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A =



0 1 0 1 1 0 0 0
1 0 1 0 0 1 0 0
0 1 0 1 0 0 1 0
1 0 1 0 0 0 0 1
1 0 0 0 0 1 0 1
0 1 0 0 1 0 1 0
0 0 1 0 0 1 0 1
0 0 0 1 1 0 1 0



1 2

34

5 6

78

Γ, a finite simple graph with adjacency matrix A.

The matrix encodes the graph, we can study the matrix using
linear algebra.
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Strongly regular graphs

A strongly regular graph (SRG) with parameters v , k , λ, µ:

has v vertices

is k-regular

any two adjacent vertices have exactly λ common neighbors

any two distinct, non-adjacent vertices have exactly µ
common neighbors.

It follows:
A2 = kI + λA+ µ(J − A− I )
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Diamonds in the rough
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Rearranging, we have

A2 + (µ− λ)A+ (µ− k)I = µJ.

The all-one vector is an eigenvector for A with eigenvalue k . An
eigenvector x⃗ with a different eigenvalue c ̸= k will satisfy:

0⃗ = (A2 + (µ− λ)A+ (µ− k)I )x⃗ = (c2 + (µ− λ)c + (µ− k))x⃗ ,

and so
c2 + (µ− λ)c + (µ− k) = 0.
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c2 + (µ− λ)c + (µ− k) = 0.

Denote the roots by r , s, with respective multiplicities as
eigenvalues f , g . So the eigenvalues of A are:

r f , sg , k .

Finally, we have

tr(A) = 0 = fr + gs + k

v = f + g + 1.
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Let Γ be a graph with maximum vertex degree k and diameter d .

The number of vertices v is bounded by

v ≤ 1 + k + k(k − 1) + k(k − 1)2 + · · ·+ k(k − 1)d−1.

A graph that achieves this bound is necessarily regular, and is
extremal with respect to the degree/diameter problem. Such a
graph is called a Moore graph.
A Moore graph with degree k and diameter 2 satisfies:

v = 1 + k + k(k − 1) = k2 + 1.

Such a graph is an SRG (v , k, 0, 1).
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Some calculations

In this case c2 + c + 1− k = 0 has solutions

r =
−1 +

√
4k − 3

2
, s =

−1−
√
4k − 3

2
.

From 0 = fr + gs + k we get

0 = f

(
−1 +

√
4k − 3

2

)
+ g

(
−1−

√
4k − 3

2

)
+ k

0 = (f + g)− (f − g)
√
4k − 3− 2k
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Some calculations

0 = (f + g)− (f − g)
√
4k − 3− 2k

Case: f − g = 0. Then k = 2.
Case: f − g ̸= 0. Then 4k − 3 = t2.

0 = (f + g)− (f − g)
√
4k − 3− 2k

0 = k2 − (k2 − 2g)t − 2k

0 =
1

16
(t2 + 3)2 −

[
1

16
(t2 + 3)2 − 2g

]
t − 1

2
(t2 + 3)

...

0 = (some integer)t − 15

So in this case t divides 15.
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Hoffman-Singleton Theorem, 1960

Theorem

Let Γ be a Moore graph with degree k and diameter 2. Then

k ∈ {2, 3, 7, 57}.
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k = 2: pentagon

k = 3: Petersen graph
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k = 7: Hoffman-Singleton graph
(image from Wikipedia)

k = 57: None ever found
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Student bragging

REU 2019, investigated sandpile group of such a graph

Math 485 (2021), determined the Smith group
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L =



3 −1 0 −1 −1 0 0 0
−1 3 −1 0 0 −1 0 0
0 −1 3 −1 0 0 −1 0
−1 0 −1 3 0 0 0 −1
−1 0 0 0 3 −1 0 −1
0 −1 0 0 −1 3 −1 0
0 0 −1 0 0 −1 3 −1
0 0 0 −1 −1 0 −1 3



1 2

34

5 6
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Generally interested in algebraic invariants of these matrices that
describe graphs, or other interesting incidence relations.

Spectrum (eigenvalues), rank, or integer invariants.

M : Zn → Zm

The cokernel of this map Zm/ Im(M) is a finitely generated abelian
group.
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Examples: integer invariants

n-cycle graph Cn, L: Z/nZ

Complete graph Kn, L: (Z/nZ)n−2

r -subsets vs. s-subsets of an n element set (Wilson):

⊕
j

(
Z/

(
s − j

r − j

)
Z
)(nj)−( n

j−1)

Most of the invariants of other subset incidence relations
remain unknown.
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Student bragging

Colby Sherwood (2022) determined rank over any field for
2-subsets vs. n-subsets, where incidence means intersection in a
set of size 1.

All such invariants for 3-subsets are unknown.
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The n-cube graph Qn

Vertices:
{(a1, a2, · · · , an) | ai = 0 or 1}

Edges: two vertices are adjacent if they differ in exactly one
position.
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Work of Bai, Jacobson-Niedermeier-Reiner, and others show that
the Laplacian integer invariants (i.e., sandpile group) can be
understood by the p-primary components, for all primes except
p = 2.
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Student bragging

Deelan Jalil (2013) recovered these results in a novel way. Also
found the invariants of the adjacency matrix in many cases, and
conjectured the Smith group structure in general. Conjecture was
later proved by Chandler-Sin-Xiang (2017).
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Sandpile group of Qn: κ(Qn)

For p ̸= 2,

Sylp(κ(Qn)) ∼= Sylp
(
⊕n

j=1 (Z/2jZ)
(nj)

)

Still not even a conjecture for Syl2(κ(Qn)).
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Thank you for your attention!
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