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Smith normal form

Recall that the Smith normal form of a (possibly nonsquare)
integer matrix is a diagonal matrix of the same size, with the
diagonal entries subject to certain divisibility conditions.
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Smith normal form

Recall that the Smith normal form of a (possibly nonsquare)
integer matrix is a diagonal matrix of the same size, with the
diagonal entries subject to certain divisibility conditions.

More precisely, if A is an m × n integer matrix, then there
exist unimodular (invertible over the integers) matrices P and
Q such that the matrix PAQ = (di ,j) satisfies

di ,j = 0, for i 6= j

and
di ,i divides di+1,i+1, for 1 ≤ i < min{m, n}.
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Smith normal form

Recall that the Smith normal form of a (possibly nonsquare)
integer matrix is a diagonal matrix of the same size, with the
diagonal entries subject to certain divisibility conditions.

More precisely, if A is an m × n integer matrix, then there
exist unimodular (invertible over the integers) matrices P and
Q such that the matrix PAQ = (di ,j) satisfies

di ,j = 0, for i 6= j

and
di ,i divides di+1,i+1, for 1 ≤ i < min{m, n}.

The diagonal entries of the Smith normal form of A are
unique up to sign, and are called the invariant factors of the
matrix A. The largest prime powers dividing the invariant
factors are called the elementary divisors of A.
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Incidence of Subspaces

V an n-dimensional vector space over a finite field Fq of
q = pt elements.
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Incidence of Subspaces

V an n-dimensional vector space over a finite field Fq of
q = pt elements.

Lr denotes the collection of r -dimensional subspaces.
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Incidence of Subspaces

V an n-dimensional vector space over a finite field Fq of
q = pt elements.

Lr denotes the collection of r -dimensional subspaces.

Lr vs. Ls ; various possible notions of incidence.
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Incidence of Subspaces

V an n-dimensional vector space over a finite field Fq of
q = pt elements.

Lr denotes the collection of r -dimensional subspaces.

Lr vs. Ls ; various possible notions of incidence.

Consider the incidence relation of zero-intersection, and let
Ar ,s denote the [ nr ]q × [ ns ]q incidence matrix.
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Some History (zero-intersection)

(1968) Hamada gives formula for p-rank of Ar ,s when r = 1.

(1980) Lander gives SNF of points vs. lines in PG (2, q).

(1990) Black and List compute SNF of points vs. hyperplanes
when q = p.

(2000) Sin gives SNF of points vs. s-subspaces when q = p.

(2002) Liebler and Sin work out SNF of points vs.
hyperplanes for arbitrary q.

(2004) Sin computes p-ranks for r -subspaces vs. s-subspaces.

(2006) Chandler, Sin, Xiang give SNF of points vs.
s-subspaces for arbitrary q.

Natural to consider when V is 4-dimensional over Fq,
incidence of L2 vs. L2; i.e. skew lines in PG(3, q).
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SRG equation

A = A2,2 satisfies

A2 = q4I + (q4 − q3 − q2 + q)A+ (q4 − q3)(J − A− I )

A has eigenvalues q, −q2, q4 with respective multiplicities
q4 + q2, q3 + q2 + q, and 1

| det(A)| = qq
4+2q3+3q2+2q+4

In particular, all the invariant factors of A are powers of p

Brouwer, Ducey, Sin SNF of Skew Lines in PG(3, q)



Smith normal form
Incidence of Subspaces

Incidence maps and SNF bases

Example: skew lines in PG(3, 4)
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Example: skew lines in PG(3, 4)

Table: The elementary divisors of the incidence matrix of lines vs. lines in
PG(3, 4), where two lines are incident when skew.

Elem. Div. 1 2 22 23 24 25 26 27 28

Multiplicity 36 16 220 0 32 16 36 0 1

Brouwer, Ducey, Sin SNF of Skew Lines in PG(3, q)



Smith normal form
Incidence of Subspaces

Incidence maps and SNF bases

Table: LinBox computations for some small values of q = pt .

e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 · · ·

q = 2 6 14 8 6 1

q = 3 19 71 20 19 1

q = 5 85 565 70 85 1

q = 7 231 2219 168 231 1

q = 22 36 16 220 32 16 36 1

q = 32 361 256 6025 202 256 361 1

q = 23 216 144 96 3704 128 96 144 216 1

Here ei denotes the multiplicity of pi as an elementary divisor of A. An empty entry in the table denotes a 0.
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Theorem (Brouwer–D–Sin, 2011)

Let ei denote the number of times pi occurs in the Smith normal

form of A. Then, for 0 ≤ i ≤ t,

e2t+i =
∑

~s∈H(i)

d(~s).

Notation key:

H(i) =
{

(s0, . . . , st−1) ∈ [3]t
∣

∣#{j |sj = 2} = i
}

.
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Theorem (Brouwer–D–Sin, 2011)

Let ei denote the number of times pi occurs in the Smith normal

form of A. Then, for 0 ≤ i ≤ t,

e2t+i =
∑

~s∈H(i)

d(~s).

Notation key:

H(i) =
{

(s0, . . . , st−1) ∈ [3]t
∣

∣#{j |sj = 2} = i
}

.

For ~s = (s0, . . . , st−1) ∈ [3]t define the integer tuple
~λ = (λ0, . . . , λt−1) by λi = psi+1 − si , with the subscripts
read mod t.
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Theorem (Brouwer–D–Sin, 2011)

Let ei denote the number of times pi occurs in the Smith normal

form of A. Then, for 0 ≤ i ≤ t,

e2t+i =
∑

~s∈H(i)

d(~s).

Notation key:

H(i) =
{

(s0, . . . , st−1) ∈ [3]t
∣

∣#{j |sj = 2} = i
}

.

For ~s = (s0, . . . , st−1) ∈ [3]t define the integer tuple
~λ = (λ0, . . . , λt−1) by λi = psi+1 − si , with the subscripts
read mod t.

dk is the coefficient of xk in the expansion of
(1 + x + · · · + xp−1)4.
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Theorem (Brouwer–D–Sin, 2011)

Let ei denote the number of times pi occurs in the Smith normal

form of A. Then, for 0 ≤ i ≤ t,

e2t+i =
∑

~s∈H(i)

d(~s).

Notation key:

H(i) =
{

(s0, . . . , st−1) ∈ [3]t
∣

∣#{j |sj = 2} = i
}

.

For ~s = (s0, . . . , st−1) ∈ [3]t define the integer tuple
~λ = (λ0, . . . , λt−1) by λi = psi+1 − si , with the subscripts
read mod t.

dk is the coefficient of xk in the expansion of
(1 + x + · · · + xp−1)4.

d(~s) =
∏t−1

i=0 dλi
.
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R is a discrete valuation ring, maximal ideal generated by p.

η : Rm → Rn

Mi = {x ∈ Rm | η(x) ∈ piRn}

Ni = {p−iη(x) | x ∈ Mi}

Set F = R/pR . L = (L+ pRℓ)/pRℓ is an F -vector space.

ei = dimF

(

Mi/Mi+1

)

= dimF

(

Ni/Ni−1

)
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Some equations

A(A+ (q2 − q)I ) = q3I + (q4 − q3)J
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Some equations

A(A+ (q2 − q)I ) = q3I + (q4 − q3)J

A2,1A1,2 = (q3+q2)I+(q3+q2−q−1)A+(q3+q2−q)(J−A−I )
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Some equations

A(A+ (q2 − q)I ) = q3I + (q4 − q3)J

A2,1A1,2 = (q3+q2)I+(q3+q2−q−1)A+(q3+q2−q)(J−A−I )

A2,1A1,2 = −[A+ (q2 − q)I ] + q2I + (q3 + q2 − q)J
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Thank you for your attention!
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