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The main result of this work is the determination of the Smith normal form of the

incidence matrix of lines vs. lines in PG(3, q), where q = pt is a prime power and

two lines are defined to be incident if and only if they are skew. This principal result is

essentially a corollary of a more general theorem. In order to prove the general theorem,

we develop some new ideas in the basic theory of elementary divisors, and also employ

some representation theory. As another corollary to the general theorem, we obtain

some specific knowledge of the p-adic elementary divisors of the incidence matrix of

r -dimensional subspaces vs. s-dimensional subspaces in PG(n, q), where incidence

again means zero–intersection.
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CHAPTER 1
INTRODUCTION

1.1 Incidence Matrices

One of the most ubiquitous concepts in mathematics is that of an incidence

structure. This is just a triple (X ,Y , I) consisting of two sets of objects together with

a relation I ⊆ X × Y between them. If an object in the first set is related to an object in

the second set, we say that these two are “incident.” Often the sets are required to be

disjoint, but that is not important to us. We will however deal exclusively with finite sets.

Given a finite incidence structure, it can be encoded into a rectangular array as

follows. Let the rows of the array correspond to the first set of objects; the columns

correspond to the second set of objects. Then we place a one in the (i , j)-position of

the array if the object corresponding to row i is incident with the object corresponding

to column j , otherwise that position gets a zero. Such an array is called an incidence

matrix.

Since the incidence matrix carries all of the information, it is a good thing to

study. Various numerical invariants of the matrix now become invariants of the

incidence structure. Very often these matrices arise from geometric or combinatorial

considerations, so in a sense these invariants are analogous to the homology or Euler

characteristic of a topological space.

Consider, for example, the situation when the matrix is square (so both sets have

the same size). If furthermore the two sets are equal and the relation is symmetric, then

the incidence structure is just a graph, and the matrix is usually called an adjacency

matrix (see Section 2.4). Natural invariants to consider are the eigenvalues, and certain

properties of the graph are reflected in the spectrum of the matrix.

For non–square matrices, the rank of the incidence matrix is a good choice of

invariant. By changing the field that you view the matrix entries to be coming from, the

rank may change. The rank over a field of characteristic p is usually called the p-rank
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of the matrix. An incidence matrix is in particular an integer matrix, so we can also

consider its Smith normal form. This is just some uniquely determined diagonal matrix,

see Sections 2.1 and 2.2 for details. The Smith normal form is a rather strong invariant,

in the sense that from it one can immediately deduce the rank and p-rank of the matrix,

for any prime p. For information about the relationship between the Smith normal form of

an integer matrix and its spectrum, see [10, 11].

1.2 Statement of the Problem

Let V be a 4-dimensional vector space over the finite field Fq of q = pt elements,

where p is a prime. We declare two 2-dimensional subspaces U andW to be incident if

and only if U ∩W = {0}. Ordering the 2-dimensional subspaces in some arbitrary but

fixed manner, we can form the incidence matrix A of this relation. The goal is to compute

the Smith normal form of A as an integer matrix.

1.3 Some Motivation

It is useful to view this problem in a more general context. Suppose now that V is

an (n + 1)-dimensional vector space over the finite field Fq of q = pt elements. Denote

by Lr the set of r -dimensional subspaces of V . So L1 denotes the points, L2 denotes

the lines, etc. of the projective geometry P(V ). Define an r -dimensional subspace U and

an s-dimensional subspaceW to be incident if and only if U ∩W = {0}, and denote by

Ar ,s the |Lr | × |Ls | incidence matrix.

These matrices Ar ,s are naturally interesting, and mathematicians have been

studying them since at least the 1960s. The reader is referred to the surveys [16, 17]

(see also [4, Introduction]). By setting n = 3, r = s = 2, and A = A2,2, we recover the

situation described in the above problem. By the well–known Klein correspondence [7,

Chapter 15] (identifying the lines in PG(3, q) with the points of a hyberbolic quadric in

PG(5, q)), A may also be regarded as the adjacency matrix of the non–collinearity graph

on the points of the Klein quadric. In general, when r = s these matrices can be viewed

as adjacency matrices of q-analogues of the Kneser graphs.
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When r = 1, the incidence structure is that of a 2-design with “classical parameters,”

and these incidence matrices are the generator matrices of codes closely related to

the Reed–Muller codes [1]. This is what initially motivated their study, and in this case

their Smith normal forms have been found [4, 9, 12]. The p-rank of Ar ,s has been found

in general [13], but when neither r nor s is one its Smith normal form is not known. It

is thus natural to consider when both r and s are greater than one, and the problem

described above is just the first nontrivial case.

One can choose to consider notions of incidence other than zero–intersection.

A basic example is the subspace–inclusion relation; that is, two subspaces would

be called incident if the smaller one were contained in the larger. These incidence

structures are obvious q-generalizations of corresponding relations between subsets

of a finite set. Observe, however, that a subset T is contained in another subset K if

and only if T is disjoint from the complement of K . Thus when dealing with sets the

inclusion and empty–intersection relations are really the same thing, and in this case

the integer invariants have been found [15]. This does not carry over to spaces. The

subspace–inclusion relation is much more difficult to understand than zero–intersection:

it is still an open problem to calculate the p-ranks of the inclusion matrices.
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Figure 1-1. The incidence matrix of lines vs. lines in PG(3, 4), where two lines are
incident when skew. A black pixel is a 1, a white pixel is a 0.
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CHAPTER 2
PRELIMINARIES AND DEFINITIONS

2.1 The Smith Normal Form

A square matrix with integer entries is called unimodular if its determinant is ±1. If

M and N are m × n matrices with integer entries, then we say M and N are equivalent if

there exist unimodular integer matrices P and Q with

PMQ−1 = N.

This is an equivalence relation on the set of m × n integer matrices. The Smith normal

form of an integer matrix M is just a particular diagonal matrix that represents the class

of M. Precisely, if M is an m × n integer matrix, then there exist unimodular integer

matrices P and Q such that the matrix S(M) = PMQ−1 = (di,j) satisfies

di,j = 0, for i 6= j

and

di,i divides di+1,i+1, for 1 ≤ i < min{m, n}.

This divisibility condition determines S(M) up to the sign of the diagonal entries, and

it is always with this understanding that we refer to S(M) as “the” Smith normal form

of M. The nonzero diagonal entries of S(M), counted with multiplicity, are called the

invariant factors of the matrix M. Breaking apart the invariant factors into powers of

distinct primes, we get the elementary divisors of M. These are also determined up to

sign, and counted with multiplicity. A couple examples should make all of this clear.

Example 2.1. Let M =







1 2 3

4 5 6






. Choosing

P =







1 0

4 −1






, Q−1 =













1 −2 1

0 1 −2

0 0 1













,
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we have

S(M) = PMQ−1 =







1 0 0

0 3 0






.

The invariant factors are 1 and 3, each occurring with multiplicity one. The elementary

divisors are also 1 and 3, each occurring with multiplicity one.

Example 2.2. Let

M =













−31672 522 −2632 12138

−5824 96 −484 2232

34224 −564 2844 −13116













.

Setting

P =













3 13 5

2 1 2

−2 5 −1













, Q−1 =



















3 2 3 2

−6 4 −4 −5

−5 −5 0 −2

7 4 8 5



















,

we have

S(M) = PMQ−1 =













2 0 0 0

0 12 0 0

0 0 0 0













.

The invariant factors are 2 and 12, each occurring with multiplicity one. The elementary

divisors are 2, 4, and 3, each occurring with multiplicity one.

Many very interesting examples can be found in [11]. Since knowledge of the

invariant factors is equivalent to knowledge of the elementary divisors, we will be

focusing our attention on the latter. Our terminology is reasonably standard, although

in the literature one finds an apparent dispute over what the exact meaning of these

terms should be. The Smith normal form is named after Henry John Stephen Smith

(1826–1883). Aside from being a very talented scholar and administrator, all accounts

of his life seem to describe him as a charming and modest man who never made an

enemy or lost a friend [5].
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2.2 Localization

Since incidence matrices are zero–one matrices, we can view their entries as

coming from any commutative ring R. When R is a principal ideal domain, there is

a completely analogous notion of Smith normal form “over R.” See for example [10].

Indeed, the statement that an integer matrix has a Smith normal form is really just

a matrix–theoretic description of the structure theorem for finitely generated abelian

groups, and this theorem generalizes to finitely generated modules over principal ideal

domains [8, Chapters 4, 7]. In this context of matrices over R, the statement that P and

Q are unimodular means that they have entries coming from R and their determinants

are units in this ring (the purpose of this condition is to guarantee that P−1 and Q−1 also

have entries in R). The diagonal entries of the Smith normal form over R are unique

up to multiplication by a unit in R, and when speaking of invariant factors or elementary

divisors over this ring we do not distinguish between associates. Thus when we speak

of the multiplicity of a particular invariant factor or elementary divisor, we are really

counting the number of occurrences of its associates.

An important special case is when R is an extension ring of the ring of integers Z.

Notice that if P and Q are unimodular as integer matrices then they are still unimodular

as matrices over R. Thus if M is an integer matrix and S(M) is its Smith normal form

over Z, then S(M) is the Smith normal form of M over R. However, if there are non–unit

elements of Z that become units in the ring R, then the elementary divisor multiplicities

over each ring need not be the same. More generally, similar statements hold true when

R contains a homomorphic image of Z.

Example 2.3. Take R = Q to be the rational numbers and M to be the matrix from

Example 2.2. Then the nonzero diagonal entries of S(M) are all units in Q, so that (as

a rational matrix) M has 1 as its only elementary divisor, occurring with multiplicity two.

Observe that the rank of an integer matrix is just the number of nonzero diagonal entries

of its Smith normal form over Z.
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Example 2.4. Take R = F3 = Z/3Z to be the finite field of 3 elements, and again let M

be the matrix from Example 2.2. Let M be the matrix obtained by reducing all entries of

M (mod 3). Then 1 is the only elementary divisor of M, occurring with multiplicity one.

In general, the p-rank of an integer matrix is just the number of diagonal entries of its

Smith normal form over Z that are not divisible by p.

Example 2.5. Take R = Zp to be the ring of p-adic integers, M the matrix from

Example 2.2. The elements of Z that become units in the ring Zp are precisely the

integers not divisible by p. Thus as a matrix over Z2, the elementary divisors of M are 2

and 4 both with multiplicity one. Over Z3, the elementary divisors of M are 1 and 3 both

with multiplicity one. For any other (rational) prime p, M as a matrix over Zp has 1 as its

only elementary divisor, occurring with multiplicity two.

All of these examples show that the Smith normal form of an integer matrix carries a

great deal of information. The last example in particular shows that if we are interested

only in the p-elementary divisors of an integer matrix (that is, those elementary divisors

that are positive powers of a particular prime p), then we may choose to view the matrix

entries as coming from Zp rather than Z. We will always be clear about which ring we

consider our matrix entries to be coming from.

2.3 Incidence Maps and Representation Theory

Representation theory can be a very powerful tool in the study of incidence

matrices. This is because the incidence structures that are most interesting usually

have some group acting on them. To be clear, consider an incidence structure (X ,Y , I),

where X and Y are finite sets and I is the incidence relation

I ⊆ X × Y .

Ordering the sets X and Y , we form the incidence matrix M of this relation. When we

view the matrix entries as coming from some commutative ring R, the |X | × |Y | matrix M

17



represents a homomorphism of free R-modules

η : RX → RY ,

where RZ consists of all R-valued functions on the set Z . Since we will not be needing

this “function notation,” we identify each element of Z with its characteristic function, and

view RZ as consisting of formal R-linear combinations of the elements of Z . With these

identifications, the above mapping η sends each element of x ∈ X to the sum of the

elements of Y that are incident with x , and by linearity this property completely defines

the map. If the ring R is a field, then the rank of M is just the dimension of the image

of η. For R a principal ideal domain, there is module–theoretic description of the Smith

normal form of M (see Chapter 4).

Now if G is a finite group acting transitively on the sets X and Y , then RX and

RY are permutation modules for the group ring RG . Furthermore, if the action of G

preserves the incidence relation, i.e.

(x , y) ∈ I implies (gx , gy) ∈ I, for all g ∈ G ,

then η becomes a homomorphism of RG -modules. Thus the image, kernel, etc. of η

are RG -submodules, and in general this places extremely severe limitations on what

their structure can be. In turn, this information becomes relevant and useful to our study

of the incidence structure’s invariants. As can be expected, various difficulties arise

and techniques are used depending on the ring R. Most of what we need can be found

nicely summarized in [9, Appendices D, E, F].

2.4 Graph Theory and Matrix Identities

A graph (V, E) is a set V of vertices and a collection E of 2-element subsets of V

called edges. If {x , y} ∈ E , then the vertices x and y are said to be adjacent. Graph

theory terminology can vary considerably, and what we are calling a graph some authors

would call a “simple” or “loopless” graph.
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Alternatively, for us a graph is just an incidence structure (V,V, I) where I is a

symmetric relation and no element of V is incident with itself. Ordering the set V, we

can form the incidence matrix of this relation. This symmetric matrix is usually called the

adjacency matrix of the graph.

A graph is called regular with valency k if each vertex is adjacent to exactly k other

vertices. A graph (V, E) is strongly regular with parameters v , k ,λ,µ if

1. |V| = v ,

2. the graph is regular of valency k ,

3. if x and y are adjacent vertices, then there are exactly λ vertices adjacent to both x
and y ,

4. if x and y are (distinct) non–adjacent vertices, then there are exactly µ vertices
adjacent to both x and y .

If M is the adjacency matrix of a strongly regular graph with parameters v , k ,λ,µ,

then M satisfies the equation

M2 = kI + λM + µ(J −M − I ), (2–1)

where I and J respectively denote the identity matrix and all–one matrix of the same

size as M. The reason that this equation holds follows from a more general fact

explained below. From this equation it is not difficult to deduce both the eigenvalues

of M and their multiplicities, we refer the reader to [3].

To see why Equation (2–1) holds, consider more generally the following situation.

Let (X ,Y , I) and (Y ,Z ,J ) be two finite incidence structures, and fix an ordering of X ,

Y , and Z . With respect to these orderings, form the |X | × |Y | incidence matrix M of the

first relation, and the |Y | × |Z | incidence matrix N of the second relation. Notice that the

matrix product MN has rows indexed by X and columns indexed by Z . Let x ∈ X and

z ∈ Z . With a little thought one sees that the (x , z)-entry of the matrix product MN is
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precisely the number of y ∈ Y that are incident with both x and z . In symbols,

(MN)x,z = |{y ∈ Y | (x , y) ∈ I and (y , z) ∈ J }|.

We will frequently make use of this fact. Thus we see that Equation (2–1) is just

expressing properties 2, 3, and 4 in the definition of a strongly regular graph.
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CHAPTER 3
THE MAIN RESULT

3.1 Statements of Theorems

We return now to the problem described in the introduction (Section 1.2). Thus V is

a 4-dimensional vector space over the finite field Fq of q = pt elements, A = A2,2 is the

incidence matrix with rows and columns indexed by the 2-dimensional subspaces of V ,

and incidence is defined to mean zero–intersection. We will compute the Smith normal

form of A as an integer matrix.

It turns out that the elementary divisors of A are all powers of the prime p. A quick

way to see this is to regard A as the adjacency matrix of the graph with vertex set

L2, where two lines are adjacent when skew. This is a strongly regular graph (see

Section 2.4), with parameters

v = q4 + q3 + 2q2 + q + 1, k = q4, λ = q4 − q3 − q2 + q, µ = q4 − q3.

Thus A satisfies the equation

A2 = q4I + (q4 − q3 − q2 + q)A+ (q4 − q3)(J − A− I ), (3–1)

where I and J denote the identity matrix and all–one matrix, respectively, of the

appropriate sizes. From this equation one deduces that the eigenvalues of A are q,

−q2, and q4 with respective multiplicities q4 + q2, q3 + q2 + q, and 1. Since (up to sign,

of course) det(A) is the product of the elementary divisors, we see that the elementary

divisors of A are all powers of the prime p.

Therefore describing the Smith normal form of A amounts to specifying the number

of times each prime power pi , i ≥ 0, occurs as an elementary divisor of A. This number

we denote by ei (or ei(A), when we wish to emphasize the matrix under discussion).

Since the problem is parametrized by our choice of q = pt , it is to be expected that the

elementary divisor multiplicities ei will depend in some way on the exponent t.
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The elementary divisor multiplicities are listed in Table 3-1, for some small values of

q = pt . It is worthwhile to examine this table briefly before moving on. The next theorem

describes some relations that hold among the multiplicities in general, and studying the

table for a moment should make the statement of the theorem much clearer.

For example, look at the row of Table 3-1 corresponding to when q = 8 = 23. Pay

special attention to the fact that here t = 3. In this row one sees 4 (= t + 1) nonzero

entries, followed by 2 (= t − 1) zeros, followed by 4 (= t + 1) nonzero entries, followed

by 2 (= t − 1) zeros. The next entry is 1, corresponding to the multiplicity e12 (= e4t), and

all remaining multiplicities are zero. Observe the partial “reverse symmetry” in the two

chunks of nonzero entries:

e0 = e9 (= e3t), e1 = e8 (= e3t−1), e2 = e7 (= e3t−2). (3–2)

Adding the multiplicities in these nonzero chunks, we get

e0 + e1 + e2 + e3 = 4160 (= q
4 + q2) (3–3)

and

e6 + e7 + e8 + e9 = 584 (= q
3 + q2 + q). (3–4)

Theorem 3.1. Let ei = ei(A) denote the multiplicity of pi as an elementary divisor of A.

1. e4t = 1.

2. ei = 0 for t < i < 2t, 3t < i < 4t, and i > 4t.

3. ei = e3t−i for 0 ≤ i < t.

4.
∑t

i=0 ei = q
4 + q2.

5.
∑3t
i=2t ei = q

3 + q2 + q.

From the identities stated in the above theorem, we can deduce all of the elementary

divisor multiplicities once we know t of the numbers e0, ... , et (or t of the numbers

e2t , ... , e3t). For example, consider again the row of Table 3-1 corresponding to
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q = 8 = 23 (so t = 3). Suppose we know only that e6 = 128, e8 = 144, and e9 = 216.

Then part (5) of the theorem is just Equation (3–4), and from this we calculate e7 = 96.

In this case part (3) becomes the equations (3–2), and we compute e0 = 216, e1 = 144,

and e2 = 96. From Equation (3–3) (part (4) of the theorem) we then get e3 = 3704.

Finally, e12 = 1 and all other multiplicities are zero by parts (1) and (2), respectively.

The next theorem shows how to directly compute each of the multiplicities

e2t , ... , e3t . By the discussion above, this data is more than sufficient to determine

the Smith normal form of A. To state the theorem, we need some notation.

Set

[3]t = {(s0, ... , st−1) | si ∈ {1, 2, 3} for all i}

and

H(i) =
{

(s0, ... , st−1) ∈ [3]
t
∣

∣#{j |sj = 2} = i
}

.

In other words, H(i) consists of the tuples in [3]t with exactly i twos. To each tuple

~s ∈ [3]t we associate a number d(~s) as follows. For ~s = (s0, ... , st−1) ∈ [3]t define the

integer tuple ~λ = (λ0, ... ,λt−1) by

λi = psi+1 − si ,

with the subscripts read modulo t. For an integer k , set dk to be the coefficient of x k in

the expansion of (1 + x + · · ·+ xp−1)4. Finally, set d(~s) =
∏t−1
i=0 dλi .

Theorem 3.2. Let ei = ei(A) denote the multiplicity of pi as an elementary divisor of A.

Then, for 0 ≤ i ≤ t,

e2t+i =
∑

~s∈H(i)

d(~s).

Remark. When p = 2, notice that d(~s) = 0 for any tuple ~s containing an adjacent 1 and

3 (coordinates read circularly). Thus the sum in Theorem 3.2 is significantly easier to

compute in this case.
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3.2 Examples and Calculations

To illustrate how to use these two theorems, let’s consider an example.

Example 3.1. Suppose q = 9 = 32 (that is, p = 3 and t = 2). Then we have

(1 + x + x2)4 = 1 + 4x + 10x2 + 16x3 + 19x4 + 16x5 + 10x6 + 4x7 + x8,

H(0) = {(11), (13), (31), (33)},

H(1) = {(21), (23), (12), (32)},

H(2) = {(22)}.

Using Theorem 3.2 we compute

e4 = d(11) + d(13) + d(31) + d(33)

= d2 · d2 + d8 · d0 + d0 · d8 + d6 · d6

= 10 · 10 + 1 · 1 + 1 · 1 + 10 · 10

= 202,

e5 = d(21) + d(23) + d(12) + d(32)

= d1 · d5 + d7 · d3 + d5 · d1 + d3 · d7

= 4 · 16 + 4 · 16 + 16 · 4 + 16 · 4

= 256,

e6 = d(22) = d4 · d4 = 19 · 19 = 361.

The remaining nonzero multiplicities are now given by Theorem 3.1. Observe that our

calculation agrees with Table 3-1.

We only need a few of the coefficients of (1 + x + · · ·+ xp−1)4 when computing d(~s).

In fact, it is not difficult to compute the coefficients that we need explicitly. These are

listed in Table 3-2. Using these, we can in certain cases write closed–form expressions
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for the elementary divisor multiplicities. For example, the case when q = p (that is,

t = 1) is shown in Table 3-3.

Table 3-1. LinBox computations for some small values of q = pt .

e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 · · ·

q = 2 6 14 8 6 1

q = 3 19 71 20 19 1

q = 5 85 565 70 85 1

q = 7 231 2219 168 231 1

q = 22 36 16 220 32 16 36 1

q = 32 361 256 6025 202 256 361 1

q = 23 216 144 96 3704 128 96 144 216 1

Here ei denotes the multiplicity of pi as an elementary divisor of A. An empty entry in the
table denotes a 0.

Table 3-2. The coefficients dλi that arise when calculating d(~s) in Theorem 3.2.

(... , si , si+1, ... ) λi dλi

(... , 1, 1, ... ) p − 1 p(p + 1)(p + 2)/6 =
(

p+2
3

)

(... , 1, 2, ... ) 2p − 1 2(p − 1)p(p + 1)/3 = 4
(

p+1
3

)

(... , 2, 1, ... ) p − 2 (p − 1)p(p + 1)/6 =
(

p+1
3

)

(... , 2, 2, ... ) 2p − 2 p(2p2 + 1)/3 = 4
(

p+1
3

)

+ p

(... , 1, 3, ... ) 3p − 1 (p − 2)(p − 1)p/6 =
(

p

3

)

(... , 3, 1, ... ) p − 3 (p − 2)(p − 1)p/6 =
(

p

3

)

(... , 2, 3, ... ) 3p − 2 (p − 1)p(p + 1)/6 =
(

p+1
3

)

(... , 3, 2, ... ) 2p − 3 2(p − 1)p(p + 1)/3 = 4
(

p+1
3

)

(... , 3, 3, ... ) 3p − 3 p(p + 1)(p + 2)/6 =
(

p+2
3

)
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Table 3-3. The Smith normal form of the incidence matrix of skew lines in PG(3, p).

Elementary Divisor Multiplicity

1 p(2p2 + 1)/3

p p(3p3 − 2p2 + 3p − 1)/3

p2 p(p + 1)(p + 2)/3

p3 p(2p2 + 1)/3

p4 1
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CHAPTER 4
ELEMENTARY DIVISORS

4.1 The Modules Mi and Nj

In this section we collect a few useful results regarding elementary divisors.

Throughout this chapter we will be working over a discrete valuation ring R. In other

words, R is a principal ideal domain with exactly one nonzero prime ideal. Let p ∈ R be

a prime generating this ideal. This is not such a special situation.

Example 4.1. Let M be an integer matrix, and p ∈ Z a prime integer. The ring of

integers Z is not a discrete valuation ring. However, both ZP (the localization of Z at the

prime ideal P generated by p) and the p-adic integers Zp are discrete valuation rings

that contain a copy of Z. Moreover, for i > 0 the multiplicity of pi as an elementary

divisor of M is the same whether we view the entries of M as coming from Z, ZP , or Zp

(the multiplicity of p0, i.e. the number of elementary divisors that are units, will in general

be different over different rings).

An m × n matrix with entries in R can be viewed as a homomorphism of free

R-modules of finite rank:

η : Rm → Rn.

The elementary divisors of η are by definition just the elementary divisors of the

matrix, and for the fixed prime p we always let ei(η) denote the multiplicity of pi as

an elementary divisor of η.

Set F = R/pR. If L is an R-submodule of a free R-module Rℓ, then L = (L+ pRℓ)/pRℓ

is an F -vector space. For i ≥ 0, define

Mi(η) = {x ∈ Rm | η(x) ∈ piRn}

and

Ni(η) = {p−iη(x) | x ∈ Mi(η)}.
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For convenience we also define N−1(η) = {0}. Then we have chains of R-modules

Rm = M0(η) ⊇ M1(η) ⊇ · · ·

N0(η) ⊆ N1(η) ⊆ · · ·

and chains of F -vector spaces

Fm = M0(η) ⊇ M1(η) ⊇ · · ·

N0(η) ⊆ N1(η) ⊆ · · · .

Lemma 4.1. Let η : Rm → Rn be a homomorphism of free R-modules of finite rank, and

let ei(η) denote the multiplicity of pi as an elementary divisor of η. Then, for i ≥ 0,

ei(η) = dimF

(

Mi(η)/Mi+1(η)
)

= dimF

(

Ni(η)/Ni−1(η)
)

.

Proof. The lemma is certainly true if η = 0, so assume that η is nonzero. Then there

is a unique largest nonnegative integer ℓ with eℓ(η) 6= 0; in other words, ℓ is the largest

exponent occurring among the powers of p in the Smith normal form of η. From the

theory of modules over principal ideal domains, there exists a basis B of Rm and a basis

C of Rn with respect to which the matrix of η is in Smith normal form. By considering

this matrix we are lead to a partition of B and C as follows. For 0 ≤ i ≤ ℓ, let Bi be the

elements of B whose image is exactly divisible by pi . If we let Bℓ+1 denote the elements

of B that are mapped to zero, then we have the disjoint union

B =
ℓ+1
⋃

i=0

Bi .

For 0 ≤ i ≤ ℓ, set Ci = p−iη(Bi) (if Bi is empty, just set Ci to be the empty set also). Then

we have the disjoint union

C =
ℓ+1
⋃

i=0

Ci ,
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where Cℓ+1 is defined to be C \ ∪ℓ
i=0Ci . It is easy to see that each of the R-submodules

Mi(η) (resp. Nj(η)) have a basis consisting of p-power multiples of elements of B (resp.

C). This is described in Table 4-1 and Table 4-2. When we represent the modules in this

way, the lemma becomes clear.

Table 4-1 and Table 4-2 provide a very useful way to visualize the R-modules Mi(η)

and Nj(η), and really make clear their connection with the Smith normal form of η. The

advantages of the module–theoretic approach to the Smith normal form will become

increasingly apparent. This next result is very easy, but very useful.

Lemma 4.2. Let γ : Rm → Rn be another R-module homomorphism, and suppose that

for some k ≥ 1 we have

η(x) ≡ γ(x) (mod pk), for all x ∈ Rm.

Then

ei(η) = ei(γ), for 0 ≤ i ≤ k − 1.

Proof. Verify that Mi(η) = Mi(γ), for 0 ≤ i ≤ k . The conclusion is now immediate from

Lemma 4.1.

4.2 Smith Normal Form Bases

For a given homomorphism η : Rm → Rn, we will be interested in pairs of bases (B,

C) with respect to which the matrix of η is diagonal. We define a left SNF basis for η to

be any basis B of Rm that belongs to such a pair. Similarly, a right SNF basis for η is any

basis C of Rn belonging to such a pair. We now describe how to construct such bases.

Suppose η : Rm → Rn is nonzero. Then there is a unique largest nonnegative

integer ℓ with eℓ(η) 6= 0. We have

M0(η) ⊇ M1(η) ⊇ · · · ⊇ Mℓ(η) ) ker(η).
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Table 4-1. Visualizing the R-submodules Mi(η).
Submodule Basis

(Rm =) M0 =
〈

B0 , B1 , B2 , B3 , · · · , Bℓ−1 , Bℓ , Bℓ+1

〉

M1 =
〈

pB0 , B1 , B2 , B3 , · · · , Bℓ−1 , Bℓ , Bℓ+1

〉

M2 =
〈

p2B0 , pB1 , B2 , B3 , · · · , Bℓ−1 , Bℓ , Bℓ+1

〉

M3 =
〈

p3B0 , p2B1 , pB2 , B3 , · · · , Bℓ−1 , Bℓ , Bℓ+1

〉

...

Mℓ−1 =
〈

pℓ−1B0 , pℓ−2B1 , pℓ−3B2 , pℓ−4B3 , · · · , Bℓ−1 , Bℓ , Bℓ+1

〉

Mℓ =
〈

pℓB0 , pℓ−1B1 , pℓ−2B2 , pℓ−3B3 , · · · , pBℓ−1 , Bℓ , Bℓ+1

〉

Mℓ+1 =
〈

pℓ+1B0 , pℓB1 , pℓ−1B2 , pℓ−2B3 , · · · , p2Bℓ−1 , pBℓ , Bℓ+1

〉

...

Mℓ+k =
〈

pℓ+kB0 , pℓ+k−1B1 , pℓ+k−2B2 , pℓ+k−3B3 , · · · , pk+1Bℓ−1 , pkBℓ , Bℓ+1

〉

...

30



Table 4-2. Visualizing the R-submodules Nj(η).
Submodule Basis

(· · · = Nℓ+1 =) Nℓ =
〈

C0 , C1 , C2 , C3 , · · · , Cℓ−1 , Cℓ
〉

Nℓ−1 =
〈

C0 , C1 , C2 , C3 , · · · , Cℓ−1 , pCℓ
〉

Nℓ−2 =
〈

C0 , C1 , C2 , C3 , · · · , pCℓ−1 , p2Cℓ
〉

...

N3 =
〈

C0 , C1 , C2 , C3 , · · · , pℓ−4Cℓ−1 , pℓ−3Cℓ
〉

N2 =
〈

C0 , C1 , C2 , pC3 , · · · , pℓ−3Cℓ−1 , pℓ−2Cℓ
〉

N1 =
〈

C0 , C1 , pC2 , p2C3 , · · · , pℓ−2Cℓ−1 , pℓ−1Cℓ
〉

N0 =
〈

C0 , pC1 , p2C2 , p3C3 , · · · , pℓ−1Cℓ−1 , pℓCℓ
〉

where only the last inclusion is necessarily strict. Choose a basis Bℓ+1 of ker(η) and

extend it to a basis Bℓ ∪ Bℓ+1 of Mℓ(η). Continue in this fashion to get a basis ∪ℓ+1
i=0Bi of

M0(η). Now lift the elements of Bℓ+1 to a set Bℓ+1 of preimages in ker(η). Continuing,

at each stage we enlarge Bi+1 by adjoining a set Bi of preimages in Mi(η) of Bi . By

Nakayama’s Lemma, the set

B =
ℓ+1
⋃

i=0

Bi

is an R-basis of Rm.

Notice that Nℓ(η) = Nℓ+1(η) = · · · . Set N ′ = Nℓ(η). Then N ′ is called the purification

of Im η, and is the smallest R-module direct summand of Rn containing Im η. The

elementary divisors of η remain the same if we change the codomain of η to N ′. Choose

a basis C0 of N0(η) and extend it to a basis C0 ∪ C1 of N1(η). Continue in this fashion to

get a basis ∪ℓ
i=0Ci of Nℓ(η). Now we lift the elements of C0 to a set C0 of preimages in

N0(η). Continuing, at each stage we enlarge Ci by adjoining a set Ci+1 of preimages in

Ni+1(η) of Ci+1. By Nakayama’s Lemma, the set

C′ =

ℓ
⋃

i=0

Ci

is an R-basis of N ′. We then set

C =
ℓ+1
⋃

i=0

Ci
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to be any R-basis of Rn obtained by adjoining to C′ some set Cℓ+1.

Lemma 4.3.

1. The basis B constructed above is a left SNF basis for η.

2. The basis C constructed above is a right SNF basis for η.

Proof. For x ∈ Bi , 0 ≤ i ≤ ℓ, consider the element y = p−iη(x) ∈ N ′. The collection of

all such elements form a linearly independent set, since the basis B extends the basis

Bℓ+1 of ker(η). Let Y denote the R-submodule generated by these elements. From

Lemma 4.1 we see that the index of Im η in Y is the same as the index of Im η in N ′.

Hence Y = N ′, and so these elements form a basis of N ′. The matrix of η with respect

to B and any basis of Rn obtained by extending this basis of N ′ will then be in diagonal

form. This proves part (1).

Now, for each y ∈ Ci , 0 ≤ i ≤ ℓ, choose an element x ∈ Mi(η) such that

η(x) = piy . Let X denote the R-submodule of Rm generated by these elements. The

images of these elements are certainly linearly independent, hence X ∩ ker(η) = {0}.

By Lemma 4.1 we see that Im η and η(X + ker(η)) have the same index in N ′. Therefore

Rm = X ⊕ ker(η), and adjoining any basis of ker(η) to these generators of X gives a

basis of Rm. With respect to this basis and C, the matrix of η is in diagonal form.
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CHAPTER 5
PROOFS OF THEOREMS

5.1 Proof of Theorem 3.1

For brevity, an r -dimensional subspace of V will usually just be called an r -subspace

in what follows. Since all of the elementary divisors of A are powers of p, we might as

well view A as a matrix over the p-adic integers Zp. None of the elementary divisor

multiplicities are affected if we do this, and we may appeal to our results in Chapter 4. A

represents a homomorphism of free Zp-modules

ZL2
p → ZL2

p

that sends a 2-subspace to the (formal) sum of the 2-subspaces incident with it. We

abuse notation by using the same symbol for both the matrix and the map. We also

apply our matrices and maps on the right (so AB means “do A first, then B”).

Let 1 =
∑

x∈L2
x and set

Y2 =
{

∑

x∈L2

axx ∈ ZL2
p

∣

∣

∣

∑

x∈L2

ax = 0
}

.

Since |L2| is a unit in Zp, we have the decomposition

ZL2
p = Zp1⊕ Y2.

We now prove Theorem 3.1. The map A respects the above decomposition of ZL2
p ,

and thus we get all of the elementary divisors of A by computing those of the restriction

of A to each summand. Since (1)A = q41, we see that e4t(A) = e4t(A|Y2) + 1 and

ei(A) = ei(A|Y2) for i 6= 4t.

Rewriting equation (3–1) we get

A(A+ (q2 − q)I ) = q3I + (q4 − q3)J
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and if we now restrict A to Y2, the above equation reads

A(A+ (q2 − q)I ) = q3I .

Let P and Q be unimodular transformations so that D = PAQ−1 acts diagonally on Y2.

Then we get the relation

Q(A+ (q2 − q)I )P−1 = q3D−1, (5–1)

which gives the Smith normal form of A + (q2 − q)I on Y2. It follows from this equation

that ei(A|Y2) = 0 for i > 3t, and so e4t(A) = 1, establishing part (1) of the theorem (and

most of part (2)).

It also follows immediately from equation (5–1) that

ei(A|Y2 + (q
2 − q)I ) = e3t−i(A|Y2) (5–2)

for 0 ≤ i ≤ 3t. Since A|Y2 ≡ A|Y2 + (q
2 − q)I (mod pt), we have from Lemma 4.2 that

ei(A|Y2) = ei(A|Y2 + (q
2 − q)I ) = e3t−i(A|Y2) (5–3)

for 0 ≤ i < t, which is part (3) of the theorem.

It remains to prove parts (4) and (5) of the theorem, and also the statement from

part (2) that ei(A) = 0 for t < i < 2t. Denote by Vλ the λ-eigenspace for A (as a matrix

over Qp, the p-adic numbers). Then Vq ∩ ZL2
p and V−q2 ∩ ZL2

p are pure Zp-submodules of

Y2. Notice that Vq ∩ ZL2
p ⊆ Nt(A|Y2) and V−q2 ∩ ZL2

p ⊆ M2t(A|Y2). Therefore,

q4 + q2 = dimFp(Vq ∩ ZL2
p ) ≤ dimFp Nt(A|Y2) =

t
∑

i=0

ei(A|Y2)

and

q3 + q2 + q = dimFp(V−q2 ∩ ZL2
p ) ≤ dimFpM2t(A|Y2) =

3t
∑

i=2t

ei(A|Y2).
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Since (q4 + q2) + (q3 + q2 + q) = dimFp Y2, the above inequalities are actually equalities,

and the remaining elementary divisor multiplicities must be zero. This completes the

proof of Theorem 3.1.

Remark. The above proof simply exploits equation (3–1), and makes no use of the

geometry of PG(3, q). Therefore Theorem 3.1 is also true for the adjacency matrix A of

any strongly regular graph with the same parameters.

Theorem 3.2 will follow from a more general result which we prove below. Here we

explain the connection between these theorems. Let B denote the incidence matrix with

rows indexed by L1 and columns indexed by L2, where incidence again means zero

intersection. Bt denotes the transpose of B, and is just the incidence matrix of lines vs.

points. It is easy to check that

BtB = (q3 + q2)I + (q3 + q2 − q − 1)A+ (q3 + q2 − q)(J − A− I ). (5–4)

Just like with A, we denote also by B and Bt the incidence maps these matrices

represent over Zp. Notice that (1)BtB = q4(q2 + q + 1)(q + 1)1, and so for i 6= 4t we

have ei(BtB) = ei(BtB|Y2). Thus again we concentrate on the summand Y2.

We can rewrite the equation (5–4) as

BtB = −[A+ (q2 − q)I ] + q2I + (q3 + q2 − q)J

and upon restriction of maps to Y2 it reads

BtB = −[A+ (q2 − q)I ] + q2I .

Applying Lemma 4.2 we have, for 0 ≤ i < 2t,

ei(B
tB|Y2) = ei(A|Y2 + (q

2 − q)I ). (5–5)

Using equation (5–2), and considering only nonzero multiplicities, we then get

e2t+i(A) = et−i(B
tB), for 0 ≤ i ≤ t. (5–6)

35



Therefore to prove Theorem 3.2 it is sufficient to compute the (p-adic) elementary

divisors of the matrix BtB. The final theorem below describes these. We can actually do

this at the level of generality mentioned in the introduction.

5.2 The General Result

For the remainder of the work, V is an (n + 1)-dimensional vector space over

Fq, where q = pt is a prime power. Ar ,s is the |Lr | × |Ls | incidence matrix with rows

indexed by the r -subspaces of V and columns indexed by the s-subspaces of V , and

two subspaces are incident if and only if their intersection is trivial. We will compute the

elementary divisors of Ar ,1A1,s as a matrix over Zp.

Let H denote the set of t-tuples of integers ~s = (s0, ... , st−1) that satisfy, for

0 ≤ i ≤ t − 1,

1. 1 ≤ si ≤ n,

2. 0 ≤ psi+1 − si ≤ (p − 1)(n + 1),

with subscripts read modulo t. First introduced in [6], the set H was later used in [2] to

describe the module structure of FL1
q under the action of GL(n + 1, q). For nonnegative

integers α, β, define the subsets of H

Hα(s) =
{

(s0, ... , st−1) ∈ H
∣

∣

∣

t−1
∑

i=0

max{0, s − si} = α
}

and

βH(r) = {(n + 1− s0, ... , n + 1− st−1) | (s0, ... , st−1) ∈ Hβ(r)}

=
{

(s0, ... , st−1) ∈ H
∣

∣

∣

t−1
∑

i=0

max{0, si − (n + 1− r)} = β}
}

.

To each tuple ~s ∈ H we associate a number d(~s) as follows. For ~s = (s0, ... , st−1) ∈

H define the integer tuple ~λ = (λ0, ... ,λt−1) by

λi = psi+1 − si (subscripts mod t).
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For an integer k , set dk to be the coefficient of x k in the expansion of (1 + x + · · ·+ xp−1)n+1.

Explicitly,

dk =

⌊k/p⌋
∑

j=0

(−1)j
(

n + 1

j

)(

n + k − jp

n

)

.

Finally, set d(~s) =
∏t−1
i=0 dλi .

Theorem 5.1. Let ei(Ar ,1A1,s) denote the multiplicity of pi as a p-adic elementary divisor

of Ar ,1A1,s .

1. et(r+s)(Ar ,1A1,s) = 1.

2. For i 6= t(r + s),
ei(Ar ,1A1,s) =

∑

~s∈Γ(i)

d(~s),

where
Γ(i) =

⋃

α+β=i
0≤α≤t(s−1)
0≤β≤t(r−1)

βH(r) ∩Hα(s).

Summation over an empty set is interpreted to result in 0.

It will be technically convenient to actually work over a larger ring than Zp. Let

K = Qp(ξ) be the unique unramified extension of degree t(n + 1) over Qp, where ξ is

a primitive (qn+1 − 1)th root of unity in K . We set R = Zp[ξ] to be the ring of integers

in K . Then R is a discrete valuation ring, p ∈ R generates the maximal ideal, and

F = R/pR ∼= Fqn+1 . For the remainder of this work we view all matrix entries as coming

from R.

Set G = GL(n + 1, q). Upon fixing a basis of V there is a natural action of G on the

sets Li , and in this way RLi becomes an RG -permutation module. As before, Ar ,s will

denote both the matrix and the incidence map

RLr → RLs

that sends an r -subspace to the (formal) sum of s-subspaces incident with it. Since the

action of G preserves incidence, the Ar ,s are RG -module homomorphisms. Clearly the
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Mi(Ar ,s) and Nj(Ar ,s) are RG -modules. We have the RG -decompositions

RLk = R1⊕ Yk ,

where 1 =
∑

x∈Lk
x and Yk is the kernel of the splitting map

∑

x∈Lk

axx 7→
( 1

|Lk |

∑

x∈Lk

ax

)

1,

and all the Ar ,s respect these decompositions. Reduction (mod p) induces a homomorphism

of FG -permutation modules

FLr → FLs ,

which we denote by Ar ,s .

Let us indicate how we will prove Theorem 5.1. Suppose that we are able to find

unimodular matrices P , Q, and E such that

PAr ,1E
−1 = Dr ,1

and

EA1,sQ
−1 = D1,s

where the matrices on the right are diagonal. Then these diagonal entries are the

elementary divisors of the respective matrices Ar ,1 and A1,s . Since then

PAr ,1A1,sQ
−1 = Dr ,1D1,s ,

we will then have obtained the elementary divisors of the product matrix (provided that

we have detailed enough knowledge of the elementary divisors of the factor matrices).

Example 5.1. Consider the matrix product






p 1

0 −p













1 p

0 −p2






=







p 0

0 p3






.
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This product matrix is already in Smith normal form. Note that both of the factor matrices

are equivalent to
(

1 0
0 p2

)

. Even allowing permutation of the diagonal entries, it is not

possible for two such diagonal matrices to multiply to
(

p 0

0 p3

)

.

In general it is not possible to find such a matrix E , as the above example shows.

Thus when trying to find the elementary divisors of a matrix product, knowledge of

the elementary divisors of the factor matrices is in general not sufficient (for more

information on this interesting topic, see [11] and [14]). Therefore we should not expect

such an intermediate matrix E to exist in our situation. Yet it does! To see what is so

special here, pass from matrices back to modules. The key ingredient is the structure

of RL1 as an RG -module, as the matrix E arises from choosing a basis of RL1 that is

“compatible” with both factor maps. We already have the correct terminology for this.

Lemma 5.1. There exists a basis B of RL1 that is simultaneously a left SNF basis for

A1,s and a right SNF basis for Ar ,1.

Proof. The group G has a cyclic subgroup S which is isomorphic to F×. Since R

contains a primitive |S |th root of unity, it follows that K is a splitting field for S and that

the irreducible K -characters of S take their values in R. Let S denote the quotient of S

by the subgroup of scalar matrices. Then S acts regularly on L1, and |S | = |L1| is a unit

in R. Therefore, for each character χ of S , the group ring RS contains an idempotent

element hχ that projects onto the (rank one) χ-isotypic component of RL1 . We thus

obtain an R-basis B = {vχ |χ ∈ Hom(S ,R×)} of RL1, where vχ ∈ hχ · RL1 such that

p 6 | vχ.

Now let us construct a left SNF basis for A1,s , in the manner and notation described

in Section 4.2. Since each FS-submodule of FL1 is a direct sum of the isotypic

components that it contains, we see that we can take each of the sets Bi to be a subset

of B. Suppose we lift vχ ∈ Bi to an element f ∈ Mi(A1,s). Writing

f =
∑

θ∈Hom(S,R×)

cθvθ,
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we see that f = cχvχ and so cχ must be a unit in R. Since Mi(A1,s) is an RS-submodule,

we have that hχ · f = cχvχ is also in Mi(A1,s). This proves that we may choose to lift vχ to

vχ in the construction, and that B is a left SNF basis for A1,s .

An identical argument (lifting each vχ into some Nj(Ar ,1)) shows that B is a right

SNF basis for Ar ,1.

It remains to show that the elementary divisor multiplicities are as stated in the

theorem. First we need a more precise description of the FG -submodule lattice of

FL1. The facts that we need are as follows (see [2, Theorem A]). FL1 = F1 ⊕ Y1 is a

multiplicity–free FG -module, and the FG -composition factors of Y1 are in bijection with

the set H. The dimension over F of the composition factor corresponding to the tuple ~s

is d(~s). Moreover, if we give H the partial order

(s0, ... , st−1) ≤ (s
′
0, ... , s

′
t−1) ⇐⇒ si ≤ s

′
i for all i

then the FG -submodule lattice of Y1 is isomorphic to the lattice of order ideals of H,

and the tuples contained in an order ideal correspond to the composition factors of the

respective submodule. Thus it is clear what is meant by the statement that a subquotient

of Y1 determines a subset of H.

Remarks.

1. The field k in [2] is actually an algebraic closure of Fq, but (as observed in [4])
it follows from [2, Theorem A] that all kG -submodules of kL1 are simply scalar
extensions of FqG -modules, and therefore [2, Theorem A] is also true over our field
F ∼= Fqn+1 . This observation also permits us to make use of certain results from [4],
where the field is Fq.

2. The detailed information that we need about the elementary divisors of Ar ,1
and A1,s we obtain from [4]. It should also be noted that the incidence relation
considered in [2, 4, 13] is nonzero intersection (i.e., the complementary relation
where two subspaces are incident if and only if their intersection is nontrivial). If
A′
r ,s is the corresponding incidence matrix for nonzero intersection, then we have

Ar ,s = J − A
′
r ,s.
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In particular,
Ar ,s |Yr = −A′

r ,s |Yr .

Therefore the (p-adic) Smith normal forms of Ar ,s and A′
r ,s can differ only with

respect to where they map 1. This accounts for the extra term appearing in the
calculation of p-ranks in [2, 4, 13].

Lemma 5.2.

1. The FG -module Mα(A1,s |Y1)/Mα+1(A1,s |Y1) determines the subset Hα(s).

2. The FG -module Nβ(Ar ,1|Yr )/Nβ−1(Ar ,1|Yr ) determines the subset βH(r).

Proof. Part (1) is the content of [4, Theorem 3.3] (see Remarks above). In order to

prove (2), first observe that for each k , Lk is an orthonormal basis for a nondegenerate

G -invariant symmetric bilinear form 〈· , ·〉k on RLk . Use the induced form on FLk to

identify each permutation module with its dual (contragredient) module, and observe that

As,r is the dual map induced by Ar ,s . Since the tuples (s0, ... , st−1) and (n+1− s0, ... , n+

1 − st−1) are determined by dual composition factors [2, Lemma 2.5(c)], part (2) will

follow immediately if we can show the FG -module isomorphism

(

Nβ(Ar ,s |Yr )/Nβ−1(Ar ,s |Yr )
)∗

∼= Mβ(As,r |Ys)/Mβ+1(As,r |Ys).

It is sufficient to show that

Nβ(Ar ,s |Yr )
⊥
= Mβ+1(As,r |Ys).

We proceed by induction on β. When β = 0, we have

N0(Ar ,s |Yr )
⊥
= {y | y ∈ Ys , 〈(x)Ar ,s, y〉s ≡ 0 (mod p) for all x ∈ Yr}

= {y | y ∈ Ys , 〈x , (y)As,r〉r ≡ 0 (mod p) for all x ∈ Yr}

= M1(As,r |Ys).
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where the last equality follows from the nondegeneracy of the induced form on Yr . Now

assume β > 0. It is easy to check that Mβ+1(As,r |Ys ) ⊆ Nβ(Ar ,s |Yr )
⊥

. We then have

Mβ+1(As,r |Ys) ⊆ Nβ(Ar ,s |Yr )
⊥
⊆ Nβ−1(Ar ,s |Yr )

⊥
= Mβ(As,r |Ys),

with the equality by our induction hypothesis. Since clearly eβ(As,r |Ys) = eβ(Ar ,s |Yr ), it

now follows from Lemma 4.1 and the above inclusions that Mβ+1(As,r |Ys) = Nβ(Ar ,s |Yr )
⊥

.
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Figure 5-1. Illustrating Lemma 5.2 when n = 3 and r = s = t = 2.

Proof of Theorem 5.1. Fix an FG -composition series

{0} ⊆ F1 = U0 ⊆ U1 ⊆ · · · ⊆ FL1.

Starting with the F -basis {v1
S
} of U0, we can extend this using elements of B to a basis

of U1. Continuing in this fashion, we thus get the disjoint union

B = {v1
S
} ∪ D1 ∪ · · ·

where Di are the elements of B extending Ui−1 to Ui . It is clear that each quotient

Ui/Ui−1 (i ≥ 1) is isomorphic as an FS-module to the FS-submodule of Y1 spanned by

Di . If the simple FG -module Ui/Ui−1 determines the tuple ~s ∈ H, then we say will say

that each element of Di determines the tuple ~s. This assignment of elements of B to

tuples in H is well–defined independent of the above composition series, as follows from
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the fact that the isomorphism type of an FS-submodule of Y1 is completely determined

by the characters it affords.

By Lemma 5.2, the tuple determined by vχ belongs to Hα(s) ∩ βH(r) precisely when

the following two conditions hold:

1. vχ ∈ Mα(A1,s |Y1) but vχ /∈ Mα+1(A1,s |Y1),

2. vχ ∈ Nβ(Ar ,1|Yr ) but vχ /∈ Nβ−1(Ar ,1|Yr ).

It immediately follows that

ei(Ar ,1A1,s |Yr ) =
∑

α+β=i

∑

~s∈Hα(s)∩βH(r)

d(~s), for i ≥ 0.

Since Hα(s) = ∅ for α > t(s − 1) and βH(r) = ∅ for β > t(r − 1), we have

ei(Ar ,1A1,s |Yr ) = 0, for i > t(r + s − 2).

We will use the q-binomial coefficients






m

ℓ







q

=
(qm − 1)(qm−1 − 1) · · · (qm−ℓ+1 − 1)

(q − 1)(q2 − 1) · · · (qℓ − 1)

for non-negative integers m and ℓ with m ≥ ℓ. Then

(1)Ar ,1A1,s = q
r+s [ nr ]q

[

n+1−s
1

]

q
1,

and we have et(r+s)(Ar ,1A1,s) = 1, completing the proof of Theorem 5.1.

Remark. Since d(~s) = 0 for ~s ∈ [n]t \ H, there is no effect on the numerical result of

Theorem 5.1 if we replace H with [n]t in the notation preceding the statement of the

theorem.

Proof of Theorem 3.2. We recover our original situation by setting n = 3 and r = s = 2

(so A2,2 = A and A1,2 = B). Replace H with [3]t in the notation preceding Theorem 5.1.
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Then it is easy to see that

Hα(2) = {~s ∈ [3]t |~s contains exactly α ones}

and

βH(2) = {~s ∈ [3]t |~s contains exactly β threes}.

Hence

Γ(i) =
⋃

α+β=i

(

Hα(2) ∩ βH(2)
)

= {~s ∈ [3]t |~s contains exactly t − i twos}

= H(t − i).

Therefore, for 0 ≤ i ≤ t,

et−i(B
tB) =

∑

~s∈H(i)

d(~s)

and in view of equation (5–6) we see that Theorem 3.2 follows from Theorem 5.1.

As mentioned in the introduction, the problem of computing the integer invariants

of Ar ,s in general is still very much unsolved. The p-ranks of the incidence matrices

Ar ,s were computed in [13], and observe that the p-rank of an integer matrix is just the

multiplicity of p0 as a p-adic elementary divisor. We conclude with the following easy

corollary of Theorem 5.1.

Corollary 5.2. Notation is that of Theorem 5.1. Let ei(Ar ,s) denote the multiplicity of pi

as a p-adic elementary divisor of Ar ,s . Then, for 0 ≤ i < t,

ei(Ar ,s) =
∑

~s∈Γ(i)

d(~s).

Proof. Let x ∈ Lr . Then

(x)Ar ,s =
∑

y∈Ls

ax,yy ,
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where

ax,y = |{z ∈ L1 | z ∩ x = {0} and z ∩ y = {0}}|

=















[ n+11 ]q − [
r
1 ]q − [

s
1 ]q, if x ∩ y 6= {0}

[ n+11 ]q − [
r
1 ]q − [

s
1 ]q + [

k
1 ]q, if dim(x ∩ y) = k ≥ 1.

Then ax,y ≡ −1 (mod q) when x ∩ y = {0} and q divides ax,y otherwise. Hence

Ar ,1A1,s ≡ −Ar ,s (mod p
t)

and the corollary now follows from Lemma 4.2.
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APPENDIX: SAMPLE SAGE PROGRAM

x = walltime()

p = 2

t = 2

q = p^t

F.<a> = GF(q)

V = VectorSpace(F, 4)

S = tuple(V.subspaces(2))

l = len(S)

print "now forming incidence matrix A"

A = matrix(ZZ, l)

for i in range(l-1):

for j in range(i+1, l):

if dim(S[i].intersection(S[j])) == 0:

A[i,j] = 1

A = A + A.transpose()

y = walltime(x)

print "took", y, "seconds"

save(A, ’./programs/Results-4dim/incmat2^2’)
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