Name: Pledge:

Math 434 HW 1

Due Friday 2/5 at beginning of class.

- (1) If U_1, U_2, W are subspaces of V, does $U_1 + W = U_2 + W$ imply that $U_1 = U_2$? Does $U_1 \oplus W = U_2 \oplus W$ imply that $U_1 = U_2$? Give proofs or specific counterexamples please.
- (2) Prove that the intersection of any collection $\{U_{\alpha} \mid \alpha \in J\}$ of subspaces of V is a subspace of V.
- (3) Consider the vector space \mathbf{F}^5 . Suppose

$$U = \{ (x, y, x - y, 3y, -x) \in \mathbf{F}^5 \, | \, x, y \in \mathbf{F} \}.$$

- (a) Find a subspace W of \mathbf{F}^5 so that $\mathbf{F}^5 = U \oplus W$.
- (b) Find three subspaces W_1, W_2, W_3 , none of which are $\{0\}$, so that $\mathbf{F}^5 = U \oplus W_1 \oplus W_2 \oplus W_3$.

(4) Let
$$V = \mathbf{F}^{\mathbb{Z}}$$
.

(a) Find a sequence of subspaces of V:

$$W_1 \subset W_2 \subset \cdots$$

where all the containments are proper.

(b) Find a sequence of subspaces of V:

 $U_1 \supset U_2 \supset \cdots$

where all the containments are proper.