Name:
Pledge:

Math 434 Final Exam

You may use all of your resources for this final exam. However, the only human that should help you with this exam is me.

Do all of the problems below. (10 points each.)

1. Let V be a finite dimensional inner product space. Suppose $T \in \mathcal{L}(V)$ has the following property: $\langle v, u\rangle=\langle T v, T u\rangle$ for all $v, u \in V$.

- Prove that T is invertible and describe its inverse.

2. Consider a set of four points $\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}$. Our vector space in this problem is the space of all functions from the set of points to the field:

$$
V=\left\{f:\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\} \rightarrow \mathbb{F}\right\}
$$

For $1 \leq i \leq 4$, define the element $e_{i}:\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\} \rightarrow \mathbb{F}$ of V by the formula:

$$
e_{i}\left(p_{k}\right)= \begin{cases}1 & \text { if } i=k \\ 0 & \text { if } i \neq k\end{cases}
$$

So, for example, $e_{1}\left(p_{1}\right)=1$ but $e_{1}\left(p_{2}\right)=e_{1}\left(p_{3}\right)=e_{1}\left(p_{4}\right)=0$.

- Show that $e_{1}, e_{2}, e_{3}, e_{4}$ is a basis of V.

3. Consider again the four points $\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}$ but this time arranged in a square. For definiteness, say there is an edge connecting the following pairs of points: $\left(p_{1}, p_{2}\right),\left(p_{2}, p_{3}\right),\left(p_{3}, p_{4}\right),\left(p_{4}, p_{1}\right)$.

We will use the edges to define a linear operator on V. Define $T: V \rightarrow V, f \mapsto T f$, by the following formula:

$$
(T f)(x)=\sum_{y} f(y)
$$

where the sum is taken over all points y that are connected by an edge to x. As an example, $(T f)\left(p_{1}\right)=f\left(p_{2}\right)+f\left(p_{4}\right)$. In this way, any function $f:\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\} \rightarrow \mathbb{F}$ determines a function $T f:\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\} \rightarrow \mathbb{F}$.

- Show that T is indeed a linear transformation from V to V.
- Determine the matrix of T with respect to the basis $e_{1}, e_{2}, e_{3}, e_{4}$ of the previous problem.

Bonus! (1 point each)

- Same notation as in problems (2) and (3) above. Show that the element $f \in V$ defined by

$$
f\left(p_{1}\right)=f\left(p_{2}\right)=f\left(p_{3}\right)=f\left(p_{4}\right)=1
$$

is an eigenvector for the operator T. What property of the square is reflected in the corresponding eigenvalue?

- What is the dimension of range (T) ?
- Tell me something you learned from one of the presentations. (Not your own presentation.)

