Name:
Pledge:

## Math 434 HW 1

Due Friday $2 / 5$ at beginning of class.
(1) If $U_{1}, U_{2}, W$ are subspaces of $V$, does $U_{1}+W=U_{2}+W$ imply that $U_{1}=U_{2}$ ? Does $U_{1} \oplus W=U_{2} \oplus W$ imply that $U_{1}=U_{2}$ ? Give proofs or specific counterexamples please.
(2) Prove that the intersection of any collection $\left\{U_{\alpha} \mid \alpha \in J\right\}$ of subspaces of $V$ is a subspace of $V$.
(3) Consider the vector space $\mathbf{F}^{5}$. Suppose

$$
U=\left\{(x, y, x-y, 3 y,-x) \in \mathbf{F}^{5} \mid x, y \in \mathbf{F}\right\}
$$

(a) Find a subspace $W$ of $\mathbf{F}^{5}$ so that $\mathbf{F}^{5}=U \oplus W$.
(b) Find three subspaces $W_{1}, W_{2}, W_{3}$, none of which are $\{0\}$, so that $\mathbf{F}^{5}=U \oplus W_{1} \oplus W_{2} \oplus W_{3}$.
(4) Let $V=\mathbf{F}^{\mathbb{Z}}$.
(a) Find a sequence of subspaces of $V$ :

$$
W_{1} \subset W_{2} \subset \cdots
$$

where all the containments are proper.
(b) Find a sequence of subspaces of $V$ :

$$
U_{1} \supset U_{2} \supset \cdots
$$

where all the containments are proper.

