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This talk is about integer matrices.

We are all interested in these.

When we learn about linear algebra, or teach it, what is our
first example of a matrix? π e · · ·

ln(2) Φ · · ·
...


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Today I’m going to teach you a cool fact about integer
matrices (a neat trick).

Show it to your friends...
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Equivalence of Matrices

Let A be an m × n matrix with entries from a field (like the
real numbers).

If
PAQ = B

for invertible matrices P and Q, then we say that A and B are
“equivalent.”
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FACT: The matrix A is equivalent to a unique matrix of the
form 

1
1

1
. . .

0
0


.

(The number of 1s is the rank of A.)
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Integer Equivalence

Now let A be an m × n integer matrix. Suppose B is an
m × n integer matrix, and

PAQ = B,

where P and Q are invertible integer matrices whose inverses
are also integer matrices.

Then A and B are said to be “integer equivalent.”
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The condition that P and Q have integer inverses is the same
as insisting that P and Q have determinants ±1.

Such matrices are called unimodular.
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FACT: The integer matrix A is integer equivalent to a unique
matrix of the form

s1
s2

s3
. . .

0
0


,

where the si are integers with si |si+1 for all i .
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An Example

A =

(
1 2 3
4 5 6

)
, P =

(
1 0
4 −1

)
, Q =

1 −2 1
0 1 −2
0 0 1

.

PAQ =

(
1 0 0
0 3 0

)
.
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Smith Normal Form

The unique matrix described above that is integer equivalent
to A is called the Smith normal form of A.

The entries down the main diagonal are called the invariant
factors of A.
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GCDs of Minors

It follows from the Cauchy–Binet formula that s1 · s2 · · · sj is equal
to the greatest common divisor of all determinants of j × j
submatrices of A.
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Distinguishing Combinatorial Structures

Given a relation between two finite sets, encode this relation
in a zero-one matrix.

Various numerical invariants of this “incidence matrix” now
become invariants of the relation (of the incidence structure
that it defines).

For example, Smith normal form.
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Example: skew lines in PG(3, 4)
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Table: The invariant factors of the incidence matrix of lines vs. lines in
PG(3, 4), where two lines are incident when skew.

Inv. Fac. 1 2 22 23 24 25 26 27 28

Multiplicity 36 16 220 0 32 16 36 0 1
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Rota’s Basis Conjecture

Stephanie Bittner, Mike Cheung, Xuyi Guo, Adam Zweber
(Summer 2012)

Given n bases of an n-dimensional vector space:

a1 a2 · · · an
b1 b2 · · · bn
...

...
...

k1 k2 · · · kn

RBC asserts that one can repartition this multiset union of
vectors into n disjoint transversals, each of which forms a
basis.

An is the incidence matrix of “disjoint tranversals.”
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
(a1, b1) (a1, b2) (a2, b1) (a2, b2)

(a1, b1) 0 0 0 1
(a1, b2) 0 0 1 0
(a2, b1) 0 1 0 0
(a2, b2) 1 0 0 0


An for n = 2
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Figure: An for n = 3, a
27× 27 matrix

Figure: An for n = 5, a
3125× 3125 matrix
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Conjecture: The invariant factors of An are

(n − 1)k

occurring with multiplicity

(n − 1)n−k

(
n

k

)
,

for 0 ≤ k ≤ n.
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p-rank

Let A be an m × n integer matrix.

Can view entries of A as coming from a finite field Fq of
q = pt elements.

The matrix now defines a map

Fn
q → Fm

q .

The dimension of the image is known as the “p-rank” of A.

Joshua Ducey The Amazing SNF



Equivalence of Integral Matrices
Some Uses

Finite Abelian Groups

Distinguishing Combinatorial Structures
p-rank

p-rank

Let A be an m × n integer matrix.

Can view entries of A as coming from a finite field Fq of
q = pt elements.

The matrix now defines a map

Fn
q → Fm

q .

The dimension of the image is known as the “p-rank” of A.

Joshua Ducey The Amazing SNF



Equivalence of Integral Matrices
Some Uses

Finite Abelian Groups

Distinguishing Combinatorial Structures
p-rank

p-rank

Let A be an m × n integer matrix.

Can view entries of A as coming from a finite field Fq of
q = pt elements.

The matrix now defines a map

Fn
q → Fm

q .

The dimension of the image is known as the “p-rank” of A.

Joshua Ducey The Amazing SNF



Equivalence of Integral Matrices
Some Uses

Finite Abelian Groups

Distinguishing Combinatorial Structures
p-rank

p-rank

Let A be an m × n integer matrix.

Can view entries of A as coming from a finite field Fq of
q = pt elements.

The matrix now defines a map

Fn
q → Fm

q .

The dimension of the image is known as the “p-rank” of A.

Joshua Ducey The Amazing SNF



Equivalence of Integral Matrices
Some Uses

Finite Abelian Groups

Distinguishing Combinatorial Structures
p-rank

FACT: The Smith normal form of A tells you the p-rank of A,
for any prime p!

Application to error-correcting codes.
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You may be familiar with:

FACT: Any finite abelian group G is isomorphic to a direct
sum of cyclic groups.

Furthermore, there is a unique cyclic decomposition

G ∼= Z/m1Z ⊕ Z/m2Z ⊕ · · · ⊕ Z/mkZ

with the property that mi |mi+1 for all i .

This looks familiar...
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