

r

ll

r

r

Note that every sub-square has a label in it. Thus, every sub-square
will have a scaled-down template passing through it. Also, by the way we
constructed the two templates, we are guaranteed that along an edge where
two sub-squares meet, the new paths will not cross each other or intersect.
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A simple way to keep track of the orientations of the sub-squares is that an
edge labeled “l” will have the left template constructed to the left of the
edge, and vice versa for an edge labeled “r.”

The two production rules for the left and right templates are, thus,

Fl− > FlFl + Fr + Fr − Fl − Fl + Fr + FrFl − Fr − FlFlFr +

Fl − Fr − FlFl − Fr + FlFr + Fr + Fl − Fl − FrFr +

Fr− > −FlFl + Fr + Fr − Fl − FlFr − Fl + FrFr + Fl + Fr −
FlFrFr + Fl + FrFl − Fl − Fr + Fr + Fl − Fl − FrFr

Note that for the left template, we need to add a final turn (+) to ensure
that any new path starts in the same direction as the original.

Now all we need is an initial starting path. Since it is customary to have
the turtle heading vertically at the start, we will turn the turtle so that it
heads to the right initially. Thus, the path −Fl will be our starting path.

If we don’t want to use subscripts for the two types of F symbols, we
can instead use the following production rules with the starter word −Fl.

l− > lF l + rF + rF − Fl − Fl + rF + rFF l − rF − FlF lrF +

Fl − rF − FlF l − rF + FlrF + rF + Fl − Fl − rFrF +

r− > −FlF l + rF + rF − Fl − FlrF − Fl + rFrF + Fl + rF −
FlrFrF + Fl + rFF l − Fl − rF + rF + Fl − Fl − rFr

Note that we give productions only for how the symbols l and r are
replaced. Thus, the initial F for the left production and the final F for the
right production must be omitted from the replacement.

This set of productions will generate an equivalent rewriting system, if
we interpret Fl as Fl and rF as Fr. The turtle, when interpreting a level 2
rewrite of this system, will generate the image in Fig. 9.7. We can start to
see how this curve will fill up the space in the square, as the rewriting level
increases without bound.
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Fig. 9.7 Space-filling Curve

Exercise 9.9.1. Let an L-system be defined by Σ = {a, b, 1, S}, and P = {S− >
aSb, S− > 1}, with start symbol S. Prove that this grammar generates the lan-
guage {anbn|n ≥ 0}.

Exercise 9.9.2. Let an L-system be defined by Σ = {F,+,−, S}, and P =
{S− > F − F − F − F, F− > F − F + F + FF − F − F + F}, with start symbol
S. This system, when interpreted by a turtle, will generate a self-similar fractal
called the Quadratic Koch Island, as first described in [30, page 50]. Sketch levels
1 (rewrite S once) and 2 (rewrite twice) of this curve (assume the turn angle is
90 degrees), and sketch the template for the fractal. Find the similarity dimension
using the template.

Exercise 9.9.3. Let an L-system be defined by Σ = {F,+,−, L,R}, and P =
{L− > +RF − LFL − FR+, R− > −LF + RFR + FL−}, with start symbol L.
This curve is called the Hilbert curve. Find the level 1 and 2 rewrite words for this
system and sketch them on a piece of paper using turtle geometry. Do you think
this system will generate a space-filling curve?

Exercise 9.9.4. In our space-filling curve example, show that the right template
is a simple rotation of the left template. On a 7x7 grid find a left template curve
with edges labeled r and l, as we did earlier, such that all squares are visited by
some edge of the curve. Also, create the curve so that a 180 degree rotation about
the center of the grid will produce a right template curve with the same “doubling-
up” properties as we had for the pair of curves in our example. That is, if the right
and left templates would meet at an edge, then no edge of the left would intersect
an edge of the right, except at the start and end of the paths.
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9.10 Project 15 - Words Into Plants:
The Geometry of Life

What makes many plants fractal-like is their branching structure. A
branch of a tree often looks somewhat like the tree itself, and a branch’s sub-
branch system looks like the branch, and so forth. To model the development
of branching structures, we will use the grammar rewriting ideas of the last
section, plus the push and pop features of turtle geometry. This will be
necessary to efficiently carry out the instructions for building a branch and
then returning to the point where the branch is attached.

The grammar we will use consists of the turtle symbols described in the
last section plus one new symbol “X.” We can think of X as being a virtual
node of the plant that we are creating. Initially, the start symbol for our
grammar will be just the symbol X, signifying the potential growth of the
plant.

For example, here is a very simpli-
fied branching system for a plant.

X

How can we represent this branching structure using our grammar rewrit-
ing system? It is clear that the plant grew in such a way that three new
branch nodes were created from the original potential node X, which we
represent here as a point. Thus, the start symbol X must be replaced with
three new X’s. Also, the branches were created at an angle to the main
branch, so there needs to be some turning by the turtle. Finally, each new
branch has length of two Draw Forward’s, if we consider one Draw Forward
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to be the distance between the points on a branch. Which production rules
will represent this plant? Consider the following set of productions:

X − > F [+X]F [−X] +X

F − > FF

The first production replaces a node X by the word F [+X]F [−X] +X.
Thus, the replacement will produce a “stalk” of length 1, a new branch node
turned to the left that is independent of the previous symbol F , due to the
push and pop symbols, a second length of main stalk, a second independent
branch node coming off the stalk at an angle to the right, and finally a third
branch coming off the top at an angle to the left.

The second production says that a length of stalk will grow twice as
long in the next generation. Putting this all together, we have in these two
productions a blueprint for the growth of the plant.

Exercise 9.10.1. How many times was the start symbol X rewritten, using the
production rules, to generate the preceding plant image?

Let’s see how we can use Geometry Explorer’s turtle geometry capability
to generate this branching structure.

To begin, we need to define a
turn angle and a heading vector
for our turtle. Start Geometry
Explorer and create segments AB,
BC, and DE as shown. Multi-
select A, B, and C (in that order)
and choose Turtle Turn Angle
(Turtle menu) to define the turn
angle for our turtle. Then, multi-
select D and E and choose Turtle
Heading Vector (Turtle menu)
to define the turtle’s initial direc-
tion of motion.

AB

C

D

E

Now, create a point X on the
screen. Select X and choose Cre-
ate Turtle at Point (Turtle
menu) to create a turtle based at
X.

AB

C

D

E

X
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A dialog box will pop up to
control the movement of the turtle.
Click on the tab labeled “Grammar
Turtle.” In this window we can
type in the start symbol (axiom)
and a list of productions. Type in
“X” for the axiom and then type in
the two productions as shown, using
“=” to designate the left and right
sides of the rule. Type in “1” in
the Rewrite Level box and hit the
Rewrite button. The computer will
rewrite the axiom, using the two
production (replacement) rules.

Now, click on the “Turtle Inter-
pret” button. The turtle will carry
out the commands in the rewritten
word.

X
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We do not see any actual
branches yet, as the three new X’s
in the rewritten word are potential
branches. Undo the turtle back to
its start position by typing “Ctrl-U”
repeatedly. Then, in the grammar
window type in “2” for the rewrite
level and hit “Rewrite.” Click on
“Turtle Interpret” again to see the
plant starting to take shape.

X

The figure drawn by the turtle is clearly a branched structure, but is not
really much like a plant. To more fully develop the branching pattern, we
need to rewrite the axiom to a higher level.

Undo the turtle back to its start po-
sition and move E close to D, so
that the turtle moves only a short
distance each time it changes posi-
tion. Change the rewrite level to 4
in the Turtle Controller and hit Re-
turn. Note how the new sentence
has expanded. Click on “Turtle In-
terpret” and watch the turtle inter-
pret the rewritten sentence. This
may take awhile—anywhere from a
few seconds to several minutes, de-
pending on the speed of your com-
puter. There are a tremendous
number of actions that the turtle
needs to carry out as it interprets
the sentence.

X B A

C

D

E
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You will be able to tell when
the turtle is done by the state of
the “Stop Turtle” button. If the
turtle is still drawing, the button
will be active. Once the turtle com-
pletes drawing, the button will be-
come inactive. The image is very
“blotchy” with all of the points vis-
ible that were drawn by the tur-
tle. Let’s hide all of these points by
choosing Hide All (View menu)
and then choosing the Points sub-
menu. Now the figure looks like the
bushy branch structure of a plant
(minus the leaves).

Exercise 9.10.2. Find a set of two
productions that will generate the
branching pattern shown here, from an
initial start symbol of X.

Exercise 9.10.3. Design an L-system that will have a thick, bushy branching
system.

The analysis of complex branching patterns is quite an interesting sub-
ject, one for which we have only scratched the surface. For more information
on this subject, consult the Prusinkiewicz and Lindenmayer text [29].

It is interesting to note how the use of grammar rewriting systems mirrors
our discussion of axiomatic systems from Chapter 1. The start symbol and
production rules can be thought of as abstract axioms or postulates. The
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words of the language produced by the grammar are akin to theorems in the
axiomatic system, as they are generated using the axioms of the system. It
seems that our investigation of geometry has returned full circle to where it
began with the Greeks and their axiomatic system of reasoning.





Chapter 10

Hilbert’s Geometry

This present investigation is a new attempt to establish for ge-
ometry a complete and as simple as possible, set of axioms and
to deduce from them the most important geometric theorems in
such a way that the meaning of the various groups of axioms,
as well as the significance of the conclusions that can be drawn
from the individual axioms, comes to light.

David Hilbert in Foundations of Geometry [21]

Throughout this text we have strived to do as Hilbert suggested in the
introduction to his classic work on the foundations of geometry. There has
been an emphasis on presenting the various strands of geometry in the most
straight-forward and direct manner possible. We have worked to enhance our
intuitive understanding of geometric concepts through the use of computer
and group lab projects.

At the same time, we have strived to be as complete as possible in our
exploration of geometric ideas by delving deeply into such topics as the
complex function theory underlying a full development of the models of
hyperbolic geometry.

What has been missing from this focus on completeness is a rigorous
axiomatic treatment of planar Euclidean geometry. In Chapter 1 we saw
that Euclid’s original set of five axioms were by no means complete. There
were many hidden assumptions in Euclid’s work that were never given a firm
axiomatic basis. Among these assumptions were properties of continuity
of geometric figures such as circles and lines, the unboundedness of the
Euclidean plane, the transformations of figures, and even the existence of
points.

401
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Many attempts have been made to develop a more complete axiomatic
basis for Euclidean geometry. We covered one such system, Birkhoff’s sys-
tem, in Chapter 3. This system was extremely economical, requiring only
four axioms. It’s elegance and power come from setting the foundations of
geometry firmly on a model of analytic geometry, on the properties of the
real numbers.

In this chapter we will look at an axiomatic system that is much more
in the style of Euclid in that it is based on geometric rather than arithmetic
foundations. Hilbert achieves an integration of the synthetic approach of
classical geometry with the analytic approach of more modern systems of
geometry. He does this by showing that the real numbers can be constructed
geometrically. Hilbert’s axiomatic development of geometry thus includes
an axiomatic basis for analysis, and as such, is one of the great achievements
of the modern era in mathematics.

Hilbert uses five groups of axioms to form the foundation of Euclidean
geometry: axioms of incidence, betweeness, congruence, continuity, and par-
allelism.

10.1 Incidence Geometry

Perhaps the most obvious flaw in Euclid’s set of axioms is his assumption
that points and lines exist, and that points are incident on lines in the way
we expect them to be. Hilbert’s first four axioms are designed to put these
intuitive notions on a firm footing.

Hilbert also realized that Euclid’s definitions of a point as “that which
has no part” and of a line as “breadth-less length” were basically meaning-
less, and thus did not define these two terms. Hilbert realized that what
was important was how these undefined entities related to one another, their
relational properties. These are the properties spelled out in the first five
axioms of incidence.

• I-1 Through any two distinct points A and B there is always
a line m.

• I-2 Through any two distinct points A and B, there is not
more than one line m.

• I-3 On every line there exists at least two distinct points.
There exist at least three points not all on the same line.
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• I-4 Through any three points not on the same line, there is
one and only one plane.

Note that the idea of incidence itself is not defined in the axioms. This
is another undefined term that is given relational properties. The precise
definition of a point being incident on a line, or lying on a line, is not
important. What is important is how the property of incidence is manifested
by points and lines. These properties are spelled out in the axioms.

The last axiom seems somewhat odd. Hilbert’s original set of axioms
were designed for three-dimensional Euclidean geometry, with plane a third
undefined geometric object. Hilbert developed an additional set of four
axioms to cover incidence properties of planes. We will abbreviate Hilbert’s
set of incidence axioms to the four axioms above, which focus on planar
geometry, and use the fourth axiom to ensure that when we speak of the
“Euclidean plane”, there is a unique object of reference.

Hilbert’s insistence on focusing on the relational properties of geometric
objects, rather than their definitions, is evidenced by a famous adage at-
tributed to him: “One must be able to say at all times– instead of points,
lines and planes – tables, chairs, and beer mugs.”

Let’s see how these very basic axioms of incidence can be used to further
our knowledge of lines and points. For our proofs we will assume basic rules
of logical reasoning. For example, two things are either equal or not equal.
Also, we will assume that proof techniques such as proof by contradiction
are valid.

Theorem 10.1. Given two distinct lines l and m, they have at most one
intersection point.

Proof: Suppose that l and m intersected at two distinct points A 6= B.
Then, through A and B we would have two distinct lines, which contradicts
axiom I-2. Thus, they cannot intersect in two distinct points. 2

Theorem 10.2. For every line there is at least one point not on that line.

Proof: Exercise. 2

Theorem 10.3. For every point there is at least one line not passing through
it.

Proof: Exercise. 2

Theorem 10.4. For every point there are at least two distinct lines that
pass through it.
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Proof: Exercise. 2

Theorem 10.5. There exist three distinct lines such that no one point is
on all three lines.

Proof: Exercise. 2

10.2 Betweenness Geometry

The first group of axioms, those of incidence, dealt with issues of existence
of lines and points, and the matter of uniqueness of configurations.

The next set of axioms, the axioms, deal with the notion of ordering of
points on a line. For this reason, they are often called the axioms of order.
These axioms are necessary to make explicit what is meant by saying a point
is “between” two other points on a line. Again, we do not specifically define
what “” means. We instead provide axioms for how works, what properties
it has.

• II-1 If B is a point between A and C (denoted A ∗B ∗C) then
A, B, and C are distinct points on the same line and C ∗B ∗A.

• II-2 For any distinct points A and C, there is at least one
point B on the line through A and C such that A ∗ C ∗B.

• II-3 If A , B, and C are three points on the same line, then
exactly one is between the other two.

• II-4 (Pasch’s Axiom) For this axiom, we need the following
definition.

Definition 10.1. The segment AB is defined as the set of points
between A and B together with A and B.

Let A, B, and C be three non-collinear points and let m be a
line in the plane that does not contain any of these points. If
m contains a point of segment AB, then it must also contain
a point of either AC or BC.

Once the notion of is firmly specified, and segments are well-defined, we
can define a ray as follows:

Definition 10.2. The ray from A through B is the set of points on segment
AB together with points C such that A ∗B ∗ C.
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Intuitively, axiom II-2 guarantees that the ray from A through B will
be “bigger” than the segment AB. This is essentially the same as Euclid’s
second axiom on extending lines in Elements. We will make this idea of
segment inequality more precise later in this chapter.

Axiom II-3 guarantees that we have a well-defined ordering of points. It
rules out the case of interpreting lines as circles, as if we had three points
on a circle, then the usual interpretation of would violate this axiom.

With rays and segments defined, we can put these in relationship to
lines.

Theorem 10.6. Given A and B we have :

•
−−→
AB ∩

−−→
BA = AB,

•
−−→
AB ∪

−−→
BA =

←→
AB.

Proof:

• Clearly, by using the definitions of ray and segment we have that

AB ⊂
−−→
AB and AB ⊂

−−→
BA. So, AB ⊂

−−→
AB ∩

−−→
BA.

On the other hand let C be an element of this intersection. If C is A
or B then C is clearly on AB. Assume C is not A and not B. Since

C is on
−−→
AB, then it is either between A and B or satisfies A ∗B ∗ C.

Likewise, if C is on
−−→
BA then it is either between A and B or satisfies

C∗A∗B. Since C is on both rays then we must have by axiom II-3 that

C is between A and B, and thus C is on AB. Thus,
−−→
AB ∩

−−→
BA ⊂ AB.

Since AB ⊂
−−→
AB ∩

−−→
BA and

−−→
AB ∩

−−→
BA ⊂ AB, then

−−→
AB ∩

−−→
BA = AB

• Let C be an element of
−−→
AB ∪

−−→
BA. If C = A or C = B then, C is

certainly on the line
←→
AB. Otherwise, suppose C is on

−−→
AB with C not

equal to A or B. Then, either A∗C ∗B or A∗B ∗C. But, this implies

by axiom II-1 that A,B,C are collinear. Likewise, if C is on
−−→
BA, then

A,B,C are collinear. In either case, we get that C is on
←→
AB.

On the other hand let C be an element of
←→
AB. By axiom II-3 we see

immediately that C is in
−−→
AB or in

−−→
BA. Thus, C is in

−−→
AB ∪

−−→
BA.

2
The next theorem guarantees that there is always a point between two

distinct points.

Theorem 10.7. Given points A 6= B there is always a point C with A∗C∗B.
(see figure 10.1)
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Proof: Note that this is slightly different than axiom II-2. Here we are
saying that we can always find a point between two given points. In axiom
II-2 we are saying that we can always find a point “outside” the given pair.

A B

E

F

C

D

Fig. 10.1

To prove this result we use axiom I-3 to find a point D not collinear
with A and B. Axiom II-2 says that we can find a point E with A ∗D ∗E.
The incidence axioms guarantee the existence of the line through E and B.

Again, using axiom II-2 we can find a point F on
←→
EB so that E∗B∗F . Now,←→

DF contains a point (D) of AE. Also,
←→
DF intersects

←→
EB at F , which is

outside EB and cannot intersect this line more than once. Thus, by axiom

II-4 we have that
←→
DF must intersect AB at some point C. By the definition

of a segment, A ∗ C ∗B. 2
The next theorem says that we can find opposite rays on a given line.

Theorem 10.8. To a given ray
−−→
AB there is a point C with

−→
AC opposite to−−→

AB. (That is, the two rays share only point A in common)

Proof: Axiom II-2 guarantees the existence of a point C with C ∗A ∗B.

Axiom II-3 says that C cannot belong to
−−→
AB. Likewise, all elements of

−→
AC

(other than A) are distinct from
−−→
AB. 2

The preceding set of theorems dealt only with the ordering of points on
a line. This next definition begins to make precise what is meant by a line
separating the plane into two parts.

Definition 10.3. Let l be a line and A and B points not on l. If A = B or
segment AB contains no points on l we say that A and B are on the same
side of l. If A is not equal to B and AB intersects l we say that A and B
are on opposite sides of l.
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Theorem 10.9. (Plane Separation) For every line l and triple of points
A,B,and C not on l we have :

• If A and B are on the same side of l and B and C are on the same
side, then A and C must be on the same side of l.

• If A and B are on opposite sides of l and B and C are on opposite
sides, then A and C must be on the same side of l.

l

A

B

C

Fig. 10.2 Plane Separation

Proof:

• Suppose A and C were on opposite sides of l. Then, line l would
intersect AC and by axiom II-4 it would have to intersect one of AB
or BC, which contradicts the hypothesis.

• This can be proven similarly by contradiction. The proof is left as an
exercise.

2

The next theorem guarantees that a line separates the plane into two
distinct sides.

Theorem 10.10. Every line l has exactly two sides and these two sides
have no points in common.
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l

A

O

B

C

Fig. 10.3

Proof: There exists a point O on l and a point A not on l by the incidence
axioms. (see figure 10.3) Axiom II-2 says that there is a point B with
B ∗O ∗A. Then, by definition, B and A are on opposite sides of l and l has
at least two sides. Let C be any other point not on l and not equal to A
or B. By the Plane Separation Theorem if A and C are on opposite sides,
then C and B are on the same side. Likewise, if B and C are on opposite
sides, then C and A are on the same side. In any event, C is on one of two
sides. If C were on both sides, then by the first part of the Plane Separation
Theorem we would have that A and B would be on the same side. This
contradicts the fact that they are on opposite sides. 2

The next theorem clarifies the relationship between multiple points on
a line. This result will be so useful we will refer to it in the future as the
“4-point ” property.

Theorem 10.11. Given four points A,B,C,D, with A∗B ∗C and A∗C ∗D,
then B ∗ C ∗D and A ∗B ∗D. (see figure 10.4)

A B C D

E

Fig. 10.4

Proof: By axiom II-1 we know that A,B,C, and D are four distinct
points on a line. By the incidence axioms we know that there is a fifth point
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E not on this line and that the line
←→
EC exists. Also, since A ∗ C ∗D then

A and D are on opposite sides of
←→
EC.

Suppose that A and B were on opposite sides of
←→
EC. Then, by the

definition of opposite sides we must have that
←→
EC meets

←→
AB at some point

between A and B. But,
←→
AB and

←→
EC meet at C and can only meet at a

single point by Theorem 10.1. Thus, A ∗ C ∗ B. But, we are given that
A ∗ B ∗ C and by axiom II-3, we cannot also have A ∗ C ∗ B. So, A and B

are on the same side of
←→
EC.

Now, since A and D are on opposite sides of
←→
EC, and A and B are on

the same side of
←→
EC, then by the Plane Separation Theorem we have that

B and D are on opposite sides of
←→
EC. Thus, C must be between B and D.

An exactly analogous argument with
←→
EB gives A ∗B ∗D. 2

The next two theorems guarantee if two points are not on opposite sides,
then the segment they define is also not on opposite sides.

Theorem 10.12. Given a line l and two points A and B on the same side
of l, then all points on segment AB are on this same side of l.

Proof: Let C be a point on AB. If C was on the opposite side to A (or
B) then segment AC would intersect l at some point P , with A ∗P ∗C. We
know that A ∗ C ∗ B since C is on AB. Thus, A ∗ P ∗ B, by the previous
theorem. But, this contradicts the fact that A and B are on the same side
of l. 2

Theorem 10.13. Given a line l and two points A and B with A on l and
B not on l, then all points on segment AB other than A are on the same
side of l as B.

Proof: This is basically a direct consequence of axiom II-3 and is left as
an exercise. 2

The next theorem guarantees that a point on a line separates the line
into two parts.

Theorem 10.14. (Line Separation) If C ∗ A ∗ B on the line
←→
AB, then for

any point P on
←→
AB we have that P is on ray

−−→
AB or on

−→
AC.

Proof: If P is on
−−→
AB we are done. Otherwise, P is not on AB and we

do not have A ∗B ∗ P (see the definition of a ray). Thus, by axiom II-3 we
must have that P ∗A ∗B.

If A ∗ P ∗ C or A ∗ C ∗ P then P is on
−→
AC and we are done. By axiom

II-3 we need only consider what happens if P ∗A ∗ C.
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Assume P ∗ A ∗ C. Let’s consider the relationship of P to B and C.
Again, by axiom II-3, one of B ∗ C ∗ P or B ∗ P ∗ C or P ∗B ∗ C is true.

If B ∗ C ∗ P then, since C ∗ A ∗ B(equivalently B ∗ A ∗ C), we have by
4-point that A ∗ C ∗ P , which contradicts P ∗A ∗ C.

If B ∗ P ∗C (or C ∗ P ∗B) then, since P ∗A ∗C (or C ∗A ∗ P ) we have
by 4-point that A ∗ P ∗B, which contradicts P ∗A ∗B.

If P ∗ B ∗ C then, since P ∗ A ∗ B, we have by 4-point that A ∗ B ∗ C,
which contradicts the fact that C ∗A ∗B.

Thus, it cannot be the case that P ∗A ∗ C and we are done. 2
The next two theorems guarantee that we can split a segment or line

into two distinct parts.

Theorem 10.15. Given A ∗ B ∗ C. Then AC = AB ∪ BC and B is the
only point common to AB and BC.

Proof: We will first show that AC ⊂ AB ∪ BC. Let P be a point on
AC. (i.e. A ∗P ∗C) As in the proof of Theorem 10.11 we know that points
A,B,C, and P are all on the same line and that there is another point Q

not on this line. We also know that line
←→
PQ exists.

Suppose that A and B were on the same side of
←→
PQ. We know that A

and C must be on opposite sides, as A intersects
←→
PQ at P . Thus, B and

C must be on opposite sides by the Plane Separation Theorem. Then BC

must intersect
←→
PQ. But,

←→
PQ already intersects the line through BC at P .

Thus, since lines can only have a single intersection point, we must have

that
←→
PQ and BC intersect at P , and P is on BC.

If A and B are on opposite sides of
←→
PQ then, P must be on AB.

Thus, if P is a point on AC then P is on AB or on BC. So, AC ⊂
AB ∪BC.

Now, we will show that AB ∪BC ⊂ AC. If P is on AB then A ∗ P ∗B.
We know that A∗B ∗C. Thus, by 4-point we know that A∗P ∗C. Likewise,
if P is on BC (CB) then C ∗ P ∗B. Also, C ∗B ∗A. Again, by 4-point we
get C ∗ P ∗ A. Thus, AB ∪ BC ⊂ AC, and, since we already have shown
that AC ⊂ AB ∪BC, we have that AC ⊂ AB = BC.

Finally, why will B be the only common point to AB and BC? Suppose
R is another point common to these two segments with R 6= B. We know
there is another point S not collinear with A, B, C, and R. Consider the

line
←→
RS. Since R is on AB and on BC and R 6= B then A and B are

on opposite sides of
←→
RS and so are B and C. Thus, A and C must be on

the same side of
←→
RS by the Plane Separation Theorem. So, AC must not

intersect
←→
RS. However, we just proved that AC = AB ∪BC, and both AB
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and BC intersect
←→
RS. This leads to a contradiction and thus B is the only

common point to AB and BC. 2

Theorem 10.16. Given A∗B ∗C. Then
−−→
AB =

−→
AC and B is the only point

common to rays
−−→
BA and

−−→
BC.

Proof: First, we will show that
−−→
AB ⊂

−→
AC. Let P be on

−−→
AB. If P is on

AC then it is on
−→
AC. Otherwise, by axiom II-3 either P ∗A∗C or A∗C ∗P .

If A ∗ C ∗ P then P is on
−→
AC.

Assume P ∗ A ∗ C. As in the previous theorem, we know that A, B,
C, and P are all collinear on a line l and there is a point Q not on l. If
P ∗ A ∗ C then A and C are on the same side of l. But A and B are on
opposite sides. The Plane Separation Theorem then implies that B and C
must be on opposite sides of l. Now, BC and AB are on the same line and
lines cannot have more than one intersection point. Thus, BC must intersect
l at P , and then P is on both AB and BC. However, the previous theorem
states that these two segments have only B in common. Thus P = B and
B ∗A ∗ C. Using axiom II-3 this contradicts the fact that A ∗B ∗ C.

Thus, we have that
−−→
AB ⊂

−→
AC.

Next we show that
−→
AC ⊂

−−→
AB. Let P be on

−→
AC. By definition of

−→
AC,

either P is on AC or A ∗ C ∗ P .
Suppose P is on AC.By the previous theorem AC = AB ∪ BC. If P is

on AB then clearly P is on
−−→
AB. If P is on BC then B ∗P ∗C (or C ∗P ∗B).

We are given that C ∗ B ∗ A. Thus, by 4-point betweenness we have that

P ∗B ∗A (or A ∗B ∗ P ) and P is again on
−−→
AB.

Suppose A ∗ C ∗ P . We are given that A ∗ B ∗ C. By 4-point we have

that A ∗B ∗ P and P is on
−−→
AB. Thus,

−→
AC ⊂

−−→
AB, and so

−→
AC =

−−→
AB

The proof that B is the only point common to rays
−−→
BA and

−−→
BC is left

as an exercise. 2
This finishes our development of the notion of order for points, segments,

and lines. In the next section we expand this notion of order to include
angles.

Exercise 10.2.1. Prove Theorem 10.2

Exercise 10.2.2. Prove Theorem 10.3

Exercise 10.2.3. Prove Theorem 10.4

Exercise 10.2.4. Prove Theorem 10.5

Exercise 10.2.5. Prove the second part of the Plane Separation Theorem.
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Exercise 10.2.6. Finish the proof of Theorem 10.16.

Exercise 10.2.7. Prove that if A∗B∗C then segment AB is contained in segment
AC.

Exercise 10.2.8. Given a line l, a point A on l, and a point B not on l, show

that every point of
−−→
AB is on the same side of l as B. [Hint: Show by contradiction.]

Exercise 10.2.9. Prove that a line must have an infinite number of points.

10.3 Project 16 - Angles and Ray Betweenness

Many of the projects we have covered so far involve computer exploration
of geometric topics. In this project we will explore a more abstract idea –
the property of defined by rays and angles. In this project our exploratory
“canvas” will be the canvas of our minds. Feel free to draw diagrams for
each new idea, but be careful to make your arguments based solely on the
theorems and axioms of preceding sections.

To effectively explore the properties of angles, we need a good definition.

Definition 10.4. A pair of rays
−−→
AB and

−→
AC is called an angle and is

denoted by ∠CAB. The two rays are called the sides of the angle and the
common point A is called the vertex of the angle.

To reduce confusion between the two notions of “side” presented so far
– the two sides of a line, and the two sides of an angle – we will refer to the
sides of an angle as “angle sides”, if there is the possibility of mistaking this
notion of side with the side of a line.

Definition 10.5. Given an angle ∠CAB a point D is in the interior of the

angle if D is on the same side of
←→
AB as C and if D is on the same side of←→

AC as B.

The definition implies that the interior of an angle is equal to the inter-
section of two sides of lines.

Exercise 10.3.1. Your first task is to use the properties of from the preceding
section to show the following result.
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Theorem 10.17. Given an angle ∠CAB, if D is a point lying on line
←→
BC, then

D is in the interior of the angle if and only if B ∗D ∗ C. (see figure 10.5)

[Hint: This requires two proofs. For the first, assume D is in the interior and
D is not between B and C. Can you reach a contradiction? For the second, assume
B∗D∗C and D is not in the interior of the angle. Then, either DB or DC intersect
a side. Can you find a contradiction?]

A

B

C

D

Fig. 10.5

Note that this theorem implies that if E and F are two points that are
incident on the two angle sides of an ∠CAB, with E,F 6= A, then all points
on the segment EF are in the interior of the angle.

It is also an immediate consequence of Theorem 10.12 that if two points
A and B are in the interior of an angle then all points on AB are interior
to that angle. (Verify this)

Additionally, from Theorem 10.13 we have that if a point A is interior
to an angle and point B is on one of the two angle sides, and not the vertex,
then all points on AB other than B will be interior to the angle. (Verify
this)

Thus, we have the following:

Theorem 10.18. Given ∠CAB let D and E two points with

• D and E on different angle sides, or

• D on an angle side and E interior, or

• D and E interior to the angle.

then all points on EF are interior to the angle, (except for endpoints on the
angle sides in the first two cases.)
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Exercise 10.3.2. Your next task is to prove the following result on rays within
an angle.

Theorem 10.19. If D is a point in the interior of ∠CAB then

• All other points on ray
−−→
AD except A are also in the interior.

• No point on the opposite ray to
−−→
AD is in the interior.

• If C ∗A ∗ E then B is in the interior of ∠DAE.

[Hint: The situation is illustrated in figure 10.6. For the first part of the
Theorem, use Exercise 10.2.8. For the second part, use contradiction. For the third

part, show that EB does not intersect
−−→
AD, and EB does not intersect the opposite

ray to
−−→
AD. Use what you already know about D to finish the proof.]

A

B

C

D
E

Fig. 10.6

We now define a property for rays.

Definition 10.6. A ray
−−→
AD is between rays

−−→
AB and

−→
AC if

−−→
AB and

−→
AC are

not opposite rays and D is interior to ∠CAB.

Note that the previous Theorem guarantees that this definition does not

depend on the choice of D on
−−→
AD.

Review the following theorem and its proof carefully.

Theorem 10.20. (Crossbar Theorem) If
−−→
AD is between

−−→
AB and

−→
AC then

−−→
AD intersects segment BC.
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A

B

C

D

E

F

Fig. 10.7

Proof: This theorem derives its name from the suggestive shape of fig-

ure 10.7. Assume that
−−→
AD does not intersect segment BC. Let

−→
AF be the

ray opposite to
−−→
AD. If

−→
AF intersects BC at some point P then B∗P ∗C and

by Theorem 10.17 we have that P is interior to ∠CAB. But this contradicts
Theorem 10.19, part ii.

Since
←→
AD =

−−→
AD ∪

−→
AF we have that

←→
AD does not intersect BC. Thus,

B and C are on the same side of
←→
AD.

Now, let E be a point on
←→
AC with E ∗A ∗C. (axiom II-2). C and E are

then on opposite sides of
←→
AD.

Now, since B and C are on the same side of
←→
AD and C and E are on

opposite sides we must have (by the Plane Separation Theorem) that B and
E are on opposite sides. However, B is in the interior of angleDAE by part
iii of the previous theorem. Thus, B and E have to be on the same side of←→
AD.

Thus, it be must be the case that
−−→
AD intersects BC. 2

Note that since
−−→
AD must intersect segment BC at some point, we can

assume that D is that point of intersection. This allows us to say that if−−→
AD is between

−−→
AB and

−→
AC then B ∗D ∗ C. The converse is also true.

Exercise 10.3.3. Prove the following converse to the Crossbar Theorem.

Theorem 10.21. Given B ∗D ∗C there exists a point A not on
←→
BC such that

−−→
AD

is between
−−→
AB and

−→
AC.

[Hint: Theorem 10.2 guarantees the existence of a point A not on
←→
BC. Consider

∠BAC and use Theorem 10.17]

We have shown that a ray is between two other rays iff a point is be-
tween two other points. This says that points and rays are essentially
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inter-changeable when it comes to the property of . This property of inter-
changeability is called duality. One amazing implication of this is that any
result on point betweenness will automatically generate a corresponding re-
sult for ray betweenness, without the need for a proof!

For example,

Theorem 10.22. Suppose that we have rays
−→
EA,

−−→
EB,

−−→
EC, and

−−→
ED. If−−→

EB is between
−→
EA and

−−→
EC, and

−−→
EC is between

−−→
EB and

−−→
ED, then

−−→
EC is

between
−−→
EB and

−−→
ED and

−−→
EB is between

−→
EA and

−−→
ED.

Exercise 10.3.4. Find the Theorem in the last section for which this is the dual.

Project Report

In this project we have developed the notion of angle and the properties of
of rays. In your project report provide clear and complete solutions to the
exercises. In your conclusion discuss briefly the significance of the axioms
of order. Why are the results of this project, and the preceding section, so
important in a solid development of geometry?

10.4 Betweenness and Triangles

We can now use the properties of order to precisely define the interior of a
triangle.

Definition 10.7. The interior of triangle ABC is the intersection of the
interior of its angles ∠CAB, ∠ABC, ∠BCA. A point is in the exterior of
the triangle if it is not in the interior and is not on any side.

The following theorem gives two “Pasch-like” results on the intersection
properties of rays with triangles. Compare these results to axiom II-4.

Theorem 10.23. Given a triangle ABC:

• If a ray r starts at an exterior point of the triangle and intersects side
AB at a point D with A ∗D ∗B then then this ray must also intersect
one of the other two sides of the triangle.

• If a ray r starts at an interior point of the triangle then it must inter-
sect one of the sides. If it does not pass through a vertex it intersects
only one side.
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Proof: For the first part of the theorem let the ray r be given as
−−→
XD,

where X is the initial point. By Pasch’s axiom (axiom II-4), we have that

line
←→
XD will intersect either AC or BC at some point P .(see figure 10.8)

A

B

C

D

P

X

E

Fig. 10.8

All we need to do is show that P is on the ray
−−→
XD. By axiom II-3 either

X ∗D ∗ P or X ∗ P ∗D or P ∗X ∗D. In either of the first two cases P is
on
−−→
XD.

Suppose P ∗X ∗D. If P = C then by Theorem 10.17 D is interior to the
angle ∠BCA and by Theorem 10.19 X must then be also interior to this
angle. But, this contradicts the fact that X is exterior.

Now, suppose P ∗X ∗D and P 6= C. Then Pasch’s axiom says that
←→
XD

only intersects one side, say AC, where P is on AC. Then, by Theorem 10.18
we have that since D is interior to ∠ACB then X is interior to ∠ACB. Also,

since ∠CAB is the same as ∠PAD (
−−→
AB =

−−→
AD and

−→
AC =

−→
AP ) we have by

Theorem 10.17 that X is interior to ∠CAB. Lastly, we know that A ∗P ∗C
and thus, by Theorem 10.17 we have that P is interior to ∠ABC and thus,
by Theorem 10.18 that X is interior to ∠ABC. But, if X is interior to all
three angles it then is interior to the triangle, which is a contradiction.

For the proof of the second part of the theorem let ray r again be given

as
−−→
XD where X is the initial point inside the triangle and D is another

point on the ray. (see figure 10.9)
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A

B

C

D

E

X

Fig. 10.9

If D is exterior to the triangle then X and D are on opposite sides of
one of the sides, and thus XD must intersect this side. Since segment XD

is on
−−→
XD then the ray intersects a side.

If D is interior to the triangle, then
−−→
AD is between

−−→
AB and

−→
AC. (see

figure 10.9) Thus, by the Crossbar Theorem
−−→
AD intersects BC at some point

E, and since D is interior to the triangle, we must have that A ∗D ∗E. (A
and D are on the same side of BC.) Now, either X is on the same side
of AE as C or is on the opposite side, which is the side B is on. Thus,
X is exterior to one of the two triangles ACE and AEB. Let’s say it is

exterior to AEB. Then, by Pasch’s axiom we have that
−−→
XD intersects side

AB or BE. A simple argument (in the exercises below) shows that BE is

contained in BC. So, in all cases
−−→
XD intersects a side of ABC. 2

We end this brief discussion of triangles with a nice result that we will
need later when discussing acute and obtuse angles.

Theorem 10.24. Let
←→
AA′ be a line with A ∗ O ∗ A′. Let B 6= C be two

points on the same side of
←→
AA′. If

−−→
OB is between

−→
OA and

−−→
OC, then

−−→
OC is

between
−−→
OB and

−−→
OA′. (see figure 10.10)



10.5. CONGRUENCE GEOMETRY 419
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C

B
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Fig. 10.10

Proof: Without losing any generality we can assume that B is on AC.

Then, since
−−→
OB is between

−→
OA and

−−→
OC, we have A ∗ B ∗ C by the duality

of betweenness for points and angles. Consider triangle AA′B. We have

that
−−→
OC intersects side AA′. By the previous theorem this ray must then

intersect one of AB or BA′. But, if it intersects AB then this intersection

point must be C since C is already on
←→
AB and the lines

←→
OC and

←→
AB cannot

be coincident and thus only intersect once. But, if the intersection point is

C then A ∗ C ∗B, which contradicts the fact that A ∗B ∗ C. So,
−−→
OC must

intersect BA′ at some point C ′. Then, B ∗ C ′ ∗A′ and
−−→
OC ′ is between

−−→
OB

and
−−→
OA′. This finishes the proof. 2

10.5 Congruence Geometry

Just as the notions of incidence and were left undefined in the preceding
sections, the notion of congruence for segments and angles will be left as
undefined in this section. Our intuitive idea of congruence tells us that two
segments are the same if one can be exactly overlayed on top of the other.
This intuitive idea assumes the existence of functions that will transform
segments to other segments. This transformational geometry pre-supposes
an existing set of transformations that would itself need an axiomatic basis.

By leaving the idea of congruence undefined for segments and angles
we allow for interpretations via different models. As long as the notion of
congruence in a particular model satisfies the following axioms, we can apply
subsequent theorems derived from those axioms to this model.

What the congruence axioms give us is a basis for comparing segments
and rays in a similar fashion to how we compare numbers. Equality for num-
bers is a property that is reflexive (every number equals itself), symmetric
(if a = b then b = a), and transitive ( if a = b and b = c, then a = c). These
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three properties are critical to how we construct an arithmetic system.

Additionally, the axioms will give us a way to “add” and “subtract”
segments and angles, again providing algebraic properties to the geometry.

We will need the following definition of triangle congruence.

Definition 10.8. Two triangles are congruent if there is some way to match
vertices of one to the other such that corresponding sides are congruent and
corresponding angles are congruent.

If ∆ABC is congruent to ∆A′B′C ′ we shall use the notation ∆ABC ∼=
∆A′B′C ′. Thus, ∆ABC ∼= ∆A′B′C ′ if and only if

AB ∼= A′B′, AC ∼= A′C ′, BC ∼= B′C ′,∠A ∼= ∠A′,∠B ∼= ∠B′, and∠C ∼= ∠C ′.

We use the symbol “∼=” to represent the undefined notion of congruence
for segments and angles.

Here are the six axioms of congruence:

• III-1 If A and B are distinct points and A′ is any other point,
then for each ray r from A′ there is a unique point B′ on r
such that B′ 6= A′ and AB ∼= A′B′.

• III-2 If AB ∼= CD and AB ∼= EF then CD ∼= EF . Also, every
segment is congruent to itself.

• III-3 If A ∗B ∗C , A′ ∗B′ ∗C ′, AB ∼= A′B′ , and BC ∼= B′C ′, then
AC ∼= A′C ′.

• III-4 Given ∠ABC and given any ray
−−→
A′B′, there is a unique

ray A′C ′ on a given side of
←−→
A′B′ such that ∠ABC ∼= ∠A′B′C ′.

• III-5 If ∠ABC ∼= ∠A′B′C ′ and ∠ABC ∼= ∠A′′B′′C ′′ then ∠A′B′C ′ ∼=
∠A′′B′′C ′′. Also, every angle is congruent to itself.

• III-6 Given two triangles ABC and A′B′C ′ if AB ∼= A′B′ ,
AC ∼= A′C ′, and ∠BAC ∼= ∠B′A′C ′ then the two triangles are
congruent.

Let’s analyze these axioms a bit. First of all, axiom III-1 basically covers
our intuitive idea of segments being congruent via transformation. We can
think of A being moved to A′ and then B′ is where B would move under the
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transformation. Axiom III-1 implies both Proposition 2 and Proposition 3
of Book I of em Elements.

Another simple implication of this axiom is that if A,B,C are points on

a line with A ∗ B ∗ C (thus B is be on
−→
AC), and B 6= C, then AB cannot

be congruent to AC.
Axiom III-2 covers a property that is like transitivity. III-2 also says

that congruence is a reflexive property. This is what Euclid would call a
“common notion”. We note here that this axiom implies the symmetry of
congruence. As, if AB ∼= A′B′ and AB ∼= AB then by III-2 we have that
A′B′ ∼= AB. Also, once we have symmetry we have full transitivity, since if
AB ∼= CD and CD ∼= EF , then CD ∼= AB and CD ∼= EF , so AB ∼= EF .

Axiom III-3 covers the intuitive idea that congruent segments that are
joined to other congruent segments make new segments that are again con-
gruent. This axiom can also be interpreted in terms of “adding” congruent
segments. It is sometimes called the “Segment Addition” axiom.

Axioms III-4 and III-5 guarantee that angles can be “laid off” onto other
rays and that angle congruence is transitive and reflexive (and thus symmet-
ric), just as was the case with segment congruence. Axiom III-4 is also the
same as Proposition 23 of Book I of Elements.

It turns out that there is no need for an axiom on joining angles to angles
(i.e. an addition axiom for angles comparable to Axiom III-3). This fact
will be proven below.

Axiom III-6 is the Side-Angle-Side (SAS) congruence result that is fa-
miliar from classical Euclidean geometry. It is Proposition 4 of Book I of
Elements. Euclid proved this result by an argument that was based on
“moving” or transforming points. As was mentioned above, this approach
can work if the notion of transformation is axiomatized. However, SAS can-
not be proven from the rest of Hilbert’s axioms. Hilbert, in his classic work
“Foundations of Geometry” [21] constructs a model of geometry based on
all of his axioms, except the SAS axiom. He shows that this model is consis-
tent, but the SAS result does not universally hold. This shows that SAS is
independent from the other axioms, and thus must be stated as an axiom,
if it is to be used.

10.5.1 Triangle and Angle Congruence Results

Using the congruence axioms, we will first derive some basic facts about
triangle congruence.

Definition 10.9. A triangle ABC is called isosceles if it has two congruent
sides, i.e. AB ∼= AC.
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Theorem 10.25. If ∆ABC is isosceles with AB ∼= AC then ∠B ∼= ∠C.
That is, in an isosceles triangle, the base angles are congruent.

The proof of this result, which is also Proposition 5 of Book I of em
Elements, is a straight-forward application of SAS to triangles ABC and
ACB.

Using the congruence axioms, we can classify angles as to type and create
a simple way of ordering the “size of angles. We develop these ideas with
the next set of theorems and definitions.

Definition 10.10. Two angles that have a vertex and side in common and
whose separate sides form a line are called supplementary angles.

It is clear that given any angle at least one supplementary angle always

exists. For, given ∠ABC the opposite ray to side
−−→
BC will exist on the line

through B and C. Let D be a point on this ray. Then, ∠ABD will be
supplementary to ∠ABC.

Theorem 10.26. Supplementary angles of congruent angles are congruent.

Proof: Let ∠ABC ∼= ∠DEF . Let ∠ABG and ∠DEH be supplementary
to ∠ABC and ∠DEF .

Since points A, C and G are arbitrarily given, we can assume by axiom
III-1 that points D, F and H are chosen such that AB ∼= DE, BC ∼= EF ,
and BG ∼= EH. By SAS we then have that ∆ABC ∼= ∆DEF and thus
AC ∼= DF and ∠ACB ∼= ∠DFE. (see figure 10.11)

CB

A

G

FE

D

H

Fig. 10.11

Now, it is clear that G ∗B ∗ C, for if this were not the case, then either

B ∗ G ∗ C, which implies that G is on
−−→
BC, or G ∗ C ∗ B, which implies

that C is on
−−→
BG. In either case we get a contradiction to the definition of

supplementary angles. The addition axiom (III-3) then says that CG ∼= FH.
SAS then gives that ∆ACG ∼= ∆DFH. Then, ∠CGA ∼= ∠FHD and

AG ∼= DH. Since GB ∼= HE we have again by SAS that ∆AGB ∼= ∆DHE.
Thus, the two supplementary angles ∠ABG and ∠DEH are congruent. 2
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Definition 10.11. Two angles with a common vertex and whose sides form
two lines are called vertical angles.

Theorem 10.27. Vertical angles are congruent to each other.

Note that this is Proposition 15 of Book I of em Elements.

Proof: This is a direct result from the previous theorem and will be left
as an exercise. 2

Definition 10.12. An angle that is congruent to one of its supplementary
angles is called a right angle.

Theorem 10.28. An angle congruent to a right angle is a right angle.

Proof: This follows directly from Theorem 10.26. 2

Definition 10.13. An angle ∠ABC
is said to be less than an angle
∠DEF (denoted ∠ABC < ∠DEF )
if there exists a point G interior to
∠DEF with ∠ABC ∼= ∠DEG. In
this case, we also say that ∠DEF
is greater than ∠ABC.

B

C

A E

D

E

G

F

Note that this definition does not say anything about angle measure. We
have not yet defined a way to associate angles with numbers.

Definition 10.14. An angle that is less than a right angle is called an acute
angle. An angle greater than a right angle is called obtuse.

Theorem 10.29. If an angle is acute then its supplementary angle is obtuse,
and vice-versa.

Proof: Suppose angle ∠ABC is acute and let ∠ABD be a right angle,

with
−−→
BC between

−−→
BA and

−−→
BD. Let E be a point on the opposite ray to−−→

BA. We have by Theorem 10.24 that
−−→
BD is between

−−→
BC and

−−→
BE. Thus,

since ∠CBD is a right angle, we have that the supplementary angle ∠CBE
is greater than a right angle and is therefore obtuse. The other half of the
proof is similar. 2

One of the classic results of Euclidean geometry deals with exterior angles
to a triangle.
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Definition 10.15. The angles ∠ABC, ∠ABC, and ∠ABC of triangle ABC
are called interior angles. Their supplementary angles are called exterior
angles. The two angles of a triangle that are not supplementary to an
exterior angle are called remote interior angles relative to the exterior angle.

Theorem 10.30. (Exterior Angle Theorem) An exterior angle of a triangle
is greater than either remote interior angle.

Proof: Let ∠CAD be an exterior angle to ∠BAC in triangle ABC. (see
figure 10.12)

A B

C

D

Fig. 10.12

We can assume AD ∼= BC. Then, ∠CAD cannot be congruent to
∠ACB, for if these were congruent, then by SAS we would have ∠ACD ∼=
∠CAB. But, since ∠CAD and ∠CAB are supplementary, and ∠CAD ∼=
∠ACB, then the supplementary angle to ∠ACB, call it θ must be congru-
ent to ∠CAB. We already know that ∠CAB ∼= ∠ACD. Thus, by angle
transitivity we have that the supplementary angle to ∠ACB is congruent
to ∠ACD, but since these two angles share a side, then the supplementary

angle must be ∠ACD. This implies that D lies on
←→
BC, which is impossible.

Thus, ∠CAD < ∠ACB or ∠CAD > ∠ACB.

If ∠CAD < ∠ACB then if we copy the exterior angle ∠CAD so that

one side is on
−→
CA and the other is on the same side of

−→
CA as B, then the

other side will lie in the interior of this new angle, and thus by the Crossbar
Theorem will intersect AB at a point B′. (see figure 10.13) Then, ∠CAD
will be an exterior angle of triangle AB′C that is congruent to a remote
interior angle, which we just proved is impossible.
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A B
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D B’

Fig. 10.13

Thus, ∠CAD > ∠ACB and a similar argument can be made to show
∠CAD > ∠ABC. 2

The Exterior Angle Theorem is Proposition 16 of Book I of the Elements.
Here is another of Euclid’s results, Proposition 10, which can be proven using
the Exterior Angle Theorem.

Theorem 10.31. Every segment AB can be bisected. That is, we can find
a point C with A ∗ C ∗B and AC ∼= CB.

The proof is left as an exercise.

We finish this section with a few basic results on triangle congruence.

Theorem 10.32. (ASA for triangles) Given two triangles ∆ABC and ∆DEF
with ∠BAC ∼= ∠EDF and ∠ACB ∼= ∠DFE and AC ∼= DF , then the two
triangles are congruent.

A

B

C

D

E

F

Fig. 10.14 ASA

Proof: By axiom III-1 there is a unique point G on
−−→
DE with AB ∼= DG.

By SAS ∆ABC ∼= ∆DGF . Thus, ∠ACB ∼= ∠DFG. By transitivity of
angles ∠DFE ∼= ∠DFG. By axiom III-4 this implies that E and G are both
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on the same ray
−−→
EF . If E and G were not the same point then the lines

←→
EF

and
←→
DE would intersect in more than one point, which is impossible. Thus,

∆ABC ∼= ∆DEF . 2
Note that this is part of Proposition 26 in Book I of Elements. This

theorem can be used to show the next theorem, which is the converse of
Theorem 10.25, and also Proposition 6 of Book I of Elements.

Theorem 10.33. If in ∆ABC we have ∠ABC ∼= ∠ACB then AB ∼= AC
and the triangle is isosceles.

Proof: Exercise. 2
The next two theorems deal with the question of constructing a triangle

with three given lengths.

Theorem 10.34. If two points C and D are on opposite sides of a line←→
AB and if AC ∼= AD and BC ∼= BD then ∠ABC ∼= ∠ABD and ∠BAC ∼=
∠BAD, and ∆ABC ∼= ∆ABD.

A B

C

D

A B

C

D

Fig. 10.15

Proof:(Refer to figure 10.15) We may assume that A 6= B. If B is on
CD, then ∠ABC and ∠ABD are supplementary angles. Also, since A
will not be on CD then ∆ADC is a triangle, actually an isosceles triangle.
Thus, ∠ACB ∼= ∠ADB. By SAS we have that ∆ABC ∼= ∆ABD, and thus
∠ABC ∼= ∠ABD and in fact both are right angles. Also, ∠BAC ∼= ∠BAD.

The case where A is on CD can be handled similarly.

If both A and B are not on CD then we have two isosceles triangles
∆BDC and ∆ADC. By Theorem 10.25 we have that ∠ABC ∼= ∠ABD and
∠BAC ∼= ∠BAD.

The result then follows from an application of ASA. 2
The following theorem is essentially Proposition 7 of Book I of Elements.
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Theorem 10.35. With the same assumptions as the previous theorem, but

with C and D on the same side of
←→
AB, then it must be the case that D = C.

(Informally, this says that there is only one way to construct a triangle with
three given side lengths.)

A B

C

E

D

Fig. 10.16

Proof:(Refer to figure 10.16) By axiom III-4 there is a unique ray
−→
AE

on the other side of
←→
AB from C and D with ∠CAB ∼= ∠BAE. We can also

assume that CA ∼= EA. Then, by SAS we have that ∆ABC ∼= ∆ABE.
Then, BE ∼= BC and by the previous theorem (using the transitivity of
segment congruence) we have that ∆ABD ∼= ∆ABE and thus ∆ABC ∼=
∆ABD. But, by axiom III-4 this implies that D must be on

−→
AC and also

on
−−→
BC. Since these rays already intersect at C then D = C. 2
Using Theorem 10.34 we can prove the following familiar congruence

result, which is also Proposition 8 of Book I of Elements.

Theorem 10.36. (SSS) If in two triangles ∆ABC and ∆DEF each pair
of corresponding sides is congruent then so are the triangles.

Proof: Exercise. 2

10.5.2 Segment Ordering

The congruence axioms not only provide basic notions of equality for seg-
ments and angles, they also provide the basis for the ordering of these quan-
tities.

To define an ordering for segments we will need the following two the-
orems. The first is the segment subtraction theorem. (Compare this to
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axiom III-3 above) The second guarantees that betweenness properties are
preserved under segment congruence.

Theorem 10.37. If A ∗B ∗C, D ∗E ∗F , AB ∼= DE, and AC ∼= DF , then
BC ∼= EF .

A

D

C

F

B
E

Fig. 10.17

Proof: Assume that BC is not congruent to EF . We know from axiom

III-1 that there is a point G on
−−→
EF such that BC ∼= EG. Also, G 6= F

because if these two points were equal, then BC ∼= EG and EG ∼= EF
would imply, by transitivity, that BC ∼= EF .

Now, AB ∼= DE. Thus, by axiom III-3 we have that AC ∼= DG. By
transitivity DF ∼= DG. But if F 6= G then DF 6= DG (see the note on
axiom III-1 above). 2

Theorem 10.38. Given AC ∼= DF then for any point B between A and C
there is a unique point E between D and F such that AB ∼= DE.

Proof: By axiom III-1 there is a unique point E on
−−→
DF such that AB ∼=

DE. Now, if E = F then from AC ∼= DF and AB ∼= DF we would have
AC ∼= AB, contradict axiom III-1, as B 6= C.

If E is not between D and F then D ∗ F ∗E. Now, on the opposite ray

to
−→
CA there is a unique point G with FE ∼= CG, by axiom III-1. By the

addition axiom we have that DE ∼= AG. We already have that AB ∼= DE.
Thus, AB ∼= AG.

Now, A∗B ∗C, and since G is on the opposite ray to
−→
CA, then A∗C ∗G.

By 4-point we have that A ∗ B ∗ G, and thus AB cannot be congruent to
AG, and so E must between D and F . 2

We can now define an ordering on segments.

Definition 10.16. We use the notation AB < CD (equivalently CD > AB)
to mean that there is a point E between C and D such that AB ∼= CE.
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Theorem 10.39. (Segment Order)

(i) One and only one of the following holds: AB < CD, or AB ∼= CD,
or AB > CD.

(ii) If AB < CD and CD ∼= EF , then AB < EF .

(iii) If AB > CD and CD ∼= EF , then AB > EF .

(iv) If AB < CD and CD < EF , then AB < EF .

Proof: For the first statement, suppose AB < CD and AB ∼= CD. Then,
there is a point E between C and D such that AB ∼= CE. By transitivity,
CD ∼= CE with E 6= C. This contradicts axiom III-1. (see the note on III-1
above). A similar argument shows that AB > CD and AB ∼= CD is not
possible.

There is only one case left for statement 1 of the theorem, that of AB <
CD and AB > CD. If this is the case then there is a point E between
C and D such that AB ∼= CE and also there is a point F between A and

B such that AF ∼= CD. Now, on the ray opposite
−−→
BA there is a unique

point G with BG ∼= ED, by axiom III-1. We also note that F and G are on
opposite sides of B and thus cannot be equal. By the addition axiom (III-3)

we have that AG ∼= CD. By transitivity AG ∼= AF , with both on ray
−−→
AB.

But, this contradicts axiom III-1 as if AG ∼= AF then G = F .

For the second statement of the theorem, if AB < CD then there is
a point G between between C and D such that AB ∼= CG. Also, by the
previous theorem there is a unique point H between E and F such that
CG ∼= EH. By transitivity AB ∼= EH and thus by definition AB < EF .

A similar argument proves statement 3 of the theorem.

For the fourth statement, we know there is a point H between between
E and F such that CD ∼= EH. Thus, AB < CD and CD ∼= EH. By
statement 2 of the theorem AB < EH. Thus, there is a point K between E
and H with AB ∼= EK. So, E ∗K ∗H and E ∗H ∗ F . By 4-point we have
E ∗K ∗ F . By definition, AB < EF . 2

Exercise 10.5.1. Prove that a line cannot be contained in the interior of a
triangle.

Exercise 10.5.2. Prove Theorem 10.25.

Exercise 10.5.3. Prove Theorem 10.27. Hint: Use the fact that there are two
supplementary angles to a given vertical angle.
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Exercise 10.5.4. Prove the AAS triangle congruence result. That is, given
triangles ∆ABC and ∆DEF if ∠ABC ∼= ∠DEF , ∠BCA ∼= ∠EFD and AC ∼= DF ,
then ∆ABC ∼= ∆DEF .

A

B

C

D

E

F

Fig. 10.18

[Hint: Suppose that BC and EF are not congruent. If EF < BC then there is
a point G between B and C with GC ∼= EF . Show that this leads to a contradiction
of the exterior angle theorem.]

Exercise 10.5.5. Prove that every segment AB can be bisected. [Hint: On
different sides of AB construct the same angle twice, once with vertex A and once
with vertex B. Let C andD be points on the sides of this angle such that AC ∼= BD.

Then, CD meets
←→
AB at some point E . Show that E 6= A, E 6= B using the Exterior

Angle Theorem. Also, use the Exterior Angle Theorem to show that E ∗A ∗B and
A ∗B ∗ E are impossible. Conclude that A ∗ E ∗B and use AAS congruence.]

Exercise 10.5.6. Define what it means to bisect an angle and then prove that
every angle can be bisected. [Hint: Use Theorem 10.31]

Exercise 10.5.7. Prove Theorem 10.33.

Exercise 10.5.8. Prove the SSS congruence result. Hint: Use an argument like
that used in the proof of the corollary to Theorem 10.34.

Exercise 10.5.9. Prove that in any triangle, the greater angle lies opposite the
greater side. [Hint: Figure 10.19]
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A B

C

D

Fig. 10.19

Exercise 10.5.10. Prove that in any triangle, the greater side lies opposite the
greater angle. [Hint: Assume triangle ABC has ∠BCA > ∠BAC. Then, either
AB > BC or AB ∼= BC or AB < BC. Show two of these are impossible.]

10.6 Project 17 - Angle Order

In this project we will explore properties of the ordering of angles. In this
project our exploratory “canvas” will be the canvas of our minds. Feel free
to draw diagrams for each new idea, but be careful to make your arguments
based solely on the theorems and axioms of preceding sections.

Review the theorems that we used to define segment order in the last
section. The properties of segment order depended greatly on the “addition”
and “subtraction” theorems for segments. To explore angle ordering we will
need the following addition and subtraction theorems for angles.

Theorem 10.40. (Angle Addition) Given
−−→
BG between

−−→
BA and

−−→
BC,

−−→
EH

between
−−→
ED and

−−→
EF , ∠CBG ∼= ∠FEH, and ∠GBA ∼= ∠HED, then

∠ABC ∼= ∠DEF .
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B
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G
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D

F

H

Fig. 10.20

Proof: By the crossbar theorem we may assume that G is on AC. (see
figure 10.20) Using axiom III-1 we may also assume that D, F , and H are

points chosen on rays
−−→
ED,

−−→
EF , and

−−→
EH so that AB ∼= ED, CB ∼= FE, and

GB ∼= HE.

Using the congruent angles given in the theorem, and the preceding
segment congruences, we have by SAS that ∆ABG ∼= ∆DEH and ∆GBC ∼=
∆HEF . Thus, ∠DHE ∼= ∠AGB and ∠FHE ∼= ∠CGB.

Now, ∠AGB is supplementary to ∠CGB, and we know by Theorem
10.26 that the supplement to ∠DHE must be congruent to ∠CGB. We
already have that ∠FHE ∼= ∠CGB. By axiom III-4 there is a unique angle

on the same side of
−−→
EH which is congruent to ∠CGB. Thus, the supplement

to ∠DHE must be ∠FHE and D,H, and F are collinear.

Since
−−→
EH is between

−−→
ED and

−−→
EF , then by Theorem 10.17 we have that

D∗H∗F . By the addition axiom (III-3) we have that AC ∼= DF . We already
know that the angles at C and F are congruent and that sides BC and EF
are congruent. Thus, ∆ABC ∼= ∆DEF by SAS, and ∠ABC ∼= ∠DEF . 2

Theorem 10.41. (Angle Subtraction) Given
−−→
BG between

−−→
BA and

−−→
BC, and

−−→
EH between

−−→
ED and

−−→
EF , and ∠CBG ∼= ∠FEH, and ∠ABC ∼= ∠DEF ,

then ∠GBA ∼= ∠HED.

Exercise 10.6.1. Prove this result by filling in the missing pieces (the places
marked why?) in the following proof.

Proof: We can assume that BC ∼= EF and AB ∼= DE, and that
−−→
BG

intersects AC at G and
−−→
EH intersects DF at H. Then CA ∼= FD and

∠BCG ∼= ∠EFH. (Why?)

It follows that CG ∼= FH, BG ∼= EH, and ∠CGB ∼= ∠FHE. (Why?)
The supplements to these last two angles, ∠BGA and ∠EHD are congruent
by Theorem 10.26.
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Then, AG ∼= DH (Why?) and it follows that ∠GBA ∼= ∠HED (Why?).
2

Let’s review the definition of angle order.

Definition 10.17. ∠ABC < ∠DEF
if there exists a point G interior to
∠DEF with ∠ABC ∼= ∠DEG.

B

C

A E

D

E

G

F

The next theorem states that angle order satisfies the usual properties.

Theorem 10.42. (Angle Order)

(i) One and only one of the following holds: ∠A < ∠D, or ∠A ∼= ∠D, or
∠A > ∠D.

(ii) If ∠A < ∠D and ∠D ∼= ∠G, then ∠A < ∠G.

(iii) If ∠A > ∠D and ∠D ∼= ∠G, then ∠A > ∠G.

(iv) If ∠A < ∠D and ∠D < ∠G, then ∠A < ∠G.

Note the similarity between this theorem and the one for segment order-
ing. In fact if we look at the addition, subtraction, and other congruence
results for segments and compare these with the corresponding results for
angles we see that the results are basically identical, except for changing the
word “segment” to “angle” and vice-versa. This should not be too surpris-
ing, as angle ordering is essentially dependent on properties.

Since segments and angles are dual notions, it should not be that difficult
to prove this theorem. All we need to do is look at how we proved segment
ordering and transfer that proof to the setting of angles.

Exercise 10.6.2. Review the proof of Theorem 10.39 and use duality to prove
parts (ii) and (iv) of this theorem.

Let’s look at how angle ordering can be used to prove one of Euclid’s
axioms.

Theorem 10.43. (Euclid’s Fourth Postulate) All right angles are congru-
ent.
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Proof: Let ∠BAC and ∠FEG be two right angles. If D is opposite

of B on
−−→
AB and H is opposite of F on

−−→
EF , then ∠BAC ∼= ∠DAC and

∠FEG ∼= ∠HEG.
Suppose that ∠BAC is not congruent to ∠FEG. By angle ordering,

one of these angles is less than the other. We may assume that ∠FEG is

less than ∠BAC. Then, there is a ray
−→
AI between

−−→
AB and

−→
AC such that

∠BAI ∼= ∠FEG. (see figure 10.21)

H FD BA E

C G

IJ

Fig. 10.21

Since supplements of congruent angles are congruent, (Theorem 10.26)
then ∠DAI ∼= ∠HEG. By angle transitivity ∠DAI ∼= ∠FEG.

Since ∠BAI ∼= ∠FEG and ∠FEG < ∠BAC, then by the previous
theorem we have that ∠BAI < ∠BAC. Likewise, ∠BAI < ∠DAC. Thus,

there is a ray
−→
AJ between

−−→
AD and

−→
AC such that ∠BAI ∼= ∠DAJ .

We know by the definition of ordering that ∠DAC > ∠DAJ . Now, since
I is in the interior of ∠BAC and B ∗A∗D then by part 3 of Theorem 10.19

we know that C will be in the interior of ∠DAI. Thus,
−→
AC is between

−→
AI

and
−−→
AD and ∠DAC < ∠DAI.

Exercise 10.6.3. Put all of the preceding results together to create a string of
angle inequalities to show that ∠DAI > ∠DAI, and thus reach a contradiction to
one of the axioms (which one?)

Thus, ∠BAC must be congruent to ∠FEG. 2

Project Report

In this project we have explored the notion of angle order. In your project
report provide clear and complete solutions to the exercises. In your con-
clusion discuss briefly the idea of duality. Explain in your own words what
this concept means and why it is such a desirable feature, if present, in an
axiomatic system.
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10.7 Continuity Geometry

In the preceding sections we have carefully built-up many of the basic results
in classical Euclidean geometry. However, the development of a geometry
robust enough to handle analytic concepts requires the notion of continuity.
At the most basic level we want to guarantee that lines have no “holes”.
That is, given a line and a point specified as the origin, we want the ability
to reference a point that is 3 units to the right of the origin, or π units to
the left of the origin. The system of incidence, betweenness, and congruence
results covered so far is not sufficient to ensure this idea of continuity.

The material in this section on continuity is perhaps the most technically
challenging, but also the most intellectually fascinating, of the topics covered
in this text. The question of continuity and the construction of real number
measures for segments and angles are among the deepest foundational areas
of geometry. At the heart of this development is the notion of Dedekind
cuts, a device we will use to ensure the continuous distribution of lengths
on lines.

• IV-1 (Dedekind’s Axiom) If the points on a line l are parti-
tioned into two nonempty subsets Σ1 and Σ2 (i.e. l = Σ1 ∪Σ2)
such that no point of Σ1 is between two points of Σ2 and vice-
versa, then there is a unique point O lying on l such that
P1 ∗ O ∗ P2 if and only if one of P1 or P2 is in Σ1, the other is
in Σ2, and O 6= P1 or P2.

Dedekind’s axiom basically says that any splitting of a line into points
that are on distinct opposite sides must be accomplished by a unique point
O acting as the separator. The pair of subsets described in the axiom is
called a Dedekind cut of the line.

Dedekind says of this axiom that

“I think I shall not err in assuming that every one will at once
grant the truth of this statement; the majority of my readers will
be very much disappointed in learning that by this commonplace
remark the secret of continuity is revealed. To this I may say
that I am glad if every one finds the above principle so obvious
and so in harmony with his own ideas of a line; for I am utterly
unable to adduce any proof of its correctness, nor has any one the
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power. The assumption of this property of the line is nothing less
than an axiom by which we attribute to the line its continuity.”

Dedekind’s axiom certainly does not seem “obvious” at first glance, but
upon review it does seem self-evident that two disjoint sets of points on a
line that are split into two sides must have a point separating them.

We will use Dedekind’s axiom in a variety of ways. Our first application
will be in limiting the extremes of “size” of segments. We will need the
following notion.

Definition 10.18. We say that segment CD is laid off n times (n a positive

integer) on a ray
−−→
AB if there is a sequence of points A0 = A,A1, A2, · · · , An

on
−−→
AB with Ak−1Ak ∼= CD for k = 1 · · ·n and A∗Ak∗Ak+1 for k = 1 · · ·n−1.

We also write nCD for laying off CD n times.

Note that a segment CD can always be laid off n times on a ray
−−→
AB

This is a simple consequence of congruence axiom III-1 guaranteeing that

we can always continue “copying” CD along the ray opposite
−−−−−→
AkAk−1 at

each step of the construction.

The following lemma verifies our intuition as to the ordering of a set of
points laid off on a segment.

Lemma 10.44. Let segment CD be laid off n times on
−−→
AB. Let {Ak}n+1

k=0

be the corresponding sequence of points on
−−→
AB. Then, A ∗ Aj ∗ Ak for all

j = 1 · · ·n, k = 2 · · ·n+ 1, with j < k.

Proof: Exercise. 2
Dedekind’s axiom implies Archimedes’ axiom which guarantees that no

point on a line is infinitely far or infinitely close to a given point.

Theorem 10.45. (Archimedes’s axiom) Given a ray
−−→
AB and a segment

CD, then there is a positive integer n such that if we lay off CD n times on−−→
AB (yielding point An) then A ∗B ∗An.

Proof: Suppose that no such n exists, i.e. for all n > 0 the point An
reached by laying off CD n times is not to the “right” of point B. We will
define a Dedekind cut for the line through A,B as follows.

Let Σ1 be the set of points P on
←→
AB such that A ∗ An ∗ P for all n.

Let Σ2 be the set of remaining points on
←→
AB. For all n, An is in Σ2 and

Σ2 is non-empty. Also note that A is in Σ2. Considering point B. By
Betweenness axiom II-3 we know that either A ∗ B ∗ An, or A ∗ An ∗ B, or
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An ∗A∗B. Clearly, An ∗A∗B cannot be true as An is on the ray
−−→
AB. Also,

by assumption there is no n such that A ∗B ∗An. Thus, B is in Σ1 and so
Σ1 is non-empty.

Next we show the betweenness condition in Dedekind’s axiom is satisfied.
Let Q1, R1 be two points of Σ1 and Q2, R2 be points of Σ2. Suppose that
Q2 ∗Q1 ∗R2. For some n1, we have A ∗Q2 ∗An1 , and for some n2, we have
A ∗ R2 ∗ An2 . If n1 6= n2 we can assume that n2 > n1. By the previous
lemma we know that A ∗ An1 ∗ An2 . Since A ∗Q2 ∗ An1 , then A ∗Q2 ∗ An2

by 4-point . Using A ∗Q2 ∗An2 , A ∗R2 ∗An2 , and A ∗An2 ∗Q1 we have by
4-point that A ∗Q2 ∗Q1 and A ∗R2 ∗Q1. Thus, Q2 and R2 are on the same
side of Q1. But, this contradicts the assumption that Q2 ∗Q1 ∗ R2, and so
a point of Σ1 cannot be between two points of Σ2.

Suppose on the other hand that Q1 ∗Q2 ∗R1. A similar argument to the
previous one will show that Q1 and R1 are on the same side of Q2, which is
again a contradiction.

Thus, the conditions for Dedekind’s Axiom are satisfied and there must
be a unique point O with the properties stated in the axiom. If O = An for
some n, then A ∗ O ∗ An+1 would imply by the axiom that An+1 is in Σ1,
which is impossible. If O 6= An, but A ∗O ∗An for some n then O would be
between two points of Σ2, which would also contradict Dedekind’s axiom.
Thus, O must be in Σ1. Also, AO > CD, as if AO < CD, then A ∗O ∗A1,
and O would be in Σ2.

Now, we will show that the existence of point O leads to a contradiction.
First, there is a point X with A∗X ∗O and XO ∼= CD, (Congruence axiom
III-1). Also, X 6= An for any n since if it did match one of the An then
O = An+1, and O would be in Σ2, which is a contradiction. For P in Σ1,
we have A ∗ O ∗ P . Since A ∗ X ∗ O, then by 4-point we have X ∗ O ∗ P .
By Dedekind’s axiom X must be in Σ2. Thus, there is an n > 0 such that
A ∗X ∗ An. Since A ∗ An ∗ O we have by 4-point that X ∗ An ∗ O. By the
previous lemma A∗An∗An+2. Thus, by 4-point we have A∗X ∗An+2. Since
A∗An+2∗O we have again by 4-point that X∗An+2∗O. By segment ordering
we have XO > XAn+2. Now, since A ∗X ∗ An and A ∗ An ∗ An+2 then by
4-point we have X ∗ An ∗ An+2. Thus, XAn+2 > AnAn+2. By transitivity
of segment ordering we have XO > AnAn+2. But, AnAn+2 > AnAn+1 and
AnAn+1

∼= CD ∼= XO. Thus, XO > XO. Since a segment cannot be larger
than itself we have a contradiction. This completes the proof. 2

Note that this theorem implies that no point B can be infinitely far from
a fixed point A, as we can lay off a finite length CD a finite number of times
to exceed B. That is, if we consider CD as a unit length we can find n > 0
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such that nCD > AB. Conversely, if we consider AB as a unit length we
have AB < nCD (or 1

nAB < CD) and thus there is no infinitely small
length.

The following development allows us to talk about the “limit point” of
a nested sequence of intervals.

Definition 10.19. A sequence of segments AnBn (n = 1, 2, 3 · · · ) is called a
nested sequence if for all m and n we have An∗An+1∗Bm and An∗Bm+1∗Bm.

Theorem 10.46. Let AnBn be a nested sequence. Then AnBn ⊂ AmBm
for all n > m. Also, Am∗Ar ∗Bn and An∗Br ∗Bm for any n,m with r > m.

Proof:Let C be an element of Am+1Bm+1.
If C = Am+1, then Am ∗ C ∗ Bm by the definition of a nested sequence

and C is an interior element of AmBm. If C = Bm+1, then Am ∗C ∗Bm by
the definition and again C is an interior element of AmBm.

Otherwise, we can assume that Am+1 ∗ C ∗ Bm+1. We are given that
Am+1 ∗Bm+1 ∗Bm. By 4-point we have Am+1 ∗C ∗Bm, or Bm ∗C ∗Am+1.
Again, it is given that Bm ∗ Am+1 ∗ Am. By 4-point we have Bm ∗ C ∗ Am,
and C is an interior element of AmBm.

So, Am+1Bm+1 ⊂ AmBm. Likewise, Am+2Bm+2 ⊂ Am+1Bm+1, and so
Am+2Bm+2 ⊂ AmBm. Similarly, Am+kBm+k ⊂ AmBm. for all k > 1. If we
let n = m+ k the proof of the first part of the theorem is finished.

For the second part of the theorem we note that Am ∗ Am+1 ∗ Bn and
Am+1 ∗ Am+2 ∗ Bn are true by definition of a nested sequence. Reversing
these, we get Bn ∗ Am+2 ∗ Am+1 and Bn ∗ Am+1 ∗ Am. By 4-point we then
have Bn ∗ Am+2 ∗ Am. Again, by definition, Bn ∗ Am+3 ∗ Am+2. Since
Bn ∗Am+2 ∗Am we get by 4-point that Bn ∗Am+3 ∗Am. Continuing in this
fashion, we get that Bn ∗ Ar ∗ Am, or Am ∗ Ar ∗ Bn, for r > m. A similar
argument can be used to show An ∗Br ∗Bm for r > m. 2

Theorem 10.47. (Cantor’s Axiom) Suppose that there is an infinite nested
sequence of segments AnBn (n > 0) on a line l. Suppose there does not exist
a segment which is less than all of the segments AnBn. Then, there exists a
unique point O belonging to all the segments AnBn.

Proof: We define a Dedekind cut for the line l as follows. Let Σ1 consist
of all of the points Bn along with any other point X with the property that
A1 ∗ Bn ∗ X for some n. Intuitively, this cut consists of all of the right
endpoints of the segments in the sequence, along with all of the points to
the “right” of these endpoints. Let Σ2 consist of all remaining points on the
line. We claim that Σ2 contains all of the points Am. By the definition of a
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nested sequence we know that Am 6= Bn for any m,n. Suppose A1 ∗Bn ∗Am
for some n. Clearly, m > 1. But, A1 ∗Bn ∗Am contradicts the second claim
of the previous theorem, which says that Am ∗ Ar ∗ Bn for any n,m with
r > m. In particular, the theorem would imply that A1 ∗ Am ∗ Bn. Thus,
Σ1 and Σ2 are non-empty sets.

To show that the betweenness property of Dedekind’s axiom is satisfied,

we first point out that Σ1 is entirely contained in
−−−−→
A1, B1 and thus we need

not consider points in Σ2 that lie on the ray opposite to
−−−−→
A1, B1. This is

because the theorems of section 10.2 show that no point in a ray can be
between points on the opposite ray, and vice-versa. Thus, it suffices to

consider points W,X, Y, Z with W,X in Σ1, Y,Z in Σ2, and Y, Z on
−−−−→
A1, B1.

We first show that W ∗Y ∗X is impossible. We know that Y must satisfy
Y ∗A1 ∗Bn or A1 ∗ Y ∗Bn for all n. Since we assumed Y is not on the ray

opposite to
−−−−→
A1, B1, we must have A1 ∗ Y ∗Bn for all n. Since X is in Σ1 we

have A1 ∗ Bn ∗X for some n. Since A1 ∗ Y ∗ Bn and A1 ∗ Bn ∗X, then by
4-point we get A1 ∗Y ∗X. Now, if W ∗Y ∗X then, without loss of generality,
we can assume that A1 ∗X ∗W (or W ∗X ∗A1). Using 4-point we get that
Y ∗X ∗ A1, or A1 ∗X ∗ Y . This contradicts the fact that A1 ∗ Y ∗X and
thus Y cannot be between W and X.

On the other hand suppose that Y ∗W ∗Z. We can assume that A1∗Z∗Y
(or Y ∗ Z ∗ A1). By 4-point we get A1 ∗W ∗ Y , which contradicts the fact
that A1 ∗W ∗ Y can be shown using the techniques of the previous case.

Thus, we have constructed a Dedekind cut for l and there must be a
unique point O separating Σ1 and Σ2. We need to show that O belongs to
all of the segments An ∗ Bn. This is clear since if An is in Σ2 and Bn is in
Σ1, then by Dedekind’s axiom we have An ∗O ∗Bn.

We are basically done now except to show that O is unique. Suppose
there is a second point O′ belonging to all of the segments AnBn. Then,
OO′ is contained in all An ∗ Bn. (This can be proven using a betweenness
argument and is left as an exercise). Let O′′ be the midpoint of OO′. (The
midpoint is guaranteed to exist by Theorem 10.31) Then, OO′′ is less than
any of the segments AnBn which contradicts a hypothesis of the theorem.
2

We are beginning to develop some of the analytic properties of geometry
that are so familiar from high school math and calculus. In the following two
sections we will put our intuitive notions of segment and angle measurements
on a solid footing.
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10.7.1 Segment Measure

In this section we develop a way of measuring the length of segments. That
is, we develop a function from segments to the real numbers that satisfies
our usual notions of length. In this development we will make extensive use
of the “arithmetic” of segments.

Definition 10.20. Given a segment a = AA′, a segment b = BB′ and a
segment c = CC ′, we say that c is the sum of a and b, denoted c = a+ b if
there exists a point X with C ∗X ∗ C ′ and AA′ ∼= CX and BB′ ∼= XC ′. If
we refer to a + b, then it is implicitly assumed that there exists a segment
c such that c = a+ b. By the properties of segment ordering and addition,
we have that all possible choices of c are congruent. Thus, the definition of
a + b is well-defined up to congruence, and if we say c = a + b, then the
equality is defined up to congruence. That is, in this arithmetic, a + b = c
means a+ b ∼= c.

Theorem 10.48. Given segments a, b, c, d we have

(i) a+ b = b+ a

(ii) (a+ b) + c = a+ (b+ c)

(iii) if a < b then a+ c < b+ c

(iv) if a < b and c < d then a+ c < b+ d

(v) if a = b and c = d then a+ c = b+ d

Proof:Part (i) is clear from the definition.

For part (ii) let a + b = PQ. Then there is a point R with P ∗ R ∗ Q
and PR ∼= a and RQ ∼= b. Let S be a point with P ∗ Q ∗ S and QS ∼= c.
Then, (a + b) + c is congruent to PS by definition. It can easily be shown
that a+ (b+ c) is also congruent to PS.

For part (iii) let a = AA′ and b = BB′. then, if a < b, there must be a
point P with B ∗P ∗B′ and AA′ ∼= BP . Let d = PB′. Then, b = a+ d. So,
b+ c = a+ d+ c = a+ c+ d. Thus, since (a+ c) is less than (a+ c) + d, by
the definition above, we have that a+ c < b+ c.

For part (iv) we have from part (iii) that a+c < b+c. Also, c+b < d+b,
or equivalently, b+c < b+d. Thus, by segment ordering we have a+c < b+d.

Part (v) is a simple consequence of the congruence properties of seg-
ments. 2
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Definition 10.21. The product of a positive integer n with a segment a is
defined as follows: For n = 1, let 1a = a. For n > 1 define na = (n−1)a+a.
This defines the product inductively.

We will be particularly interested in the arithmetic of dyadic segments.
These are defined in terms of dyadic numbers, numbers of the form m

2n , with
m,n integers and m > 1, n ≥ 0.

Definition 10.22. Given a segment a = AB, construct a sequence of seg-
ments {sn} for n > 0 as follows: For n = 0 let s0 = AB. For n = 1 let M1

be the midpoint of AB and s1 = AM1. (The midpoint exists by Theorem
10.31) For n = 2 let M2 be the midpoint of AM1 and s2 = AM2. Continue
this pattern by letting Mn be the midpoint of AMn−1 and sn = AMn. Note
that 2nsn = a. Define 1

2na to be the segment sn. Define m
2na = m 1

2na, for
m a positive integer. Then, m

2na will be called a dyadic segment.

Note that it follows immediately from the definition that 1
2k

( 1
2l
a) =

1
2(l+k)

a. Thus, for example, 2k 1
2(l+k)

a = 2k 1
2k

( 1
2l
a) = 1

2l
a. The following

result provides an arithmetic of dyadic segments.

Theorem 10.49. Let w and v be dyadic numbers and a and b segments.
Then,

(i) wa = wb iff a = b.

(ii) w(a+ b) = wa+ wb

(iii) (w + v)a = wa+ va

(iv) if a < b then wa < wb

(v) if w < v then wa < va

(vi) if wa < wb then a < b

(vii) if wa < va then w < v

Proof: If w and v are positive integers, then the theorem is simply a
corollary of Theorem 10.48.

Since m
2na = m 1

2na, all we have to show is that the theorem holds for
w = 1

2k
and v = 1

2l
.

For part (i) of the theorem, note that if 1
2k
a = 1

2k
b, then 1

2k
a + 1

2k
a =

1
2k
b+ 1

2k
b, by the previous theorem, and so 2 1

2k
a = 2 1

2k
b. Continuing to add
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successively, we get that 2k 1
2k
a = 2k 1

2k
b. But, 2k 1

2k
a = a and likewise for b,

ad so a = b.
On the other hand, if a = b, then by the definition of dyadic segments,

we have wa = wb.
For part (ii) note that 2k(w(a + b)) = 2k 1

2k
(a + b) = (a + b). Also,

2k(wa+ wb) = (wa+ wb) + (wa+ wb) + · · · (wa+ wb) (k times). So,

2k(wa+ wb) = (wa+ wa+ · · ·+ wa) + (wb+ wb+ · · ·+ wb)

= (2kwa) + (2kwb)

= a+ b

Thus, 2k(w(a + b)) = 2k(wa + wb) and by part (i) we have w(a + b) =
wa+ wb.

Part (iii) is left as an exercise.
For part (iv) if a < b, then either wa < wb, or wa = wb, or wa > wb.

By part (i) wa = wb is impossible. Suppose wa > wb. Then, by the
previous theorem, we have wa+wa > wb+wa and wa+wb > wb+wb. By
segment ordering we get 2wa > 2wb. Likewise, mwa > mwb for m > 0. In
particular, 2kwa > 2kwb. But, 2kwa = a and 2kwb = b. Thus, a > b, which
is impossible. So, wa < wb.

Part (v) is left as an exercise.
Parts (vi) and (vii) follow immediately from (iv) and (v) and the defini-

tion of dyadic segments. 2
We are now in a position to define segment measure.

Theorem 10.50. Given a segment u, which we will call a unit segment,
there is a unique way of assigning a real number, called the length and
denoted by µ(a), to any segment a such that

(i) µ(a) > 0 for all a.

(ii) a = b iff µ(a) = µ(b).

(iii) a < b iff µ(a) < µ(b).

(iv) µ(a+ b) = µ(a) + µ(b).

(v) µ(u) = 1.

Proof: Let D denote the set of all dyadic numbers and a be any segment.
We will split D into two sets Da1 and Da2 as follows:

w ∈ Da1 if wu > a

w ∈ Da2 if wu ≥ a



10.7. CONTINUITY GEOMETRY 443

These two sets are clearly disjoint, and by the Archimedean axiom, the
two sets must be non-empty. Also, no dyadic number in one of the sets can
be between two elements of the other. For suppose that w2 of Da2 is between
w1 and v1 of Da1 . Then, we can assume w1 < w2 < v1. The previous theorem
implies that w1u < w2u < v1u, but this violates the definition of Da1 and
Da2 . Likewise, no element of Da1 can be between two elements of Da2 .

This division of the set of dyadic numbers is thus a Dedekind cut of the
the dyadic numbers. The set of real numbers has the property that every
such cut has a unique separating element, call it µa, that is between all
elements of Da1 and Da2 . Define the length of a, denoted µ(a), to be this
number, i.e. µ(a) = µa.

We now have a well-defined function from segments a to the real num-
bers. If a = u then it is clear that the dyadic number 1 will separate Du1
and Du2 . Thus, part (v) of the theorem is proven.

To prove the rest of the theorem it will be helpful to start with part (iv).
We need to show that, for any dyadic numbers w1 and w2, if w1 < µa+µb <
w2, then w1 ∈ Da+b

1 and w2 ∈ Da+b
2 . Now, if w1 < µa + µb then we can find

two other dyadic numbers w′1 and w′′1 such that w1 = w′1 +w′′1 and w′1 < µa,
w′′1 < µb. Thus, w′1 is in Da1 and w′′1 is in Db1. Equivalently,

w′1u < a and w′′1u < b. (10.1)

Thus, w1u = w′1u+w′′1u < a+ b, and so w1 ∈ Da+b
1 . In a similar fashion

we can show that w2u > a+ b and so w2 ∈ Da+b
2 . This finishes the proof of

part (iv).

To prove part (i) of the Theorem, we note that the Archimedean property
states that given a = AA′ we can find an n such that na > u. Let p be
chosen such that 2p > n. Now 2pa > u, or 1

2pu < a. Thus, 1
2p is in Da1 . Since

µ(a) must separate Da1 from Da2 , we get that µ(a) > 1
2p > 0.

For parts (ii) and (iii) of the theorem, we will prove half the iff statement
first. That is, we will show that a = b implies µ(a) = µ(b) and a > b implies
µ(a) < µ(b).

Suppose a = b. Then, by segment ordering and congruence properties,
we have wu < a iff wu < b. Thus, the Dedekind cuts for a and b are identical
and µ(a) = µ(b).

Suppose a < b and let a = AA′ and b = BB′. Since a < b there is a
point C with B ∗C ∗B′ and AA′ ∼= BC. Let c = C. Then a+ c = b and by
part (iv) we have µ(a) + µ(c) = µ(b). Since µ(c) > 0 we have µ(a) < µ(b).

Now, for the other half of statements (ii) and (iii). Suppose µ(a) = µ(b).
Then either a = b or a < b or a > b. The last two are impossible, as they
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imply µ(a) < µ(b) or µ(a) > µ(b), by the previous section of this proof.
Thus, a = b.

Suppose µ(a) < µ(b). Then either a < b or a = b or a > b. If a = b or
a > b we again get a contradiction, and thus a < b.

Finally, we must show that µ is unique. Suppose there was another
function φ on segments with the properties of the theorem. Then, φ(u) = 1.
Suppose for some segment a that φ(a) 6= µ(a). We may assume φ(a) < µ(a).
There exists a dyadic number 1

2n such that φ(a) + 1
2n < µ(a).

Let b = a + 1
2nu. Then, a < b. Let c be the “difference”of a and b, i.e

the segment remaining on b that is not congruent to a. By the Archimedean
axiom we can find k such that 1

2k
u < c. Also, there is a number j such that

j 1
2k
u ≤ a, but (j + 1) 1

2k
u ≥ a. Then,

a ≤ (j + 1)
1

2k
u =

1

2k
u+ j

1

2k
u < c+ a = b

Thus, we have found a dyadic number w = (j + 1) 1
2k
u such that a ≤

wu < b. Thus, w = µ(wu) ≥ µ(a). However, we also have

w = φ(wu) < φ(b) = φ(a) +
1

2n
< µ(a)

which is a contradiction, and µ must be unique. 2
With this theorem we are now at liberty to talk about the “sum” of two

segments and to interpret the sum and difference of segments in terms of
their numerical lengths. We will use the notation AB for the length of AB.

Theorem 10.51. (Triangle Inequality) In a triangle each side is less than
the sum of the other sides.

A B

C

D

Fig. 10.22 Triangle Inequality

Proof: Let the triangle be given as ∆ABC. On the ray opposite to
−−→
BA

we can find a point D such that BD ∼= BC. Now, ∠ACD > ∠BCD and
∠BCD ∼= ∠BDC as triangle BDC is isosceles. Thus, ∠ACD > ∠BDC. In
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triangle ACD, we have ∠ACD > ∠ADC and thus, by Congruence Exercise
10.5.10, AD > AC. But, AD = AB + BD by the previous theorem. So,
AC < AB +BD and since BD ∼= BC we have AC < AB +BC. 2

We note here that this is Proposition 20 from Book I of Elements.

Theorem 10.52. Given a line
←→
BC and a point A not on the line, the

perpendicular AD from A to a point D on the line has the shortest distance

among all segments from A that intersect
←→
BC.

A

B CD

A’

E

Fig. 10.23

Proof: Let E be a point not equal to D on
←→
BC. We can find a point

A′ on the ray opposite to
−−→
DA such that A′D ∼= AD. Then, triangles ADE

and A′DE will be congruent by SAS. Also, AE + A′E > AA′ by triangle
inequality. Thus, 2AE > 2AD and we are done. 2

The next theorem guarantees the “completeness” of lines.

Theorem 10.53. Let OI be a unit segment. Then, for every positive real
number x there is a segment OX such that OX = x.

Proof: We know from the properties of the real numbers that we can
find a Dedekind cut of the set of dyadic numbers such that x is the unique
separator for this cut. Given a unit segment u = OI we can extend u

(or find midpoints) to construct segments on
−→
OI, starting at O, such that

they have lengths given by these dyadic numbers. From the theorem on the
construction of angle measure, we know that the natural order of the dyadic
numbers will be mirrored by the right endpoints of these segments.

Now, there is some dyadic number w0 below x and some dyadic number
v0 above x, by the Archimedean axiom. In the proof of the uniqueness of
segment measure we showed that one can always find a dyadic number that s
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between any two real numbers. Thus, we can find W1 and v1 such that w0 <
w1 < x and x < v1 < v0. We can continually find such numbers, creating
a sequence of dyadic intervals converging to x. By the order-preserving
relationship between dyadic numbers and endpoints described above, this

nested sequence will correspond to a nested sequence of intervals on
−→
OI,

by considering the points wku and vju. We can choose these intervals of
dyadic numbers such that |vn−wn| goes to zero. Thus, there cannot be any
segment in this nested sequence which has length less than all the others.
We have thus satisfied the conditions of Cantor’s Theorem, ad there must
be a unique point X belonging to all of the segments. By the definition of
the length function, OX = x. 2

We end this section with a result about segment length in triangles.

Theorem 10.54. Let ABC be a triangle. Suppose that there are two lines←→
BD and

←→
CD that meet at a point D that is inside the triangle. Then,

BD + CD < BA+ CA, but ∠BDC > ∠BAC.

A

B C

D

E

Fig. 10.24

Proof: Since D is interior to the triangle then
−−→
BD will intersect side AC

at some point E with A ∗E ∗C. In triangle ABE we have that AB+AE >
BE by the triangle inequality theorem. Then, AB+AE+EC > BE+EC.
Since A ∗E ∗ C we have AE +EC = AC and thus AB +AC > BE +EC.

Similarly in triangle CDE we can get CE + ED > CD. Add BD to
both sides and combine to get CE +BE > CD +BD.

Then, by segment ordering we have that since AB + AC > BE + EC
and CE +BE > CD +BD then AB +AC > CD +BD as was claimed in
the theorem.

In triangle CDE exterior angle ∠BDC > ∠DEC. But ∠DEC is an
exterior angle for triangle ABE and thus ∠DEC > ∠BAE. Thus, by angle
ordering ∠BDC > ∠BAE and this finishes the proof. 2

This is Proposition 21 of Book I of Elements.
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10.7.2 Angle Measure

First we will need a Dedekind property for angles.

For the purposes of the next theorem we will say a ray
−−→
BD is within the

angle ABC if it is either interior to the angle or coincides with one of the
sides.

Theorem 10.55. (Dedekind’s Axiom for Angles) If the rays within an angle
ABC are partitioned into two nonempty subsets σ1 and σ2 such that no ray

of σ1 is between two rays of σ2 and vice-versa, then there is a unique ray
−−→
BO

within angle ABC such that
−−→
BO is between two interior rays

−−→
BP1 and

−−→
BP2

if and only if one of
−−→
BP1 or

−−→
BP2 is in σ1, the other is in σ2, and

−−→
BO does

not coincide with
−−→
BP1 or

−−→
BP2. We will call such a partition a Dedekind cut

for ∠ABC.

Proof: Consider segment AC. We know by earlier work on betweenness
that the only rays within ∠ABC are those which intersect AC, and for each
point D on AC with A∗D∗C, we know that BD is interior to ∠ABC. Thus,
since σ1 and σ2 partition the angle, and there is a direct correspondence
between rays within the angle and points on AC, then the intersections of
the rays in σ1 and σ2 will partition the points on AC.

We define a Dedekind cut on
←→
AC as follows. First,

−−→
BC must be in one

of σ1 or σ2. We can assume that it is in σ2. Then,
−−→
BA cannot also be in σ2,

for if it was then any ray in σ1 would be between two rays of σ2, as every

interior ray is between
−−→
BA and

−−→
BC. So,

−−→
BA is in σ1. On the line

←→
AC define

Σ1 to be the set of intersection points of rays of σ1 with AC (thus A is in

Σ1 ) along with the ray opposite to
−→
AC. Let Σ2 be the set of intersection

points of rays of σ2 with AC (thus C is in Σ2 ) along with the ray opposite

to
−→
CA. Then, Σ1 and Σ2 partition

←→
AC.

Does this cut satisfy the betweenness condition for Dedekind’s axiom?
Suppose that X,Y are in Σ1 and Z is in Σ2 with X ∗ Z ∗ Y . If Z is not on

AC then it is on the opposite ray to
−→
CA. But, X,Y are on ray

−→
CA, and

thus it is impossible for X ∗Z ∗ Y . So, Z must be on AC. Now, if X,Y are

both not on AC, then both X,Y would be on the ray opposite
−→
AC and Z

would also be on this ray, since X ∗Z ∗Y . This contradicts Z being on AC.
Thus, one of X or Y must be on AC. Suppose that X is on AC. If

Y is not on AC, then Y would be on the ray opposite
−→
AC and both X,Z

would be on
−→
AC. Then, Z ∗A ∗ Y as Z, Y are on opposite sides of A. Since

X ∗ Z ∗ Y we have X ∗ Z ∗ A by 4-point , and thus Z would be between
two points of Σ1, which is impossible. We are forced to conclude that all of
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X,Y, Z are on AC. But, then X ∗Z ∗Y would imply that the rays associated
with these points have this betweenness property which is impossible by the
hypotheses of the theorem.

An exactly analogous argument rules out the possibility of X in Σ1 and
Z,W in Σ2 with Z ∗X ∗W .

Thus, there is a unique point O on
←→
AC with the properties specified by

Dedekind’s axiom. If O ∗ A ∗ C then O is on the ray opposite
−→
AC, and we

can find the midpoint of OA and a point E with E ∗O∗A and then O would
be between two points of Σ1 which is impossible. Likewise, it is impossible
for A ∗ C ∗O. Thus, the only possibilities left are that O = A or O = B or

A ∗O ∗C. If O = A or O = B then ray
−−→
BO will have the desired properties.

If A∗O ∗C again
−−→
BO will have the desired properties since the betweenness

properties for rays will follow directly from those of points on the segment
AC. 2

Note the slight difference in the Dedekind property for angles, as com-
pared to segments. The angle property is valid for a bounded set of angles,
while the segment property is defined for a line, which is unbounded.

There is an Archimedean axiom for angles, just as there was for segments.

Theorem 10.56. (Archimedes Axiom for Angles) Given an angle ∠ABC
and an angle ∠DEF then there is a positive integer n such that if we lay off

∠DEF n times beginning on
−−→
BA (yielding

−−→
BAn) then ∠ABC < ∠ABAn.

The proof of the Archimedes axiom for angles is very similar to the proof
of Archimedes axiom for segments. It depends on the properties of angles,
each of which can be translated to an equivalent property for segments.

Note that this theorem implies that there is no infinitely small angle or
infinitely large angle, just as we had for segments.

We can now construct angle measure. The proof of this result is basically
the same as that for segment measure and will be omitted.

Theorem 10.57. Given an angle ∠IOT , which we will call a unit angle,
there is a unique way of assigning an angle measure, denoted by ν(∠ABC),
to any angle ∠ABC such that

(i) ν(∠ABC) > 0 for all angles ABC.

(ii) ∠ABC ∼= ∠DEF iff ν(∠ABC) = ν(∠DEF ).

(iii) If ∠ABC < ∠DEF then ν(∠ABC) < ν(∠DEF ).

(iv) If
−−→
BD is between

−−→
BA and

−−→
BC then ν(∠ABD)+ν(∠CBD) = ν(∠ABC).
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(v) ν(∠IOT ) = 1.

Note that it is not important what the unit angle ∠IOT is or what angle
measure it is assigned. We could just as well start with a right angle and
assign it an angle measure of 90 degrees, or π

2 or 1 for that matter. Let us
assume that the unit angle is a right angle and that it has measure equal to
90degrees.

Theorem 10.58. The measure of an acute angle is less than 90. The
measure of any angle is less than 180. The measure of an angle plus the
measure of its supplement adds to 180.

Proof: The first part of the theorem is clear from the definition of an
acute angle. For the second part, the result is clear if the angle is acute or

right. Suppose that ∠BAC is obtuse. Find B′ on the opposite ray to
−−→
AB

and D on the same side of the line through A,B such that ∠BAD is a right
angle. (see figure 10.25)

B’ BA

D

C

Fig. 10.25

By the definition of an obtuse angle we have that
−−→
AD is between

−→
AC and−−→

AB and thus the measure of ∠BAC is the sum of the measures of angles
BAD and DAC.

Now, by Theorem 10.24 we have that
−→
AC is between

−−→
AB′ and

−−→
AD. Thus,

∠DAC is acute and the measure of ∠BAC is 90 + β, where β < 90.

For the third part, the result is obvious if the given angle is a right
angle. Otherwise, since the supplement of an acute angle is obtuse and the
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supplement of an obtuse angle is acute by Theorem 10.29 we can assume
that we have an angle BAC that is obtuse. Let α1 be the measure of ∠BAC.
Let α2 be the measure of ∠DAC and α3 be the measure of ∠B′AC. Then,
using exactly the same reasoning as in the preceding two paragraphs we
have that

α1 = 90 + α2, 90 = α3 + α2.

Then, the sum of ∠BAC and its supplement is

α1 + α3 = 90 + α2 + 90− α2 = 180.

2
Note that the proceeding result on angles and their supplements is ac-

tually Proposition 13 of Book I of em Elements.

Theorem 10.59. If the measures of two adjacent angles adds to 180 then
the angles are supplementary.

Proof: Let ∠BAC and ∠CAD share side
−→
AC and have measure summing

to 180. Now, let ∠CAE be the supplement to ∠BAC. Since the sum of the
measures of ∠CAE and ∠BAC also sum to 180 by the previous theorem,
we have that the measure of ∠CAE equals the measure of ∠CAD and thus
by the angle measure theorem we have that ∠CAE ∼= ∠CAD. The result
follows by Congruence Axiom III-4. 2

This result is the converse to the third part of the previous theorem and
is also Proposition 14 of Book I of em Elements.

The next result is a fundamental property of angles in a triangle.

Theorem 10.60. The sum of the measures of any two angles of a triangle
is always less than 180 degrees.

Proof: Exercise. 2
This result is Proposition 17 of Book I of em Elements.

Exercise 10.7.1. Let AB be a segment and let C 6= C ′ be two points contained
in AB. Use a betweenness argument to show that the segment CC ′ is contained in
AB.

Exercise 10.7.2. Prove Lemma 10.44 by repeatedly using Theorem 10.11.

Exercise 10.7.3. Prove part (iii) of Theorem10.49. [Hint: if w = 1
2k

and v = 1
2l

,
find a common denominator for w + v and argue (using the note following the
definition of dyadic segments) that one can re-arrange terms to get (w + v)a =
wa+ va.]

Exercise 10.7.4. Prove part (v) of Theorem10.49. [Hint: If w = 1
2k

and v = 1
2l

,
find a common denominator and argue that w < v implies wa < va]
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10.8 Basic Results of Absolute Geometry

The previous sections set up the axiomatic basis for our intuitive ideas of
incidence, betweenness, congruence, and continuity in geometry. We have
been extremely careful to develop results independent of hidden assumptions
and diagrams, although we made use of diagrams to illustrate proofs.

We still have one more type of continuity to consider, but before we do,
let’s take a short break to see how we are doing in comparison to Euclid.

Euclid’s first two axioms on the existence and extensibility of segments
are essentially covered in Hilbert’s axiom III-1. The third axiom on circles
becomes a definition in Hilbert’s scheme.

Definition 10.23. A circle with center O and radius given by segment OR
is the set of points P such that OR ∼= OP .

The fourth axiom becomes a theorem which we proved at the end of the
section on congruence.

We have not yet touched on the one axiom that has been the most
debated, Euclid’s fifth and final axiom – the parallel axiom. Before we
consider the ramifications of this axiom, and how Hilbert handles it, we
are going to take a side trip to more fully develop those results which are
independent of the parallel axiom.

These results have traditionally been grouped into the category of ab-
solute geometry. They hold true in Euclidean as well as non-Euclidean
geometries that satisfy the axioms given earlier in this chapter.

In the following results we assume that the reader has spent some time
covering the axiomatic development earlier in this chapter. Thus, we will
not justify every step as fully as we did in prior sections.

Definition 10.24. A line t is called transversal to two other lines l and m
if t intersects both lines and the lines are not coincident.

Definition 10.25. Let t be transversal to l and m, meeting l at A and m at
A′. (see figure 10.26) Incidence axiom I-3 guarantees that there is at least
one other point on lines l and m and Betweenness axiom II-2 guarantees
that there are additional points such that we can choose points B and C on
l with B ∗A ∗ C and B′ and C ′ on m with B′ ∗A′ ∗ C ′.
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l

m

t

A

A’

C

C’

B

B’

Fig. 10.26

Then ∠CAA′,∠C ′A′A,∠BAA′ and ∠B′A′A are called interior angles.
(The angles having AA′ as a side) Also, ∠CAA′ and ∠B′A′A are called
alternate interior angles as are ∠C ′A′A and ∠BAA′. All other angles formed
are called exterior angles. Pairs of angles, one interior and one exterior, on
the same side of the transversal, are called corresponding angles.

Definition 10.26. Two lines are parallel if they do not intersect.

Theorem 10.61. (Alternate Interior Angle Theorem) If alternate interior
angles are congruent then the lines are parallel,

Proof: We are given that ∠CAA′ ∼= ∠B′A′A as shown in figure 10.27.
Assume that the two lines did meet at some point D. We can assume that
D is on the same side of t as B and B′.

l

m

t

A

A’

C

C’

B

B’ D

E

Fig. 10.27
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There is a point E on
−→
AC such that AE ∼= A′D. By SAS ∆A′AE ∼=

∆AA′D. Thus, ∠DAA′ ∼= ∠EA′A. Now, ∠DAA′ and ∠EAA′ are sup-
plements. By Theorem 10.26 we know that since ∠EAA′ ∼= ∠DA′A then
∠DAA′ ∼= ∠C ′A′A. But, the triangle congruence gave ∠DAA′ ∼= ∠EA′A.
So, ∠C ′A′A ∼= ∠EA′A. But axiom III-4 on the uniqueness of angles would
then imply that E must be on m which is impossible, as then we would have
two distinct lines intersecting in more than one point. 2

Note that this is Proposition 27 of Book I of em Elements.

Theorem 10.62. If two lines are cut by a transversal so that corresponding
angles are congruent then the two lines are parallel.

Proof: Exercise. 2

Theorem 10.63. If two lines are cut by a transversal so that the interior
angles on the same side are supplementary then the two lines are parallel.

Proof: Exercise. 2
Note that these two theorems make up Proposition 28 of Book I of

Elements.

Definition 10.27. Two lines that intersect are perpendicular if one of the
angles made at the intersection is a right angle.

Theorem 10.64. (Existence of Perpendiculars) For every line l and every
point P there is a line through P that is perpendicular to l.

A l

P

B

P’

Q

Fig. 10.28

Proof: There are two cases to consider. First, assume that P is not
on l. (see figure 10.28) By axiom I-2 we can assume that l has two points

A and B. On the opposite side of l from P we can find a ray
−−→
AP ′ such
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that ∠P ′AB ∼= ∠PAB. We can also assume that P’ is chosen such that
AP ∼= AP ′.

Let Q be the point of intersection of PP ′ with l. If Q = A then ∠P ′AB

and ∠PAB are supplementary and congruent, thus right angles and
←−→
PP ′

will be perpendicular to l. If Q 6= A then by SAS we have ∆P ′AQ ∼=
∆PAQ. Then, the angles in the triangle at Q will be congruent and we get
a perpendicular at Q.

Now, assume that P is on l. By axiom I-3 we know there is a point R
not on l. By the previous part of the proof we can drop a perpendicular
from R to l, yielding a right angle. By axiom III-4 we can copy this right
angle twice to either side of l at P getting a perpendicular. 2

Note that this is essentially Propositions 11 and 12 of Book I of Elements.
These two theorems have the following extremely useful corollaries.

Corollary 10.65. Two lines that are perpendicular to the same line are
parallel.

Proof: Suppose that lines l and m are both perpendicular to line t.
Considering t as a transversal, then the alternate interior angles made are
both right angles and hence congruent. Then, the lines are parallel by the
Alternate Interior Angle Theorem. 2

Note that this implies that the perpendicular dropped from a point to
a line must be unique, since if there were two lines through the same point
that were both perpendicular to the same line, then they would have to be
parallel.

Corollary 10.66. Through a point there is only one line perpendicular to
a given line.

Corollary 10.67. If l is a line and P is a point not on l, then there is at
least one parallel to l through P .

Proof: By the theorem above there is a unique perpendicular t through
P to l. There is also a unique perpendicular m through P to t. Then, t is
perpendicular to both l and m and so l and m are parallel. 2

Note that this result is Proposition 31 of Book I of Elements. Also note
that the parallel through P is not necessarily unique. In fact there are
geometries which satisfy all of the axioms discussed so far in this chapter for
which there are multiple parallels through P . Hyperbolic geometry is one
such example.

The following result is an immediate consequence of the existence of mid-
points (Theorem10.31) and the existence of perpendiculars to a line through
a point.
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Corollary 10.68. Every segment has a unique perpendicular bisector.

Here is a pair of Euclid’s Propositions (24 and 25) from Book I of Ele-
ments.

Theorem 10.69. Given ∆ABC and ∆A′B′C ′, AB ∼= A′B′ and BC ∼=
B′C ′, if ∠ABC < ∠A′B′C ′ then AC < A′C ′.

Proof: There is a unique ray BC ′′ on the same side of
←→
AB as C such

that ∠A′B′C ′ ∼= ∠ABC ′′ and B′C ′ ∼= BC ′′. (see figure 10.29) Then, by
SAS ∆A′B′C ′ ∼= ∆ABC ′′. Thus, ∠ABC < ∠ABC ′′. If we can prove that
AC < AC ′′, then we would also have AC < A′C ′.

A B

C

C’’
D

Fig. 10.29

Since ∠ABC < ∠ABC ′′ then C is interior to ∠ABC ′′ and by the crossbar

theorem,
−−→
BC intersects AC ′′ at some point D with A ∗D ∗ C ′′.

Now, if D = B, then A,B, and C ′′ would be collinear which contradicts
the fact that ABC ′′ is a triangle.

If D = C then A ∗ C ∗ C ′′ and AC < AC ′′.
If D 6= C we can use Exercise 10.5.10 to reduce the proof to showing that

∠AC ′′C < ∠ACC ′′ in triangle ACC ′′. Also, either B ∗D ∗ C or B ∗ C ∗D.
Suppose B ∗ D ∗ C. Then D is interior to ∠ACC ′′. (see figure 10.30)

Thus, ∠ACC ′′ > ∠DCC ′′. Since ∆BCC ′′ is isosceles ∠DCC ′′ ∼= ∠CC ′′B.
Lastly, D is interior to ∠CC ′′B and so ∠CC ′′B > ∠AC ′′C. Thus, using the
theorems on ordering we have that ∠ACC ′′ > ∠AC ′′C.

A B

C

C’’

D

Fig. 10.30
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If B ∗ C ∗ D consider triangle DCC ′′ (figure refneutral-11-2fig). Then,
∠ACC ′′ > ∠DCC ′′ (D is interior to ∠ACC ′′, ∠DCC ′′ > ∠BC ′′C (exterior
angle theorem), ∠BC ′′C ∼= ∠BCC ′′ (isosceles triangle), and ∠BCC ′′ >
∠AC ′′C (exterior angle theorem). Thus, ∠ACC ′′ > ∠AC ′′C. 2

Theorem 10.70. Given the same hypotheses as the previous theorem, if
AC < A′C ′ then ∠ABC < ∠A′B′C ′.

Proof: Exercise. 2
This finishes a whirlwind tour of absolute geometry. The observant (and

patient) reader will see that we have now proven all of the first 28 Proposi-
tions of Book I of Elements except two! Surprisingly, the very first Proposi-
tion is still in question, as is Proposition 22. In the next section, we develop
the idea of continuity of figures, which will allow us to handle these propo-
sitions.

Exercise 10.8.1. Prove Theorem 10.62. Hint: Suppose the lines intersect and
find a contradiction.

Exercise 10.8.2. Prove Theorem 10.63.

Exercise 10.8.3. Prove Theorem 10.70.

10.9 Continuity and Intersections

To prove Euclid’s first proposition (the one on constructing an equilateral
triangle) we need a type of continuity that is quite different from the number
line and angle continuity we developed in previous sections. In Euclid’s proof
of Proposition 1 he implicitly assumes that a circle with points inside and
outside of another circle must intersect that circle somewhere. We need to
prove that such continuity arguments can be backed up. We start with the
case of a line and a circle.

Definition 10.28. Let O be a point and let AB be a segment. The circle
of radius AB and center O is the set of all points P such that OP ∼= AB.
Those points P such that OP < AB are called interior points (or are said
to be em inside the circle). If OP > AB the point is exterior (outside).

Theorem 10.71. (Line-Circle Continuity) Let c be a circle with center O
and radius AB. If a line l passes through an interior point P of the circle,
then it intersects the circle in exactly two points.
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Proof: There are two cases to consider. First, suppose that O is on l.
Then, on the two rays on either side of O on l we know by congruence axiom
III-1 that we can find unique points I1 and I2 with OI1

∼= AB ∼= OI2 and
we are done.

Now, suppose that O is not on l. We can drop a perpendicular from O
to l which intersects at some point Q. Then, Q must be an interior point of
the circle. This is obvious if Q = P . If Q 6= P then OQP is a right triangle
and thus by the exterior angle theorem and by Exercise 10.5.10 we have that
OQ < OP and thus Q is interior. (see figure 10.31)

O

P

l

Q

R

T

Fig. 10.31

We will partition l as follows. Let T be a point on l with P ∗ Q ∗ T .

Note that
−→
QT and

−−→
QP are opposite rays on l at Q. Let Σ1 consist of

−→
QT

together with all of the points X on l with OX < AB. Let Σ2 consist of
the remaining points of l. Clearly, Σ1 is not empty. Also, we know there is

a point R on
−−→
QP with QR = AB. Then, since OQR is a right triangle we

have that OR > QR and R is in Σ2.
For the betweenness condition of Dedekind’s axiom let Q1, R1 be two

points of Σ1 and Q2, R2 be points of Σ2. Suppose that Q1 ∗Q2 ∗R1. There

are three cases to consider. First, if Q1 and R1 are both on
−→
QT , then Q2

cannot be between these two points as it is on the opposite ray. Second,

suppose only one of Q1 and R1 is on
−→
QT . We may assume that Q1 is. Then,

OR1 < AB and R1, Q2 are both on the same side of Q on l. Now, since
Q1∗Q∗Q2 and Q1∗Q2∗R1 then by 4-point Q∗Q2∗R1. Since OQQ2 is a right
triangle and Q ∗Q2 ∗R1 then by a simple argument using the exterior angle
theorem and Exercise 10.5.10 we have that OQ2 < OR1. But, OR1 < AB,
and so OQ2 < AB which is impossible. Lastly, suppose both Q1 and R1 are

on the ray
−−→
QP with OQ1 < AB and OR1 < AB. Then, since Q1 ∗Q2 ∗R1,
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we can use another triangle argument to show that OQ2 < AB which is
impossible.

Now, suppose that Q2 ∗ Q1 ∗ R2. This is impossible if Q1 is on
−→
QT , as

Q2 and R2 are on the opposite ray. Otherwise, Q1 < AB and Q1 is on the

ray opposite to
−→
QT . Then one of Q2 and R2 is on the same side of Q1 as Q.

We can assume that Q2 is on the same side of Q1 as Q. Then, Q ∗Q2 ∗Q1.
A triangle argument, as was used above, leads to a OQ2 < AB which is
impossible.

Thus, by Dedekind’s axiom there is a unique point K separating Σ1 and
Σ2. We claim that OK ∼= AB, and thus that K is an intersection point of

the ray
−−→
QP and the circle.

For suppose that OK < AB. Then, AB−OK > 0. On the vector oppo-

site to
−−→
KQ we can find a point S with KS = AB −OK. (see figure 10.32)

By the triangle inequality we have

OS < KS +OK = AB.

O

P

l

Q
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Fig. 10.32

Thus, S is in Σ1. But, this would imply that K is between two points of
Σ1, namely S and Q, which is impossible. A similar argument shows that
OK > AB is not possible.

Thus, OK ∼= AB. It is left as an exercise to show that K must be on−−→
QP .

Will this intersection point be unique? Assume that there is another

point of intersection K ′ of ray
−−→
QP with the circle. Let M be the mid-

point of KK ′. Then, triangles OKM and OK ′M are congruent by the SSS
congruence theorem and thus ∠OMK ∼= ∠OMK ′ and both must be right
angles. But, we know by theorem 10.66 and its corollaries that the perpen-
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dicular from O to l must be unique, which implies that Q = M . But, this is
impossible since if K and K ′ are both on the same side of Q, then all points
on KK ′ are on that side of Q. Thus, K is unique.

To finish the proof we need to find an intersection point along the ray−→
QT . To find this intersection we just switch the definition of Σ1 and Σ2

above so that Σ1 consists of
−−→
QP together with all of the points X on l with

OX < AB, and Σ2 is everything else on l. Then, we would get a unique

intersection point along
−→
QT . 2

We end this section with the circle-circle continuity theorem. We will
first need to show that Dedekind’s axiom can be extended to arcs of circles.

Definition 10.29. Let c be a circle with center O. If A 6= B are two points
on c then we call the segment AB a chord of the circle. If a chord passes
through the center O we say it is a diameter of the circle.

Definition 10.30. A chord AB of a circle c will divide the points of a circle

c into two parts, those points of c on one side of
←→
AB and those on the other

side. Each of these two parts is called an open arc of the circle. An open
arc determined by a diameter is called a semi-circle.

Note that we are defining arcs and semi-circles as sets which do not
contain the endpoints A and B. If we include the endpoints we would call
the arc or semi-circle closed.

In order to extend Dedekind’s axiom to arcs of circles we need to have a
notion of betweenness for points on arcs.

Definition 10.31. Let AB be a diameter of a circle c with center O and
let σ be one of the associated semi-circles of the diameter. Let P,Q,R be

points on σ. Then we say that R is between P and Q if the ray
−−→
OR is

between
−−→
OP and

−−→
OQ. (see figure 10.33)
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c
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Fig. 10.33
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Theorem 10.72. Dedekind’s axiom and the Archimedean property can both
be extended to semi-circles of circles.

Proof: The definition of betweenness for points on an arc is that of be-
tweenness for rays in an angle. It is left as an exercise to show that there
is a 1-1 and onto correspondence between points on a semi-circle and rays
interior to the angle defined by the diameter. What this correspondence
allows us to do is to substitute any statement about points on an arc, in-
cluding betweenness properties of such points, to statements about rays in
an angle and betweenness properties of rays. Since we have already proven
extensions of Dedekind’s Axiom and the Archimedean property for angles,
then we automatically have these same properties for points on a semi-circle.
2

We are almost ready to prove circle-circle continuity. But, first we need
the following result.

Theorem 10.73. Let c1, c2 be two circles with centers O1, O2 and radii
r1, r2. Suppose that c1 has one point X inside and one point Y outside of
c2. Then, the line through the centers O1, O2 must meet circle c1 in two
points A,B with one of these points inside c2 and the other outside c2.

Proof: Since O1 is inside of c1 then by the Line-Circle Theorem we have

that
←−−→
O1O2 intersects c1 in two points A and B. There are three cases to

consider for point A. Either A ∗O1 ∗O2 or O1 ∗A ∗O2 or O1 ∗O2 ∗A.
Case (1): A ∗O1 ∗O2. (see figure 10.34) Then

AO2 = AO1 +O1O2

Or,
AO2 = r1 +O1O2

O
2

c
2

O
1

c
1

A
B

Y

X

Fig. 10.34
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Also, by triangle inequality for triangle O1Y O2 we have

O2Y < O1O2 + r1

Since O2Y > r2 we have

r2 < O1O2 + r1

Combining the equations above we get that r2 < AO2 and A is outside
c2.

Case (2): O1 ∗A ∗O2. (see figure 10.35) Then,

O1O2 = O1A+AO2 = r1 +AO2
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O
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B A
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Fig. 10.35

Also, by triangle inequality for triangle O2XO1 we have

O1O2 < r1 +O2X

Combining the equations above we get that O2A < O2X < r2 and A
must lie inside c2.

case (3): O1 ∗O2 ∗A. A similar argument to case (2) shows that A must
lie inside of c2.

What about point B? If A ∗ O1 ∗ O2 (and thus A is outside c2) then,
O1 ∗B ∗O2 or O1 ∗O2 ∗B, as A and B must be on opposite sides of O1. In
both cases, B will be inside c2. If O1 ∗A∗O2 or O1 ∗O2 ∗A, then B ∗O1 ∗O2.
and A will be outside and B inside c2. 2

Theorem 10.74. (Circle-Circle Continuity) Let c1, c2 be two circles with
centers O1, O2 and radii r1, r2. Suppose that c1 has one point X inside and
one point Y outside of c2. Then, the two circles intersect in two points.
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Proof: The proof of this result is much like the line-circle continuity
result and will be sketched.

Using the previous theorem we can assume there is a diameter AB of c1

with A inside c2 and B outside c2. Let σ = arc(APB) denote one of the
two semi-circles defined by AB. (see figure 10.36)
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Define a Dedekind cut for σ as follows. Let Σ1 consist of those points on
σ that are inside circle c2 along with point A. Let Σ2 consist of those points
on σ that are on or outside circle c2 along with point B. Clearly, these two
sets are non-empty. Let Q be a point with A∗P ∗Q on σ. Consider triangle
OPO′ and OQO′. Then, OO′ ∼= OO′, OP ∼= OQ and ∠O′OP < ∠O′OQ,
by the definition of on arcs. Thus, then by Theorem 10.69 we have that
O′P < O′Q. It is left as an exercise to show that this fact implies the
betweenness condition in Dedekind’s axiom.

By Dedekind’s axiom for arcs, there is a unique point M separating Σ1

and Σ2. We need to show that O2M = r2, where r2 is the radius of c2.

Suppose O2M < r2. Let s = r2 − O2M . We can find a point R such

that
←−→
O1M and

←−→
MR do not coincide and MR ≤ s

2 . (see figure 10.37)
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We can assume that ∠MO1R is not a right angle. For if it were a right
angle , then we could find the midpoint R′ of RM and use this in place of
R to get MR′ < s

2 with ∠MO1R
′ not a right angle.

There exists a ray
−−→
O1T on the other side of

−−→
O1R such that ∠RO1T ∼=

∠MO1R, with
−−−→
O1M and

−−→
O1T forming a well-defined angle. By the Circle-

Line intersection theorem,
−−→
O1T will intersect c1 at a point M ′. By the

crossbar theorem
−−→
O1R will intersect MM ′ at some point U .

Then, by SAS triangles MO1U and UO1M
′ are congruent and the angle

at U is a right angle. Then, ∆MUR is a right triangle and UM < s
2 , and

MM ′ < s.
Now, if ∠MO1B > ∠MO1M

′ then we can find a ray
−−−−→
O1M

′′ interior
to ∠MO1B such that ∠MO1M

′ > ∠MO1M
′′, and we would have a chord

MM ′′ such that in triangle O2MM ′′

O2M ′′ < O2M +MM ′′

< O2M + s

< r2

But, this implies that M ′ is inside c2 and also on arc MB, which means that
M is between two points of Σ1, namely M ′′ and A, which is impossible.

Now, if ∠MO1B < ∠MO1M
′, then, by Theorem 10.69, MB < MM ′.

Thus, we can find a chord MB, contained in the arc MB such that MB < s,
and again this leads to a contradiction 2

Exercise 10.9.1. Prove Euclid’s first proposition, filling in the gaps on the issue
of continuity.
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Exercise 10.9.2. Prove Euclid’s Proposition 22. That is, show that given three
segments a, b, and c with a + b > c, a + c > b, and b + c > a, that a triangle can
be constructed with sides congruent to these segments. [Hint: Use circles!]

Exercise 10.9.3. Prove case (3) of Theorem 10.73.

Exercise 10.9.4. Finish the proof that the betweenness condition in Dedekind’s
axiom is satisfied in the proof of Theorem 10.74.

10.10 Parallelism

We have completed our development of absolute, or neutral, geometry,
putting all of Euclid’s first 28 propositions on a firm axiomatic founda-
tion. A sound development of the remaining propositions (29-48) can now
be carried out, if one adds a final axiom, the parallel axiom.

Hilbert uses Playfair’s axiom for parallelism.

• V-1 Given a line l and a point P not on l, it is possible to
construct one and only one line through P parallel to l.

Using this axiom we can prove all of the propositions of Book I and have
thus produced a solid foundation of Euclidean geometry.



Appendix A

Book I of Euclid’s Elements

A.1 Definitions

1. A point is that which has no part.

2. A line is breadthless length.

3. The extremities of a line are points.

4. A straight line is a line that lies evenly with the points on itself.

5. A surface is that which has length and breadth only.

6. The extremities of a surface are lines.

7. A plane surface is a surface that lies evenly with the straight lines on
itself.

8. A plane angle is the inclination to one another of two lines in a plane
that meet one another and do not lie in a straight line;

9. And when the lines containing the angle are straight, the angle is called
rectilinear.

10. When a straight line set up on a straight line makes the adjacent
angles equal to one another, each of the equal angles is right, and
the straight standing on the other is called a perpendicular to that on
which it stands.

11. An obtuse angle is an angle greater than a right angle.

12. An acute angle is an angle less than a right angle.

465
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13. A boundary is that which is an extremity of anything.

14. A figure is that which is contained by any boundary or boundaries.

15. A circle is a plane figure contained by one line such that all the straight
lines falling upon it from one point among those lying within the figure
are equal to one another;

16. And the point is called the center of the circle.

17. A diameter of the circle is any straight line drawn through the center
and terminated in both directions by the circumference of the circle,
and such a straight line also bisects the circle.

18. A semicircle is the figure contained by the diameter and the circum-
ference cut off by it. And the center of the semicircle is the same as
that of the circle.

19. Rectilinear figures are those that are contained by straight lines, tri-
lateral figures being those contained by three, quadrilateral those con-
tained by four, and multilateral those contained by more than four
straight lines.

20. Of trilateral figures, an equilateral triangle is that which has its three
sides equal, an isosceles triangle that which has two of its sides equal,
and a scalene triangle that which has its three sides unequal.

21. Further, of trilateral figures, a right-angled triangle is that which has a
right angle, an obtuse-angled triangle that which has an obtuse angle,
and an acute-angled triangle that which has its three angles acute.

22. Of quadrilateral figures, a square is that which is both equilateral and
right-angled; an oblong that which is right-angled but not equilateral; a
rhombus that which is equilateral but not right-angled; and a rhomboid
that which has its opposite sides and angles equal to one another but
is neither equilateral nor right-angled. And let quadrilaterals other
than these be called trapezia.

23. Parallel straight lines are straight lines that, being in the same plane
and being produced indefinitely in both directions, do not meet one
another in either direction.



A.2. THE POSTULATES (AXIOMS) 467

A.2 The Postulates (Axioms)

1. To draw a straight line from any point to any point.

2. To produce a finite straight line continuously in a straight line.

3. To describe a circle with any center and distance.

4. That all right angles are equal to one another.

5. That, if a straight line falling on two straight lines make the interior
angles on the same side less than two right angles, the two straight
lines, if produced indefinitely, meet on that side on which are the angles
less than two right angles.

A.3 Common Notions

1. Things that are equal to the same thing are also equal to one another.

2. If equals be added to equals, the wholes are equal.

3. If equals be subtracted from equals, the remainders are equal.

4. Things that coincide with one another are equal to one another.

5. The whole is greater than the part.

A.4 Propositions (Theorems)

I-1 On a given straight line to construct an equilateral triangle.

I-2 To place at a given point (as an extremity) a straight line equal to a
given straight line. [Given a length and a point, we can construct a
segment of that length from the point.]

I-3 Given two unequal straight lines, to cut off from the greater a straight
line equal to the less. [Given two segments of different lengths, we can
cut off from the larger a segment equal to the smaller.]

I-4 If two triangles have the two sides equal to two sides, respectively,
and have the angles contained by the equal straight lines equal, they
will also have the base equal to the base, the triangle will be equal to
the triangle, and the remaining angles will be equal to the remaining
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angles, respectively, namely those that the equal sides subtend. [SAS
Congruence]

I-5 In isosceles triangles the angles at the base are equal to one another,
and if the equal straight lines be produced further, the angles under
the base will be equal to one another.

I-6 If in a triangle two angles be equal to one another, the sides that
subtend the equal angles will also be equal to one another.

I-7 Given two straight lines constructed on a straight line (from its ex-
tremities) and meeting in a point, there cannot be constructed on the
same straight line (from its extremities) and on the side of it, two
other straight lines meeting in another point and equal to the former
two, respectively, namely each to that which has the extremity with it.
[Given a base length and two other lengths, there is only one triangle
possible on a particular side of the base.]

I-8 If two triangles have the sides equal to two sides, respectively, and
have also the base equal to the base, they will also have the angles
equal that are contained by the equal straight lines. [SSS Congruence]

I-9 To bisect a given rectilinear angle.

I-10 To bisect a given finite straight line.

I-11 To draw a straight line at right angles to a given straight line from
a given point on it. [Given a line and a point on the line, we can
construct a perpendicular to the line at the point.]

I-12 To a given infinite straight line, from a given point that is not on it,
to draw a perpendicular straight line. [Given a line and a point not
on the line, we can construct a perpendicular to the line through the
point.]

I-13 If a straight line set up on a straight line make angles, it will make
either two right angles or angles equal to two right angles. [Supple-
mentary angles add to 180.]

I-14 If with any straight line, and at a point on it, two straight lines not
lying on the same side make the adjacent angles equal to two right
angles, the two straight lines will be in a straight line with one another.
[Given two angles that share a line as a common side, if the angles add
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to 180, then the non-shared sides of the two angles must be coincident
on a line.]

I-15 If two straight lines cut one another, they make the vertical angles
equal to one another. [Vertical Angle Theorem]

I-16 In any triangle, if one of the sides be produced, the exterior angle is
greater than either of the interior and opposite angles. [Exterior Angle
Theorem]

I-17 In any triangle two angles taken together in any manner are less than
two right angles.

I-18 In any triangle the greater side subtends the greater angle. [In a
triangle the larger side is opposite the larger angle.]

I-19 In any triangle the greater angle is subtended by the greater side. [In
a triangle the larger angle is opposite the larger side.]

I-20 In any triangle two sides taken together in any manner are greater
than the remaining one. [Triangle Inequality]

I-21 If on one of the sides of a triangle, from its extremities, there be
constructed two straight lines meeting within the triangles, the straight
lines so constructed will be less than the remaining two sides of the
triangle, but will contain a greater angle. [Given triangle ABC, if
we construct triangle DBC with D inside ABC, then DB < AB,
DC < AC, and the angle at D will be greater than the angle at A.]

I-22 Out of three straight lines, which are equal to three given straight
lines, to construct a triangle: thus it is necessary that two of the
straight lines taken together in any manner should be greater than
the remaining one. [To construct a triangle from three lengths, it is
necessary that when you add any pair of lengths, the sum is greater
than the other length.]

I-23 On a given straight line and at a point on it, to construct a rectilinear
angle equal to a given rectilinear angle. [Angles can be copied.]

I-24 If two triangles have the two sides equal to two sides, respectively, but
have one of the angles contained by the equal sides greater than the
other, they will also have the base greater than the base.
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I-25 If two triangles have the two sides equal to two sides, respectively, but
have the base greater than the base, they will also have one of the
angles contained by the equal straight lines greater than the other.

I-26 If two triangles have the two angles equal to two angles, respectively,
and one side equal to one side, namely, either the side adjoining the
equal angles, or that subtending one of the equal angles, they will
also have the remaining sides equal to the remaining sides and the
remaining angle to the remaining angle. [AAS and ASA Congruence]

I-27 If a straight line falling on two straight lines make the alternate angles
equal to one another, the straight lines will be parallel to one another.
[Given two lines cut by a third, if the alternate interior angles are
congruent then the lines are parallel.]

I-28 If a straight line falling on two straight lines make the exterior angle
equal to the interior and opposite angle on the same side, or the interior
angles on the same side equal to two right angles, the straight lines
will be parallel to one another. [Given two lines cut by a third, if the
exterior and opposite interior angles on the same side of the cutting
line are congruent, the lines are parallel. Or, if the interior angles on
the same side add to 180, the lines are parallel.]

The first 28 propositions listed are independent of
Euclid’s fifth postulate. They are called neutral
propositions. Proposition 29 is the first proposition
where Euclid explicitly requires the fifth postulate
to carry out the proof.

I-29 A straight line falling on parallel lines makes the alternate angles equal
to one another, the exterior angle equal to the interior and opposite
angle, and the interior angles on the same side equal to two right
angles.

I-30 Straight lines parallel to the same straight line are parallel to one
another.

I-31 Through a given point, to draw a straight line parallel to a given
straight line. [Given a line and a point not on the line, we can construct
a parallel to the line through the point.]
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I-32 In any triangle, if one of the sides be produced, the exterior angle is
equal to the two opposite and interior angles, and the three interior
angles of the triangle are equal to two right angles. [The sum of the
angles of a triangle is 180 degrees. The exterior angle is equal to the
sum of the opposite interior angles.]

I-33 The straight lines joining equal and parallel straight lines (at the ex-
tremities that are) in the same directions (respectively) are themselves
equal and parallel. [Given a quadrilateral ABCD with AB congruent
and parallel to CD, then AD must be congruent and parallel to BC.]

I-34 In parallelogrammic areas the opposite sides and angles are equal to
one another, and the diameter bisects the areas. [Given parallelogram
ABCD, both pairs of opposite sides are congruent, and both pairs of
opposite angles are congruent. Also, the diagonals split the parallelo-
gram into two equal parts.]

I-35 Parallelograms that are on the same base and in the same parallels are
equal to one another. [Given two parallelograms ABCD and ABEF
with C,D,E, F collinear, then the parallelograms have the same area.]

I-36 Parallelograms that are on equal bases and in the same parallels are
equal to one another. [Given two parallelograms ABCD and EFGH,
with AB congruent to EF , A,B,E, F collinear, and C,D,G,H
collinear, then the parallelograms have the same area.]

I-37 Triangles that are on the same base and in the same parallels are
equal to one another. [Given two triangles ABC and ABD, with CD
parallel to AB, then the triangles have the same area.]

I-38 Triangles that are on equal bases and in the same parallels are equal to
one another. [Given two triangles ABC and DEF , with AB congruent
to DE, A,B,D,E collinear, and CF parallel to AB, then the triangles
have the same area.]

I-39 Equal triangles that are on the same base and on the same side are
also in the same parallels. [Given two triangles ABC and ABD having
the same area and on the same side of AB, then CD must be parallel
to AB.]

I-40 Equal triangles that are on equal bases and on the same side are also
in the same parallels. [Given two triangles ABC and DEF having the
same area, with AB congruent to DE, A,B,D,E collinear, and the



472 APPENDIX A. BOOK I OF EUCLID’S ELEMENTS

two triangles being on the same side of AB, then CF must be parallel
to AB.]

I-41 If a parallelogram have the same base with a triangle and be in the
same parallels, the parallelogram is double that of the triangle. [The
area of a triangle is half that of a parallelogram with the same base
and height.]

I-42 To construct, in a given rectilinear angle, a parallelogram equal to a
given triangle. [It is possible to construct a parallelogram with a given
angle having the same area as a given triangle.]

I-43 In any parallelogram the complements of the parallelograms about the
diameter are equal to one another.

[Given parallelogram ABCD and
its diameter AC, letK be a point on
the diameter. Draw parallels EF to
BC and GH to AB, both through
K. Then, complements EKBG and
HKFD have the same area.]

B C

A D

K
E

F

H

G

I-44 To a given straight line, to apply in a given rectilinear angle a par-
allelogram equal to a given triangle. [It is possible to construct a
parallelogram on a given segment with a given angle having the same
area as a given triangle.]

I-45 To construct in a given rectilinear angle a parallelogram equal to a
given rectilinear figure. [It is possible to construct a parallelogram
with a given angle having the same area as a given polygon.]

I-46 On a given straight line to describe a square. [It is possible to construct
a square on a given segment.]

I-47 In right-angled triangles the square on the side subtending the right
angle is equal to the squares on the sides containing the right angle.
[Pythagorean Theorem]
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I-48 If in a triangle the square on one of the sides be equal to the squares on
the remaining two sides of the triangle, the angle contained by the re-
maining two sides of the triangle is right. [Converse to the Pythagorean
Theorem]





Appendix B

Brief Guide to Geometry
Explorer

Geometry Explorer is designed as a geometry laboratory where one can cre-
ate geometric objects (like points, circles, polygons, areas, and the like),
carry out transformations on these objects (dilations, reflections, rotations,
and translations), and measure aspects of these objects (like length, area,
radius, and so on). As such, it is much like doing geometry on paper (or
sand) with a ruler and compass. However, on paper such constructions
are static—points placed on the paper can never be moved again. In Ge-
ometry Explorer all constructions are dynamic. One can draw a segment
and then grab one of the endpoints and move it around the canvas with
the segment moving accordingly. Thus, one can create a construction and
test out hypotheses about the construction with numerous variations of the
original construction. Geometry Explorer is just what the name implies—an
environment to explore geometry.

Non-Euclidean geometry can easily be explored using Geometry Ex-
plorer. Constructions can be carried out in a Euclidean or non-Euclidean
(Poincaré model) environment using the same user interface. Almost all
actions that apply in the Euclidean environment can be carried out in the
non-Euclidean environment (with a few important exceptions that depend
on the parallel postulate).

Fractal geometry can be explored using turtle graphics and grammatical
descriptions of fractals. In turtle graphics, one controls a “turtle” on the
screen by telling it to move, draw, rotate, change color, and so forth.

This appendix provides a brief introduction to the capabilities of Geom-
etry Explorer. As such this guide is necessarily incomplete. Only the basic
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functionality of the program is covered. A complete user’s manual for the
program is available from the author.

B.1 The Main Geometry Explorer Window

Upon starting Geometry Explorer you will see the main Geometry Explorer
Euclidean window appear on the screen (Fig. B.1).

There are four important areas within this window.

1. The Canvas is where geometry is created and transformed. This is the
large white area on the right side of the main window.

2. The Tool panel is where geometric tools are located. The Tool panel is
directly to the left of the Canvas. It consists of a set of iconic buttons
that represent tools used to create and modify geometric figures. The
icons (pictures) on the buttons depict the function that the particular
button serves. Sometimes this function is quite clear, other times it
is less intuitive, but the pictures serve as reminders as to what the
buttons can do. The Tool panel is split into four sub-panels: Create,
Construct, Transform, and Color Palette. Note that the cursor is over
the Info tool (the one with the question mark). A small box with
the words Get Info on Object appears below the button. This box is
called a Tool Tip. Tool tips appear as the cursor sits over a button for
a second or two. Tool tips are designed to give quick information on
a button’s purpose.

3. The Menu Bar includes nine menus: File, Edit, View, Measure,
Graph, Misc, Turtle, Windows, and Help. Each of these menus
controls specific user actions.

4. The Message box is where detailed information will be shown concern-
ing various tools that one may wish to use. In Fig. B.1 the mouse
cursor is over the Info tool. In the Message box we see information
concerning how this tool should be used. (Other system information
may also appear in the Message box.) The Message box is located
below the Canvas.
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Fig. B.1 The Geometry Explorer Main (Euclidean) Window
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B.2 Selecting Objects

The Selection tool is perhaps the
most widely used of all the Geom-
etry Explorer tools. A selected ob-
ject is singled out from all of the
other objects in the Canvas so that
it can be uniquely identified for fur-
ther use. The most important thing
to remember about the selection
process is that the Selection button
in the Create panel must always be
clicked in order for selection to be
possible. In the figure at right the
Selection tool is currently in use as
indicated by its pressed-in appear-
ance.

Selections are carried out using the mouse or by using the Select All
menu option under the Edit menu. All mouse actions use the left mouse
button, or a single button for those mice having just one button. The
selection of objects via the mouse can be carried out in three ways.

Single Selection One clicks on a single object to select it.

In the figure at right we have a cir-
cle and a segment. Suppose we wish
to select the circle. We would first
click on the Selection button (in the
Create panel) to make the Selection
tool active. Then we would move
the mouse to the Canvas and click
somewhere along the circle. In the
figure, we see that the circle is se-
lected. Note the rectangular boxes
that appear on the circle. These
boxes are used to visually signify
that the circle is currently selected.
Also note that a message appears
in the Message box telling the user
what object is being selected.
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Multiple Selection To do a multiple selection we hold down the Shift
key as we click on objects.

In the figure at right we have cre-
ated a line segment and a point.
Suppose we want to construct a par-
allel line to the segment through
the point. Since a parallel is con-
structed from a line and a point,
we need to select these two items.
Make the Selection tool active (i.e.,
click on it) and click on a white
area in the Canvas to unselect all
objects. To do a multiple selec-
tion, hold down the Shift key and
click on the segment and then the
point. The Parallel and Perpendic-
ular tools should now be active in
the Construct panel. A button will
be active when a beveled white line
appears around it. You should see
something like the figure at right.

At this point you can click on
the Parallel tool (the fourth but-
ton in the top row in the Con-
struct panel). Geometry Explorer
will then carry out the construc-
tion. Note how the newly con-
structed parallel line is created in
a selected state.

Box Selection One can draw a Selection box about a set of objects
to select all of the objects enclosed in the box.
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In the figure at right, a series of
points have been created. Suppose
that we wanted to draw a polygon
through this set of points. It would
be tedious to do a multiple selection
of each point.

We can select all the points us-
ing the Selection box. First make
sure that the Selection tool is ac-
tive. Then click in the upper left-
hand corner of the Canvas and drag
to create a Selection box surround-
ing all of the points. The Selection
box will be visually identified by its
red appearance.

At this point the Closed Poly-
gon tool (second from left in bottom
row of the Construct panel) will be
active. Click on it to draw the de-
sired polygon. You should see a fig-
ure similar to that of the one at
right. Note that the Selection box
remains visible until we select some
other object.
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B.3 Active vs. Inactive Tools

We have talked a lot about how to make tools active so that they can be
utilized. Some tools are always active. Others can change from active to
inactive and vice versa depending on user actions. For example, tools in
the Create panel are always available for use—they are always in an active
state. Most other tools will start out in an inactive state. An inactive tool
can be visually identified by its grayed-out appearance. When a tool is in
an inactive state, clicking on that tool will have no effect. To activate an
inactive tool one needs to select the kinds of objects that the tool needs in
order to function. For example, to activate the Midpoint tool (second one
in first row of the Construct panel), one needs to select a segment first and
then the Midpoint tool will become active.

B.4 Labels

All objects are created with labels, but the label is invisible at first. To
make a label visible, use the Text/Label tool in the Create panel (the one
with the “A” on it).

In the figure at right we have cre-
ated several objects. The labels on
these objects are made visible by
first clicking on the Text/Label tool
in the Create panel and then click-
ing on the object to make its label
visible. Labels are created in alpha-
betical order based on order of ob-
ject creation. Points A and B were
created first, then circle a, then line
b. Note that points are created with
capital letters, whereas lines, cir-
cles, and arcs have lowercase labels.

If we want to edit a label, we
double-click on an object using the
Text/Label tool. If we double-click
on point B, we get a label edit dia-
log window as shown.
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We can change the label to an-
other name, say “cool point,” and
hit “Okay” to change the label in
the Canvas.

Sometimes a label can get par-
tially obscured by other objects. In
the figure at right the label “a” for
the line segment AB is partially ob-
scured by the label for point A.

To move a label, we use the
Text/Label tool in the Create
panel. Click on this button and
click near the middle letter of the
label on the Canvas. Then drag the
label to the desired position. Note
that the label cannot be placed any-
where. Labels can only be moved
within a limited area around the ob-
ject to which they are attached. In
the figure at right we have placed
the labels in a better position.

B.5 Object Coloring

We can change the color of an object that exists in the Canvas by using the
Color Palette in the Tool panel. The Color Palette consists of a set of color
squares on the bottom left of the main window. To change an object’s color
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we first select the object and then click on a color square to immediately
change that object’s color. If we select a group of objects (using multiple
selection), then all objects in that group will have their color changed to the
desired color.

The color of the label of an object can be changed by first clicking on the
object with the Text/Label tool and then clicking on a color in the Color
Palette.

B.6 Online Help

There is an extensive online help system that can be accessed via the Help
menu item in the Menu bar at the top of the main Geometry Explorer
window. Click on this menu item and then on the Help sub-menu to start
the help system. The help system is designed as a series of Web pages that
are viewed by an Internet browser that is built into Geometry Explorer. No
additional software is needed to view these Web pages. The help system
is organized into categories that roughly correspond to the visual areas in
the Geometry Explorer window—panels, menus, and so on. There are many
examples available in the help system from an introductory to advanced
level.

B.7 Undo/Redo of Actions

Geometry Explorer provides the user with the ability to undo almost any
action that arises from some geometric construction.

For example, in the figure at right
we have created (in order of cre-
ation) a circle, a segment, and the
midpoint of the segment.
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Suppose we decide the midpoint
construction is not needed. We can
undo the midpoint action by choos-
ing Undo midpoint (Edit menu).
The midpoint construction will be
undone, leaving just the circle and
segment.

At this point if we decided that the segment was also a mistake, we could
undo again to get rid of the segment. Undoing yet another time would erase
the circle and leave a totally blank Canvas.

Now suppose we decided that we really did like the circle, segment, and
midpoint that we had initially constructed. Then we could redo all of the
steps that we just undid. This is done by choosing Redo (Edit menu).

Geometry Explorer provides the user with an unlimited ability to undo
and redo steps. This capability is very useful for showing someone the
sequence of steps that produced a geometric figure.

Note that objects can only be undone/redone in the order in which they
were created. If you want to simply hide an object, select the object and
choose Hide Object (View menu).

B.8 Clearing and Resizing the Canvas

To clear the Canvas of all objects currently constructed, choose Clear (Edit
menu). This action will clear all currently defined objects. Note that this is
different than “undoing” the constructions. When we clear the Canvas all
objects are immediately removed. However, clearing the screen is itself an
action that can be undone. Thus, if we clear the screen and then change
our mind we can always undo or redo this action.

On most computers a program’s window can be resized by clicking some-
where on the border of the window and dragging. If the boundary window
for Geometry Explorer is resized, the Canvas will also change size, but the
Tool panel and Menu bar will not change size. As the Canvas changes size,
figures on the Canvas also change so that the size of objects relative to the
size of the window stays the same. For example, if we had a circle that filled
half of the Canvas and then we doubled the length and width of the main
window, the circle would still fill half of the new expanded Canvas.
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The reason for this is that all of the mathematical calculations for the
program are done on a “virtual” Canvas that has the dimensions of a square.
The virtual coordinates of this square Canvas are transformed to screen pixel
coordinates and then displayed on the screen. The virtual Canvas is always
fixed in size, but as the screen area changes, the transformation from the
virtual Canvas to the screen Canvas preserves relative distances.

Expanding the size of the main window will have the effect of increasing
the resolution of your figure. If objects are too close, then expanding the
window size will be like putting the figure under a microscope.

If we expand the window in such a way that the Canvas can no longer
be displayed inside of a perfect square, then the Canvas will be placed inside
of a scrolling window.

Sometimes a construction will be so large that it leaves the boundaries
of the Canvas. Choose Rescale Geometry in Canvas... (View menu) to
rescale the figures in the Canvas so that the image will shrink or grow.

B.9 Saving Files as Images

It is often desirable to save the contents of the Canvas to an image file. This
is useful, for example, if one wants to add a picture of the Canvas to a Web
page or insert a picture of the Canvas into a word processing document.

As an example, suppose that we
have constructed the equilateral tri-
angle shown at the right and wish to
save it as a GIF file.

To save the Canvas as an im-
age choose Save as Image... (File
menu). A dialog box will pop up as
shown at the right.
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Note the rows of buttons to the right of the directory window. These
allow one to specify the image format to which the Canvas will be saved.
Supported image types include most of the commonly used formats: bmp
(Windows bitmap), eps (Encapsulated Postscript), gif (Graphics Interchange
Format), jpg (JPEG format), pcx (PC Paintbrush), png (Portable Network
Graphics), ras (Sun Raster), tga (Targa), and xbm (X Windows Bitmap).
The default image format is the JPEG format.

One important note about EPS files is that a preview image is stored
with an EPS file so that the image can be inserted into another program,
such as a word processor. However, the image quality will typically be
much lower than the real Postscript image. The image will have the original
Postscript quality when printed with a Postscript-compatible printer.

B.10 Main Window Button Panels

B.10.1 Create Panel

The tools in the Create panel are
used to make points, circles, seg-
ments, lines, and rays. To carry out
any of these activities, just click on
the button and then use the mouse
to create the object in the Canvas.

Select Point Circle Segment

Ray Line Text Info

B.10.2 Construct Panel

The Construct panel (Fig. B.2) controls the construction of geometric ob-
jects that depend upon already existing objects.

Initially, when there are no objects defined on the Canvas, the Con-
struct panel buttons will be inactive (i.e., grayed-out) because none of the
constructions can be performed from scratch. Once the objects that are
necessary for a particular construction have been built, and are selected in
the correct order, that particular button will become active (i.e., darker in
appearance). Clicking on the activated button will automatically perform
the construction using the selected objects.
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Intersection Midpoint Perpendicular Parallel 

Circle Filled
Circle/Arc

Segment Arc

Open Poly Closed Poly Filled Poly Bisector

Fig. B.2 The Construct Panel

To get a quick idea of what needs to be selected to activate a tool,
pass the mouse cursor over that button and information will appear in the
Message box.

We now look at each construction tool in detail. For each tool we list
the objects from which it is built.

The Intersection Constructor Two objects must be selected. The ob-
jects that can be used for intersections include lines, rays, segments,
circles, and arcs.

The Midpoint Constructor One or more segments must be selected.

The Perpendicular Line Constructor Pairs of objects must be se-
lected. Each pair must consist of a linear object (line, segment, or
ray) and a point.

The Parallel Line Constructor Pairs of objects must be selected. Each
pair must consist of a linear object (line, segment, or ray) and a point.
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The Segment Constructor Pairs of points must be selected.

The Circle Constructor Circles can be constructed using this tool in
three different ways.

(a) Select two points. The first point is the center of the circle and
the second is a point on the circle.

(b) Select a point and segment. The point is the center of the circle
and the length of the segment is the radius.

(c) Select three points. The points will be located on the circle’s
circumference.

(Note: In hyperbolic geometry, only the first two options apply.)

The Filled Circle/Arc Constructor Circles or arcs must be selected.
Clicking on this button will fill in the interior of the circle or arc. Note
that arcs can be filled in two ways, by filling in the chord of the circle
or by filling in the entire sector of the circle defined by the arc.

Here is an arc example where the
chord of an arc has been filled in.

Here is the same arc where the sec-
tor defined by the arc has been filled
in.
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After clicking on the Filled Cir-
cle/Arc tool and then selecting an
arc, a dialog box will pop up asking
which type of filled arc is desired.

The Arc Constructor Arcs can be constructed in three different ways.

(a) Select two points. The first point is the center of the arc and the
second is a point on the arc.

(b) Select two points attached to an existing circle. These will define
an arc on that circle.

(c) Select three points, all of which will be located on the arc’s cir-
cumference. The first and last points will become endpoints of
the arc.

Clicking on the arc button will create an arc. However, in the first
option a dialog box will pop up asking for the initial and terminal
angles of the arc (in degrees). (Note: In hyperbolic geometry, only the
first two options apply.)

The Open Polygon Constructor Select a set of points for an open
polygon (three or more points are necessary). Clicking on this button
will cause a series of segments to be drawn: from the first point selected
to the second, from the second to the third, and so on. If the points
are selected using the box selection method, the order of connection
will be the order in which the points were created.

The Closed Polygon Constructor Selections are the same as for the
open polygon. The only difference between the closed polygon and
the open polygon constructors is that the closed polygon constructor
draws a segment between the last point selected and the first point
selected, thereby closing the figure.

The Filled Polygon Constructor Selections are the same as for the
open polygon. Clicking on this button will result in the computer
filling the interior of the polygon.

The Angle Bisector Constructor Select three points. The first point
will be on the initial ray of the angle. The second point will be the
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vertex of the angle, and the third point will be on the terminal ray of
the angle. The angle bisector construction is oriented, which means
that if the points are selected in reverse order, a ray will be drawn in
the opposite direction.

The Locus Constructor This button hides a pop-down menu for the
construction of geometric loci. A locus is a geometric construction
that is defined by two objects: a point that is attached to a one-
dimensional object (line, ray, segment, circle, or arc) and any other
geometric object (called the “primitive”). The locus of the primitive
will be a set of copies of that primitive produced as the attached point
moves along its one-dimensional path.

B.10.3 Transform Panel

The Transform panel controls four different transformations on geometric
objects. These include translations, rotations, dilations, and reflections.
Transformations are carried out in a two-stage process. First, the geometric
information that defines a transformation must be specified. Then, the ob-
jects to be transformed must be selected, and then the appropriate transform
button must be clicked. There are three pop-down menus used to define nec-
essary geometric information for transformations. These are hidden under
the Mark, Custom, and Base buttons (Fig. B.3).

Translate

Dilate Reflect

Rotate

Mark Menu Custom Menu Base Menu

Fig. B.3 The Transform Panel

Here is a quick description of the functionality of the four transformation
buttons:

1. Translation To translate (that is, move) an object in the Canvas,
define a vector as described in the next section, or define a custom
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translation using the Custom pull-down menu. Once the definition is
complete, select the object(s) to translate and click on the Translate
button in the Transform panel.

2. Rotation To rotate an object in the Canvas, define an angle and a
center of rotation as described in the next section, or define a custom
rotation using the Custom pull-down menu. Once the definition is
complete, select the object(s) to rotate and click on the Rotate button
in the Transform panel.

3. Dilation To dilate an object in the Canvas, define a ratio and a
center of dilation as described in the next section, or define a custom
dilation using the Custom pull-down menu. Once the definition is
complete, select the object(s) to dilate and click on the Dilate button
in the Transform panel.

4. Reflection To reflect an object in the Canvas about a line, define
a mirror as described in the next section. Once the definition is com-
plete, select the object(s) to reflect and click on the Reflect button in
the Transform panel. One cannot define a custom reflection.

Note that all the transformations require predefined geometric informa-
tion, for example, vectors or mirrors of reflection, and the like. Here is a
quick guide to defining these items.

Setting Geometric Transformation Data

The Mark pull-down menu is used
to define geometric data that are
needed to specify a transformation.

Each item in this menu is defined by selecting a set of geometric objects
in the Canvas as follows:

1. Center To define either a center of rotation or a center of dilation,
select a point and then choose Center.
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2. Mirror To define a mirror of reflection, select a linear object (line,
ray, or segment) and then choose Mirror.

3. Vector To define a vector of translation select two points and then
choose Vector. A dialog box will pop up asking whether to interpret
this vector as a simple vector in rectangular coordinates, or if it should
be interpreted as a magnitude to be used in polar coordinates. If
one chooses the polar coordinates option, then an angle must also be
defined.

4. Angle To define an angle, select three points (the initial, vertex, and
terminal points of the angle). Then choose Angle.

5. Ratio To define a ratio, select two segments; the length of the first
will be the numerator in the ratio and the length of the second will be
the denominator. Then choose Ratio.

6. Clear Marked Use this to clear all defined geometric data.

Custom Transformations

The Custom pull-down menu is
used to define special types of trans-
formations.

There are seven possible menu options under the Custom menu. When
choosing any of the first three options, a dialog box will pop up asking for
the appropriate numerical data needed to define that transformation. The
fourth option is used to define a general type of transformation known as an
affine transformation. The fifth option is used for defining transformations
built from existing transformations. The sixth option is used to edit previ-
ously defined transformations. Finally, the seventh menu option is used to
carry out multiple iterations of a transformation.
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As an example suppose we want to
define a dilation that scales objects
by a numerical ratio of 1

2 . We first
define a center of dilation using the
Mark menu. Then we choose the
Dilation option under the Cus-
tom menu. A dialog box like the
one at right will pop up. Here we
have defined a dilation with a scale
ratio of 1

2 .

For a custom rotation we need
to specify an angle of rotation (in
degrees). In the figure at the right
we have defined a rotation of 60 de-
grees. Note that a center of rotation
must still be defined before the ro-
tation can be applied. Do this by
using the Mark menu.

For a custom translation we
need to specify a vector by defining
the magnitude and direction (in de-
grees) of the vector. Here we have
defined a translation that will trans-
late objects 4.0 units in the direc-
tion that is 30 degrees up from the
horizontal.

Transformations Based on Measurements

It is often useful to define transformations in terms of measurements such as
distance, slope, area, and the like. One can use measurements as the basis
for rotations, translations, and dilations.

Transformations can be defined in terms of measurements in three ways:

1. Translate Translations can be defined in terms of a single mea-
surement or in terms of two measurements. If a single measurement is
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selected and Vector is chosen from the Mark menu, then the transla-
tion will move a figure by that measurement amount in the x-direction,
and will not move the figure in the y-direction.

If two measurements are selected and Vector is chosen, then the trans-
lation will move a figure in one of two ways. The two measurements
will either determine the x and y directions through which a figure is
moved or will determine the angle of movement (from the horizontal)
and the distance traveled in the direction of that angle. Upon choosing
Vector a dialog box will pop up asking which of these two translation
types is desired.

2. Rotate Rotations can be defined by first selecting a point to act
as the center of rotation and then choosing Center from the Mark
menu in the Transform panel. Then select a measurement to serve as
the angle of rotation and choose Angle from the Mark menu. (Note:
The angle will be interpreted as measured in degrees.)

3. Dilate Dilations can be defined by first selecting a point to act as
the center of dilation and then choosing Center from the Mark menu
in the Transform panel. Then select a measurement to serve as the
ratio of dilation and choose Ratio from the Mark menu.

(Note: Transformations defined by measured values are available only in
the Euclidean Canvas.)

B.11 Measurement in Geometry Explorer

In Geometry Explorer measurements are handled by the use of the Measure
menu in the Menu bar (Fig. B.4). The items in this menu are split into
three groups. The top group includes the basic measurements that one
can perform on geometric objects. The middle group consists of a single
“user-input” measurement. The bottom group controls the creation and
modification of tables of measurements.
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Fig. B.4 The Measure Menu

We will now review the measurement types in detail. They fall into
three groups: those measurements that are applicable to either Euclidean or
hyperbolic geometry, measurements applicable only to Euclidean geometry,
and measurements applicable only to hyperbolic geometry.

B.11.1 Neutral Measurements

Neutral measurements are applicable to either Euclidean or hyperbolic ge-
ometry. They can be sub-classified into the following groups:

Point Measurements

• Distance Distance can be measured in two ways—between two
points or from a point to a line. Either select two points or a point
and a line and then choose Distance (Measure menu).

• Angle Select three points: a point on the initial ray, a point at
the vertex, and a point on the terminal ray. Then choose Angle
(Measure menu). Note that angles are always measured as oriented
angles. That is, it matters what order is specified for the initial and
terminal points.
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Segment Measurements

• Length Select a segment and choose Length (Measure menu).

• Ratio A ratio is a proportion of two distances or lengths. Ratios
can be defined in three ways: (1) Select two segments. The ratio
measurement will calculate the ratio of the first segment’s length to the
second. (2) Select three points A, B, and C. The ratio measurement
will calculate the ratio of the distance from A to B to the distance
from B to C. (3) Select four points A, B, C, and D. The ratio
measurement will calculate the ratio of the distance from A to B to
the distance from C to D. In all cases, once the appropriate data is
selected, choose Ratio (Measure menu).

Circle Measurements

• Radius Select a circle or an arc and choose Radius (Measure
menu).

• Circumference Select a circle and choose Circumference (Mea-
sure menu).

Arc Measurements

• ArcAngle Select an arc and choose ArcAngle (Measure menu).
The angle will be measured in degrees.

• ArcLength Select an arc and choose ArcLength (Measure menu).

Filled Object Measurements

• Perimeter Select a filled polygon and choose Perimeter (Measure
menu).

• Area Select a filled polygon, filled circle, or filled arc and choose
Area (Measure menu).

B.11.2 Euclidean-only Measurements

Point Measurements

• x-Coordinate Select a point and choose x-Coordinate (Measure
menu).
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• y-Coordinate Select a point and choose y-Coordinate (Measure
menu).

Linear Object Measurements

A linear object is a line or a part of a line, namely, a ray or segment.

• Slope Select a linear object and choose Slope (Measure menu).

B.11.3 Hyperbolic-only Measurements

The only measurement that is applicable solely to hyperbolic geometry is
the Defect measurement. The defect measurement is defined on a set of
three points in the hyperbolic plane. If one considers these three points
as being the vertices of a hyperbolic triangle, then the defect measures the
difference between 180 degrees and the angle sum of a triangle in hyperbolic
geometry. To measure the defect, select three points and choose Defect
(Measure menu).

B.11.4 User Input Measurements

Under the Measure menu you will find an option labeled Measure Input.
This option can be used to create an input box in the canvas. Once this
input box is created, numerical values can be typed in and used as any other
measurement can be used.

B.12 Using Tables

Tables of measurements are useful for analyzing relationships between mea-
surements. For example, if we consider the interior angles of a triangle, then
there is a relationship for these angles, namely that their sum is always 180
degrees.

To create tables, use the bottom group of three menu items located under
the Measure menu in the main window.

• Create Table To create a table of measurements, first select all
of the measurements that are to be tabulated. Then choose Create
Table (Measure menu).

• Add to Table To add another column of data values to an existing
table, first select the table and then choose Add to Table (Measure
menu).
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• Edit Table... To edit an existing table, first select the table and
then choose Edit Table... (Measure menu).

B.13 Using the Calculator

The Calculator (Fig. B.5) allows one to create complex mathematical ex-
pressions using measurements from the Canvas, numerical quantities, and
built-in mathematical functions.

Expression Area Value Area

Button
Pad

Measure
List

Fig. B.5 The Geometry Explorer Calculator Window

The Calculator window is organized into four main sections: The Ex-
pression Area, Value Area, Button Pad, and Measure List. Additionally,
there are two menus, the File and Edit menus, and three buttons on the
bottom of the window: Evaluate, Clear, and Add to Canvas.

The calculator interface is designed similar to that of a modern scientific
calculator. The large Expression area at the top of the Calculator is where
mathematical expressions are visually displayed. The Button pad consists of
a series of buttons that represent numerical values, mathematical functions,
mathematical operators (+, − , and so on), and editing buttons.

One difference between this Calculator and a handheld calculator is the
Measure List area. As measurements are made in the Canvas, they will
appear in this list. Then one can select them from the list and add them to
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a current expression in the Expression area. This way, compound measure-
ments can be created.

Another difference is the Value area. The paradigm for the Calculator is
that expressions are built up in the Expression area as symbolic expressions.
Once the Evaluate key is pressed, the expression is numerically evaluated
and the numerical result is displayed in the Value area section.

For more detailed help on using the Calculator, see the online help page,
accessed from the Help menu of Geometry Explorer.

B.14 Hyperbolic Geometry

In Euclidean geometry given a line and a point not on the line, there is only
one line parallel to the given line through the point. In hyperbolic geometry
there are many lines parallel. Geometry Explorer provides a non-Euclidean
Canvas with which to explore hyperbolic geometry. The model of hyperbolic
geometry it uses is the Poincaré model.

To open a hyperbolic geometry window, choose New (File menu). A
dialog box will pop up asking for the type of geometry in which you wish to
work. Choose the hyperbolic model. A window will appear like that shown
in Fig. B.6.

This window looks almost identical to a Euclidean window. Working
in hyperbolic geometry with Geometry Explorer is essentially no different
than working in Euclidean geometry. Almost all of the tools work in both
environments, with a few notable exceptions:

1. In the Euclidean Canvas circles and arcs can be defined using three
points. This construction depends on the Euclidean parallel postu-
late (i.e., the uniqueness of parallels) and thus is not available in the
hyperbolic Canvas.

2. There is no Graph menu in the hyperbolic window.

3. Some measurements are different. There is no x- or y-coordinate mea-
sure and no slope measure. These depend on a coordinate system.
However, there is a new measure: the defect measure. The defect is
the difference between 180 degrees and the angle sum of a triangle in
hyperbolic geometry (more on this below).



500 APPENDIX B. BRIEF GUIDE TO GEOMETRY EXPLORER

Fig. B.6 The Hyperbolic Workspace Main Window

4. In the Euclidean Canvas the Parallel button in the Tool panel is used
to construct the unique parallel for a line and a point not on the
line. In hyperbolic geometry there are no unique parallels. In the
hyperbolic environment using the Parallel tool (with the same selection
of a linear object and a point) will result in the creation of two parallels
called limiting parallels. In Fig. B.7 we see the two (unique) limiting
parallels to line a through point A (the parallels are the two lines
passing through A). These are parallels since they are lines through
A that do not intersect line a. (Although they do intersect at the
boundary, they are still parallel as the boundary is not considered
part of the hyperbolic plane.)

This similarity of user environments for the two geometries was delib-
erately designed to give the user the maximum opportunity to explore and
contrast these two different geometric “universes” using similar basic geo-
metric ideas, such as points, lines, perpendiculars, rotations, measurements,
and so on. The goal in working in these geometries is to develop an intuition
for how it “feels” to live in one geometry versus another.



B.15. ANALYTIC GEOMETRY 501

Fig. B.7 Limiting Parallels to Line a through point A

B.15 Analytic Geometry

Using Geometry Explorer one can graph the relationship between two mea-
sured (Euclidean) quantities. A graph consists of two coordinate axes (x
and y) and points plotted in relation to these axes. The coordinate system
is the system by which a point is located on the graph.

The Graph menu controls the user interface to the graphing capabil-
ity of Geometry Explorer. There are eight options under this menu that
control graphing: (Show/Hide) Axes, Grid (On/Off), Add Function
to Graph..., Add As (x,y) Point from Measures, Add Point on
Function from x-Point, Iterate Function from Point..., Derivative
of Function, and Input Box for Function. For more detailed examples
of the analytic geometry capabilities of Geometry Explorer, see the online
help page on analytic geometry.

B.16 Turtle Geometry

Turtle geometry was created as part of the development of the LOGO pro-
gramming language. LOGO was designed in part to give children a relatively
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easy way to program a computer. In turtle geometry one imagines a small
turtle on the computer screen. This turtle understands commands like move
forward, turn left, turn right, and change color, among others.

The turtles in Geometry Explorer can understand these basic commands:

Forward Move turtle forward one unit.

Back Move turtle backward one unit.

Draw Forward Move turtle forward one unit and draw a segment.

Rotate Left Rotate turtle counterclockwise by a set angle.

Rotate Right Rotate turtle clockwise by a set angle.

Push Store the turtle’s current heading and length.

Pop Restore the turtle’s stored heading and length.

The turtle starts out with a specified heading and length. The heading is
the direction in which the turtle will move. The length is how far the turtle
should move when told to go forward or backward. The heading and length
are given by a vector. The vector’s length is just the distance between the
points, and the vector’s heading is given by an arrow from the first point
toward the second.

A turtle must also know the angle by which to turn. This is specified by
a set of three points—the initial, vertex, and terminal points of an angle.

The items under the Turtle menu in the main window are used to define
a turtle on the Canvas and also to control turtle movements. There are five
items under the Turtle menu:

Turtle Heading Vector This menu item will be activated once two
points are selected in the Canvas. The direction determined by the vector
between these points will determine the direction the turtle moves forward,
and the distance between these points will determine how far the turtle
moves in that direction. After selecting two points and clicking on this
menu item, the vector defined by the two points will be stored for use in
creating a turtle.

Turtle Turn Angle This menu item will be activated once three points
are selected in the Canvas. These points will be the initial, vertex,
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and terminal points of an angle. This angle will determine how the turtle
turns when directed to do so. After selecting three points and clicking on
this menu item, the angle defined by the three points will be stored for use
in creating a turtle.

Create Turtle At Point This menu item will be activated once a vector
and angle have been defined (see the previous two items) and a point on the
Canvas has been selected. This point will be the point at which the turtle
will be located. After clicking on this menu item, a turtle will be created
in the Canvas at the position given by the point, and a Turtle Controller
panel will pop up.

Control Panel... This menu item will be activated once a turtle has
been created. After clicking on this menu item a Turtle Controller panel
will pop up. This panel contains tools for controlling the movement of the
turtle.

Create Simple Turtle This menu item is always active. After clicking
on this menu item, a turtle will be created at the center of the Canvas. It
will initially be oriented in the vertical direction, make moves of 1 unit of
length, and have a turn angle of 90 degrees.

In the figure at right, ∠ABC and
vector DE determine the required
angle and vector for a turtle. We
select A, B, and C and choose Tur-
tle Turn Angle (Turtle menu).
Then we select D and E and choose
Turtle Heading Vector (Turtle
menu).
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Next, we create a point that
will be the starting location of our
turtle. Here point F will be this
starting point. Select F and choose
Create Turtle At Point (Turtle
menu). A turtle will be created at
F as shown.

The turtle is graphically dis-
played as a little green turtle. It
looks a bit small in the previous fig-
ure. Here is a bigger version.

Once the turtle is created, an-
other window automatically pops
up. This is the Turtle Controller
panel. This window controls the
movement of the turtle. The Con-
troller has two tabbed panels that
are labeled “Simple Turtle” and
“Grammar Turtle.”
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The Simple Turtle panel con-
sists of three areas labeled “Tur-
tle Control,” “Turtle Colors,” and
“Turtle Palette.” In the Turtle
Control area there are seven but-
tons: Forward, Back, Draw For-
ward, <—, —>, Pop, and Push.

Here the Forward button and
then the Draw Forward button have
been pushed. The turtle carries out
these commands on the Canvas.

F A B

C

D

E





Appendix C

Birkhoff’s Axioms for
Euclidean Geometry

Undefined terms are point and line, as well as two real-valued functions—
a distance function, d(A,B), which takes two points and returns a non-
negative real number, and an angle function, m(∠A,O,B), which takes an
ordered triple of points ({A,O,B} with A 6= O and B 6= O) and returns a
number between 0 and 2π. The point O is called the vertex of the angle.

The Ruler Postulate The points of any line can be put into one-to-
one correspondence with the real numbers x so that if xA corre-
sponds to A and xB corresponds to B, then |xA − xB| = d(A,B)
for all points A,B on the line.

The Euclidean Postulate One and only one line contains any two
distinct points.

The Protractor Postulate Given any point O, the rays emanating
from O can be put into one-to-one correspondence with the set of
real numbers (mod 2π) so that if am corresponds to ray m and an
corresponds to ray n, and if A,B are points (other than O) on m,n,
respectively, then m(∠NOM) = am − an (mod 2π). Furthermore,
if the point B varies continuously along a line not containing O,
then an varies continuously also.

The SAS Similarity Postulate If in two triangles ABC and A′B′C ′

and for some real number k > 0, we have d(A′, B′) = k d(A,B),
d(A′, C ′) = k d(A,C), and m(∠BAC) = m(∠B′A′C ′), then the
remaining angles are pair-wise equal and d(B′, C ′) = k d(B,C).
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Other definitions:
A point B is said to be between points A and C (A 6= C) if d(A,B) +

d(B,C) = d(A,C). A segment AB consists of the points A and B along
with all points between A and B. The ray with endpoint O, defined by two
points O and A in line l, is the set of all points B on l such that O is not
between A and B. Two distinct lines having no point in common are called
parallel.

Two rays m, n through O form a straight angle if m(∠MON) = π, where
M and N are points on m, n, respectively. The rays form a right angle if
m(∠MON) = ±π

2 . If the rays form a right angle, we say the lines defining
the rays are perpendicular.
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Hilbert’s Axioms for
Euclidean Geometry

Undefined terms are point, line, between, on (or incident), and congruent.

Incidence Axioms

I-1 Through any two distinct points A and B there is always a line m.

I-2 Through any two distinct points A and B, there is not more than
one line m.

I-3 On every line there exist at least two distinct points. There exist
at least three points not all on the same line.

I-4 Through any three points not on the same line, there is one and
only one plane.

Betweeness Axioms

II-1 If B is a point between A and C (denoted A ∗ B ∗ C) then A, B,
and C are distinct points on the same line and C ∗B ∗A.

II-2 For any distinct points A and C, there is at least one point B on
the line through A and C such that A ∗ C ∗B.

II-3 If A, B, and C are three points on the same line, then exactly one
is between the other two.

II-4 (Pasch’s Axiom) Let A, B, and C be three non-collinear points
and let m be a line in the plane that does not contain any of these
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points. If m contains a point of segment AB, then it must also contain
a point of either AC or BC.

Congruence Axioms

III-1 If A and B are distinct points and A′ is any other point, then for
each ray r from A′ there is a unique point B′ on r such that B′ 6= A′

and AB ∼= A′B′.

III-2 If AB ∼= CD and AB ∼= EF then CD ∼= EF . Also, every segment
is congruent to itself.

III-3 If A ∗ B ∗ C, A′ ∗ B′ ∗ C ′, AB ∼= A′B′, and BC ∼= B′C ′, then
AC ∼= A′C ′.

III-4 Given ∠ABC and given any ray
−−→
A′B′, there is a unique ray

−−→
A′C ′

on a given side of
←−→
A′B′ such that ∠ABC ∼= ∠A′B′C ′.

III-5 If ∠ABC ∼= ∠A′B′C ′ and ∠ABC ∼= ∠A′′B′′C ′′ then ∠A′B′C ′ ∼=
∠A′′B′′C ′′. Also, every angle is congruent to itself.

III-6 Given two triangles ABC and A′B′C ′, if AB ∼= A′B′, AC ∼= A′C ′,
and ∠BAC ∼= ∠B′A′C ′, then the two triangles are congruent.

Continuity Axiom

IV-1 (Dedekind’s Axiom) If the points on a line l are partitioned into
two nonempty subsets Σ1 and Σ2 (i.e., l = Σ1 ∪Σ2) such that no point
of Σ1 is between two points of Σ2 and vice-versa, then there is a unique
point O lying on l such that P1 ∗ O ∗ P2 if and only if one of P1 or P2

is in Σ1, the other is in Σ2, and O 6= P1 or P2.

Parallelism Axiom

V-1 Given a line l and a point P not on l, it is possible to construct
one and only one line through P parallel to l.
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The 17 Wallpaper Groups

Here is a listing of the wallpaper patterns for the Euclidean plane. The
seventeen groups have traditionally been listed with a special notation con-
sisting of the symbols p, c, m, g, and the integers 1, 2, 3, 4, 6. This is the
crystallographic notation adopted by the International Union of Crystallog-
raphy (IUC) in 1952.

In the IUC system the letter “p” stands for primitive. A lattice is gener-
ated from a cell that is translated to form the complete lattice. In the case
of oblique, rectangular, square, and hexagonal lattices, the cell is precisely
the original parallelogram formed by the lattice vectors v and w and, thus,
is primitive.

In the case of the centered-rectangle lattice, the cell is a rectangle, to-
gether with an interior point that is on the lattice. The rectangular cell is
larger than the original parallelogram and not primitive. Thus, lattice types
can be divided into two classes: primitive ones designated by the letter “p,”
and non-primitive ones designated by the letter “c.”

A reflection is symbolized by the letter “m” and a glide reflection by the
letter “g.”

The numbers 1, 2, 3, 4, and 6 are used to represent rotations of those
orders. For example, 1 would represent a rotation of 0 degrees, while 3 would
represent a rotation of 120 degrees.

The symmetries of the wallpaper group are illustrated in the second and
third columns by lines and polygons. Rotations are symbolized by diamonds
(3) for 180-degree rotations, triangles (4) for 120-degree rotations, squares
(2) for 90-degree rotations, and hexagons (7) for 60-degree rotations. Dou-
ble lines show lines of reflection and dashed lines show the lines for glide
reflections.
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The symbolization used here is taken from a Web page on the wallpaper
groups developed by Xah Lee [27].

Pattern and Associ-
ated Symmetries

Symmetries in Basic
Cell

Generating Region and
Symmetries
(Non-Translates)
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