The Smith Normal Form of the Incidence Matrix of Skew Lines in PG(3, q)

Andries Brouwer, T. U. Eindhoven Josh Ducey, James Madison University Peter Sin, University of Florida

> November 4–6, 2011 In memory of Bob Liebler

Outline

Incidence of Subspaces

Incidence maps and SNF bases

Brouwer, Ducey, Sin SNF of Skew Lines in PG(3, q)

-

Smith normal form

• Recall that the Smith normal form of a (possibly nonsquare) integer matrix is a diagonal matrix of the same size, with the diagonal entries subject to certain divisibility conditions.

Smith normal form

- Recall that the Smith normal form of a (possibly nonsquare) integer matrix is a diagonal matrix of the same size, with the diagonal entries subject to certain divisibility conditions.
- More precisely, if A is an $m \times n$ integer matrix, then there exist unimodular (invertible over the integers) matrices P and Q such that the matrix $PAQ = (d_{i,j})$ satisfies

$$d_{i,j} = 0$$
, for $i \neq j$

and

$$d_{i,i}$$
 divides $d_{i+1,i+1}$, for $1 \leq i < \min\{m, n\}$.

Smith normal form

- Recall that the Smith normal form of a (possibly nonsquare) integer matrix is a diagonal matrix of the same size, with the diagonal entries subject to certain divisibility conditions.
- More precisely, if A is an $m \times n$ integer matrix, then there exist unimodular (invertible over the integers) matrices P and Q such that the matrix $PAQ = (d_{i,j})$ satisfies

$$d_{i,j} = 0$$
, for $i \neq j$

and

$$d_{i,i}$$
 divides $d_{i+1,i+1}$, for $1 \le i < \min\{m, n\}$.

• The diagonal entries of the Smith normal form of A are unique up to sign, and are called the invariant factors of the matrix A. The largest prime powers dividing the invariant factors are called the elementary divisors of A.

Outline

Brouwer, Ducey, Sin SNF of Skew Lines in PG(3, q)

Incidence of Subspaces

 V an n-dimensional vector space over a finite field 𝔽_q of q = p^t elements.

э

< ∃ >

Incidence of Subspaces

- V an n-dimensional vector space over a finite field F_q of q = p^t elements.
- \mathcal{L}_r denotes the collection of *r*-dimensional subspaces.

Incidence of Subspaces

- V an n-dimensional vector space over a finite field F_q of q = p^t elements.
- \mathcal{L}_r denotes the collection of *r*-dimensional subspaces.
- \mathcal{L}_r vs. \mathcal{L}_s ; various possible notions of incidence.

Incidence of Subspaces

- V an n-dimensional vector space over a finite field F_q of q = p^t elements.
- \mathcal{L}_r denotes the collection of *r*-dimensional subspaces.
- \mathcal{L}_r vs. \mathcal{L}_s ; various possible notions of incidence.
- Consider the incidence relation of *zero-intersection*, and let $A_{r,s}$ denote the $\begin{bmatrix} n \\ r \end{bmatrix}_q \times \begin{bmatrix} n \\ s \end{bmatrix}_q$ incidence matrix.

Some History (zero-intersection)

- (1968) Hamada gives formula for *p*-rank of $A_{r,s}$ when r = 1.
- (1980) Lander gives SNF of points vs. lines in PG(2, q).
- (1990) Black and List compute SNF of points vs. hyperplanes when q = p.
- (2000) Sin gives SNF of points vs. s-subspaces when q = p.
- (2002) Liebler and Sin work out SNF of points vs. hyperplanes for arbitrary *q*.
- (2004) Sin computes *p*-ranks for *r*-subspaces vs. *s*-subspaces.
- (2006) Chandler, Sin, Xiang give SNF of points vs. *s*-subspaces for arbitrary *q*.
- Natural to consider when V is 4-dimensional over F_q, incidence of L₂ vs. L₂; i.e. skew lines in PG(3, q).

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

SRG equation

• $A = A_{2,2}$ satisfies

$$A^2 = q^4 I + (q^4 - q^3 - q^2 + q)A + (q^4 - q^3)(J - A - I)$$

• A has eigenvalues q, $-q^2$, q^4 with respective multiplicities $q^4 + q^2$, $q^3 + q^2 + q$, and 1

•
$$|\det(A)| = q^{q^4 + 2q^3 + 3q^2 + 2q + 4}$$

• In particular, all the invariant factors of A are powers of p

A B F A B F

Example: skew lines in PG(3, 4)

Brouwer, Ducey, Sin SNF of Skew Lines in PG(3, q)

Example: skew lines in PG(3, 4)

Table: The elementary divisors of the incidence matrix of lines vs. lines in PG(3, 4), where two lines are incident when skew.

Elem. Div.	1	2	2 ²	2 ³	2 ⁴	2 ⁵	2 ⁶	2 ⁷	2 ⁸
Multiplicity	36	16	220	0	32	16	36	0	1

- ∢ 🗇 ▶

- ∢ ⊒ →

Table: LinBox computations for some small values of $q = p^t$.

	e ₀	e_1	e2	e3	e_4	e_5	e ₆	e7	e ₈	e9	e ₁₀	e ₁₁	e ₁₂	
q = 2	6	14	8	6	1									
<i>q</i> = 3	19	71	20	19	1									
q = 5	85	565	70	85	1									
q = 7	231	2219	168	231	1									
$q = 2^2$	36	16	220		32	16	36		1					
$q = 3^2$	361	256	6025		202	256	361		1					
$q = 2^{3}$	216	144	96	3704			128	96	144	216			1	

Here e_i denotes the multiplicity of p^i as an elementary divisor of A. An empty entry in the table denotes a 0.

(日) (同) (三) (三)

Let e_i denote the number of times p^i occurs in the Smith normal form of A. Then, for $0 \le i \le t$,

$$e_{2t+i} = \sum_{\vec{s}\in\mathcal{H}(i)} d(\vec{s}).$$

Notation key:

•
$$\mathcal{H}(i) = \{(s_0, \ldots, s_{t-1}) \in [3]^t \mid \#\{j|s_j = 2\} = i\}.$$

< D > < A >

Let e_i denote the number of times p^i occurs in the Smith normal form of A. Then, for $0 \le i \le t$,

$$e_{2t+i} = \sum_{ec{s} \in \mathcal{H}(i)} d(ec{s}).$$

Notation key:

- $\mathcal{H}(i) = \{(s_0, \ldots, s_{t-1}) \in [3]^t \mid \#\{j | s_j = 2\} = i\}.$
- For $\vec{s} = (s_0, \ldots, s_{t-1}) \in [3]^t$ define the integer tuple $\vec{\lambda} = (\lambda_0, \ldots, \lambda_{t-1})$ by $\lambda_i = ps_{i+1} s_i$, with the subscripts read mod t.

Let e_i denote the number of times p^i occurs in the Smith normal form of A. Then, for $0 \le i \le t$,

$$e_{2t+i} = \sum_{ec{s}\in\mathcal{H}(i)} d(ec{s}).$$

Notation key:

- $\mathcal{H}(i) = \{(s_0, \ldots, s_{t-1}) \in [3]^t \mid \#\{j|s_j = 2\} = i\}.$
- For $\vec{s} = (s_0, \ldots, s_{t-1}) \in [3]^t$ define the integer tuple $\vec{\lambda} = (\lambda_0, \ldots, \lambda_{t-1})$ by $\lambda_i = ps_{i+1} s_i$, with the subscripts read mod t.
- d_k is the coefficient of x^k in the expansion of (1 + x + ··· + x^{p-1})⁴.

(□) < □) < </p>

Let e_i denote the number of times p^i occurs in the Smith normal form of A. Then, for $0 \le i \le t$,

$$e_{2t+i} = \sum_{ec{s}\in\mathcal{H}(i)} d(ec{s}).$$

Notation key:

- $\mathcal{H}(i) = \{(s_0, \ldots, s_{t-1}) \in [3]^t \mid \#\{j|s_j = 2\} = i\}.$
- For $\vec{s} = (s_0, \ldots, s_{t-1}) \in [3]^t$ define the integer tuple $\vec{\lambda} = (\lambda_0, \ldots, \lambda_{t-1})$ by $\lambda_i = ps_{i+1} s_i$, with the subscripts read mod t.
- d_k is the coefficient of x^k in the expansion of (1 + x + ··· + x^{p-1})⁴.
- $d(\vec{s}) = \prod_{i=0}^{t-1} d_{\lambda_i}$.

Outline

- R is a discrete valuation ring, maximal ideal generated by *p*.
- $\eta \colon R^m \to R^n$

•
$$M_i = \{x \in R^m \mid \eta(x) \in p^i R^n\}$$

•
$$N_i = \{p^{-i}\eta(x) | x \in M_i\}$$

• Set
$$F = R/pR$$
. $\overline{L} = (L + pR^{\ell})/pR^{\ell}$ is an *F*-vector space.

•
$$e_i = \dim_F \left(\overline{M_i} / \overline{M_{i+1}} \right) = \dim_F \left(\overline{N_i} / \overline{N_{i-1}} \right)$$

(日) (同) (三) (三)

3

Some equations

•
$$A(A + (q^2 - q)I) = q^3I + (q^4 - q^3)J$$

Brouwer, Ducey, Sin SNF of Skew Lines in PG(3, q)

æ

Some equations

•
$$A(A + (q^2 - q)I) = q^3I + (q^4 - q^3)J$$

• $A_{2,1}A_{1,2} = (q^3 + q^2)I + (q^3 + q^2 - q - 1)A + (q^3 + q^2 - q)(J - A - I)$

æ

Some equations

•
$$A(A + (q^2 - q)I) = q^3I + (q^4 - q^3)J$$

• $A_{2,1}A_{1,2} = (q^3 + q^2)I + (q^3 + q^2 - q - 1)A + (q^3 + q^2 - q)(J - A - I)$
• $A_{2,1}A_{1,2} = -[A + (q^2 - q)I] + q^2I + (q^3 + q^2 - q)J$

æ

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

13

< ロ > < 回 > < 回 > < 回 > < 回 >

2

Thank you for your attention!

Brouwer, Ducey, Sin SNF of Skew Lines in PG(3, q)