Turn these problems in with the assigned problems from the text:

(1) Let n be a positive integer. For $a, b \in \mathbb{Z}$ we write $a \sim b$ if $a-b$ is divisible by n. This is an equivalence relation. Let \bar{a} denote the equivalence class of a.

Set $\mathbb{Z} / n \mathbb{Z}=\{\overline{0}, \overline{1}, \cdots, \overline{n-1}\}$. We saw in class that $\mathbb{Z} / n \mathbb{Z}$ can be made into a group by defining

$$
\bar{a}+\bar{b}=\overline{a+b}
$$

and that this operation is well-defined.
Show that we can also multiply equivalence classes; that is, show that the operation

$$
\bar{a} \bar{b}=\overline{a b}
$$

is well-defined. Is $\mathbb{Z} / n \mathbb{Z}$ a group under this operation of multiplication? Why or why not?

